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SOME PROPERTIES OF COMPOSITION OPERATORS
ON THE DIRICHLET SPACE

G. A. CHACÓN and G. R. CHACÓN

Abstract. In this paper we investigate composition operators induced on the
Dirichlet space by linear fractional maps. We characterize the essential normal-
ity in this setting, obtain conditions for the linear fractional symbols ϕ and ψ of
the unit disc for which CϕC∗

ψ or C∗
ψCϕ is compact, and investigate the shape of the

numerical range for linear fractional composition operators induced on the Dirichlet
space.

1. Introduction

In a 1988 paper (cf. [7]), C. Cowen found a formula expressing the adjoint of
a composition operator Cϕ induced, on the Hardy space, by a linear fractional
transformation of the unit disc, as a product of Toeplitz operators and another
linear fractional composition operator. In [14] P. Hurst obtained an analogous
expression for the adjoint of Cϕ acting on A2

α(D), the weighted Bergman space.
Recently in [10] E. Gallardo and A. Montes obtained a formula for the adjoint

of a linear fractional composition operator acting on the classical Dirichlet space,
as another linear fractional composition operator plus a two rank operator.

In this paper we investigate the composition operators induced, on the classical
Dirichlet space, by a linear fractional transformation of the unit disc. In Section 2
we give the notation and preliminary results. In Section 3 we use the E. Gallardo
and A. Montes’ formula in order to characterize the essentially normal composition
operators induced, on the Dirichlet space, by linear fractional maps. In Section 4
we obtain conditions for the symbols ϕ and ψ, two linear fractional transformations
of the unit disc, at which the operator CϕC∗

ψ or C∗
ψCϕ is compact. Finally in

Section 5 we investigate the shape of the numerical range for composition operators
induced on the Dirichlet space by linear fractional maps.
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2. Preliminaries

A holomorphic function ϕ that takes the unit open disc D into itself induces a linear
composition operator Cϕ on the space Hol (D) of all holomorphic functions on D

as follows:

Cϕf = f ◦ ϕ, (f ∈ Hol (D)).

A lot of work has been done studying composition operators acting on functional
Hilbert spaces in D (and other domains) (cf. [8], [20], [15], and the references
therein); in particular on Hardy spaces, Bergman spaces and Dirichlet spaces.

We recall that a functional Hilbert space H �= (0) is a Hilbert space of complex-
valued functions defined on the set X such that, for each x ∈ X the point-
evaluation functional f �→ f(x) is bounded. The Riesz Representation Theorem
says that for each x ∈ X there exists a function Kx ∈ H such that 〈f,Kx〉 = f(x)
for each f ∈ H. The function Kx is called the reproducing kernel at x in H.

The Dirichlet space, which we denoted by D, consists of all holomorphic func-
tions f on D which have finite norm given by

‖f‖2
D = |f(0)|2 +

∫
D

|f ′(z)|2 dA(z),

where dA is the normalized Lebesgue area measure of the unit disk. The term
|f(0)|2 avoids that constant functions have norm zero.

If f is univalent, then
∫

D
|f ′(z)|2 dA(z) is precisely the area of f(D). In general∫

D
|f ′(z)|2 dA(z) still yields the area of the image of f on D if one takes multiplic-

ities into account. It is well known that∫
D

|f ′(z)|2 dA(z) =
∞∑

n=1

n|f̂(n)|2,

where f̂(n) denotes the nth Taylor coefficient of f .
The Dirichlet space D is a functional Hilbert space on D and the function

Kw(z) = 1 + log
1

1 + wz
, (z ∈ D),

is the reproducing kernel at w in the Dirichlet space.
An easy calculus shows how C∗

ϕ, the adjoint operator of Cϕ, acts on the repro-
ducing kernel. Indeed, for each w ∈ D we have C∗

ϕKw = Kϕ(w).
If ϕ is a holomorphic self-map of the unit disk, the composition operator Cϕ

induced on Hol(D), the space of all holomorphic functions on D endowed with the
topology of uniform convergence on compact subsets is continuous. However, in
general in the Dirichlet space not all composition operators are bounded. Never-
theless, it is known that if ϕ is univalent then Cϕ is bounded and this is the case
we are considering in this paper.

Indeed, we consider composition operators induced by linear fractional maps.
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3. Essentially normal composition operators

The goal in the study of composition operators is to understand how properties
of composition operators relate to the behavior of their inducing maps. Along
this direction, in [1] the essentially normal composition operators induced on the
Hardy space H2 by a linear fractional selfmap ϕ of the unit disc, are characterized.

Recall that an operator T on a Hilbert space is called normal if TT ∗ = T ∗T , and
essentially normal if T ∗T − TT ∗ is compact. Compact and normal operators are
trivially essentially normal, so we say that an operator is nontrivially essentially
normal if it is essentially normal, but neither normal nor compact.

For bounded operators A and B on a Hilbert space, we use the notation

[A,B] := AB − BA,

for the commutator of A and B; in particular A is essentially normal if and only
if [A∗, A] is compact.

The main result in [1] is: A composition operator induced on H2 by a linear
fractional self-map of the unit disc is nontrivially essentially normal if and only if
it is induced by a parabolic non-automorphism one. Here, by a non-automorphism
we mean a linear fractional map which is not an automorphism of the unit disc.
The proofs in [1] are based on Cowen’s adjoint formula.

In [16] R. Wier and B. MacCluer study the analogous question in the setting
of Bergman spaces. They obtain that the essentially normal linear fractional com-
position operators on the Bergman spaces are exactly the same as those on the
Hardy space: the non trivial ones are precisely those whose symbol is a parabolic
non-automorphism one. The generalized expression of [14] for the adjoint of Cϕ

acting on A2
α(D) is crucial in their work.

In this note we study the question: Which composition operators Cϕ induced
on D by a linear fractional selfmap ϕ of the unit disc, are nontrivially essentially
normal? We follow the idea from proofs in [1] and use results from the recent
paper by E. Gallardo-Gutiérrez, and A. Montes-Rodŕıguez [10], and the ideas in
[13] in order to obtain the following result:

Main Theorem. A composition operator Cϕ induced on D by a linear frac-
tional selfmap ϕ of the unit disc is essentially normal if and only if ϕ is not a
hyperbolic non-automorphism with a fixed point on ∂D.

In order to prove our result we recall well known facts about linear fractional
maps. If a, b, c and d are complex numbers with ad − bc �= 0, then the linear
fractional map

ϕ(z) =
az + b

cz + d
,

is a one-to-one map from the extended complex plane Ĉ onto itself. Indeed we
define ϕ(∞) = a/c, and ϕ(−d/c) = ∞ if c �= 0, while ϕ(∞) = ∞ if c = 0.

A linear fractional map which is not the identity has one or two fixed points in
the extended complex plane. Two linear fractional maps ϕ and ψ are said to be
conjugate if there is another linear fractional map T such that ϕ = T−1 ◦ ψ ◦ T .
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If ϕ has only one fixed point α, then it is called parabolic and it is conjugate
under Tz = 1/(z − α) to ψ(z) = z + τ with τ �= 0. Observe that the derivative at
the fixed point is 1.

If ϕ has two distinct fixed points α and β, then ϕ is conjugate under Tz =
(z − α)/(z − β) to ψ(z) = µz. In this case, the linear fractional map is called
elliptic if |µ| = 1; hyperbolic if µ > 0 and loxodromic, otherwise (see [20] for more
details). It is not difficult to show that the derivative at the fixed points satisfy
ϕ′(α) = 1/ϕ′(β).

It is easy to see that if ϕ is parabolic, then the sequence {ϕn(z)} converges for
every z ∈ D, uniformly on compact subsets to the fixed point α. In this case, we
say that α is an attractive fixed point; if ϕ is hyperbolic or loxodromic, its fixed
points are one attractive and one repulsive. When ϕ is elliptic, its fixed points
are neither attractive nor repulsive. For ϕ loxodromic or hyperbolic the attractive
fixed point of ϕ is the one for which the modulus of the derivative is strictly less
than one.

Additionally when we put the condition ϕ(D) ⊂ D, we obtain some restrictions
on the location of the fixed points of ϕ as follows.

Proposition 3.1. (See [20, p. 5]) If ϕ is a linear fractional map with ϕ(D) ⊂ D

then:

1. If ϕ is parabolic, then its fixed point is on ∂D.
2. If ϕ is hyperbolic, the attractive point is in D and the other fixed point out-

side of D. Both fixed points are on ∂D if and only if ϕ is an automorphism
of D.

3. If ϕ is loxodromic or elliptic, one fixed point is in D and the other fixed
point outside of D. The elliptic ones are always automorphisms of D. The
fixed point in D for the loxodromic ones is attractive.

We are interested solely in non-compact operators, so we consider only ϕ linear
fractional maps with ‖ϕ‖∞ = 1; this is, with sup

z∈D

|ϕ(z)| = 1. Indeed, if ‖ϕ‖∞ < 1

is easy to see that Cϕ is a Hilbert-Schmidt operator (cf. [9, Lemma 2.1]) and so
compact.

We make other reduction. Following [13] (cf. also [10] and [11] where the idea
in [13] is used) we consider D0, the space of functions in the Dirichlet space D that
vanish at the origin. Since constant functions are invariant under any composition
operator, the operator Cϕ acting on D is of the form

Cϕ =
(

1 X

0 C̃ϕ

)
:
(D �D0

D0

)
�→

(D �D0

D0

)
,

where C̃ϕ is the compression of Cϕ to D0, i.e. C̃ϕ = PD0Cϕ|D0 , with PD0 the
orthogonal projection onto D0.

It is easy to see that Cϕ is essentially normal if and only if C̃ϕ is essentially
normal. So, to prove our results we may and do consider C̃ϕ and D0. Since there
is no risk of confusion, we still denote C̃ϕ by Cϕ.
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The following result in [10] characterizes linear fractional composition operators
which are normal on D0:

Proposition 3.2. [10, Th. 4.1] A linear fractional composition operator Cϕ is
normal on D0 if and only if one of the following holds:

1. The symbol ϕ is an automorphism.
2. The symbol ϕ is parabolic.
3. The symbol ϕ has an interior and exterior fixed point and ϕ is conjugate to

z �→ µz with 0 < |µ| < 1.

From this proposition and the precedent observations the following corollary is
clear:

Corollary 3.3. A linear fractional composition operator Cϕ is essentially nor-
mal on D if one of the following holds:

1. The symbol ϕ is an automorphism.
2. The symbol ϕ is parabolic.
3. The symbol ϕ has an interior and exterior fixed point and ϕ is conjugate to

z �→ µz with 0 < |µ| < 1.

We consider now the remaining case of a linear fractional self-map of D: ϕ is
a hyperbolic non-automorphism with a fixed point on ∂D. We will prove that
in this case Cϕ is not essentially normal and thus we will characterize the linear
fractional composition operators being essentially normal in D.

We use a representation of the adjoint of a linear-fractionally induced compo-
sition operator on D0 obtained in [10] analogous to the Cowen’s adjoint formula:

Proposition 3.4. [10, Th. 3.2] Let ϕ(z) = (az + b)/(cz + d) be a linear
fractional self map of D and consider Cϕ acting on D0. Then, C∗

ϕ = Cψ where
ψ(z) = (az − c)/(−bz + d).

We observe that

ψ = ρ ◦ ϕ−1 ◦ ρ, where ρ(z) = 1/z,

(i.e. ρ is the mapping of inversion in the unit circle), and the inverse refers to ϕ

viewed as a univalent mapping of Ĉ onto itself. It also follows from this formula
that the fixed points of ψ are the ρ-images of the fixed points of ϕ; in particular
ϕ and ψ have the same boundary fixed points.

We will also need the following function-theory result.

Lemma 3.5. [1, Lemma 5.1] Suppose that ϕ is a fractional linear selfmap of
D with a fixed point ω ∈ ∂D. Then:

1. If ϕ is not an automorphism then ψ ◦ ϕ and ϕ ◦ ψ are parabolic (with fixed
point at ω).

2. ψ ◦ ϕ commutes with ϕ ◦ ψ,
where ψ is the map that occurs in proposition 3.4.

Finally, we have:
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Proposition 3.6. If ϕ, a linear fractional self-map of D is a hyperbolic non-
automorphism with a fixed point on ∂D then Cϕ is not essentially normal.

Proof. By Proposition 3.4 we need only to show that [Cψ, Cϕ] (acting in the
space D0) is not compact. Both ψ and ϕ share a fixed point on ∂D. Since ϕ is
hyperbolic, it has another fixed point p in the Riemann sphere, but not on ∂D

(since ϕ is not an automorphism of D). Now ψ is also hyperbolic, and its non-
boundary fixed point is ρ(p) �= p. Thus ψ does not commute with ϕ (else ψ(p)
would be a fixed point of ϕ not on ∂D and not equal to p, thus endowing ϕ with
too many fixed points). It follows that γ := ϕ◦ψ and χ := ψ ◦ϕ are distinct linear
fractional selfmaps of D with the same boundary fixed point as ϕ. By Lemma
3.5 γ and χ are both parabolic, and since they have the same fixed point, they
commute, and therefore so do the composition operators Cγ and Cχ.

The maps γ and χ are conjugate to the translations τa(z) = z + a and τb(z) =
z + b respectively (a �= b, Im a > 0 and Im b > 0). Now, by following the ideas
in the proof of [10, Th. 4.3] one can easily obtain that [Cψ, Cϕ] = Cγ − Cχ is
unitarily similar to the multiplication operator Mφ : L2(R+, tdt) → L2(R+, tdt)
where φ(t) = eiat − eibt. Thus, σ(Cγ − Cχ); the spectrum of Cγ − Cχ, is the non-
contable set {eiat − eibt : t ≥ 0} ∪ {0} and then [Cψ, Cϕ] can not be compact. �

4. The operators CϕC∗
ψ and C∗

ψCϕ

The study of compactness of composition operators and related properties is one
of the fundamental themes in the theory. Whenever ϕ is a linear fractional self
map of D and ϕ(D) ⊂ D, the operator Cϕ (acting in the Dirichlet space, as in
other functional Hilbert spaces) is easily seen to be compact; in the remaining
cases ϕ(D) is tangent to the unit circle and the operator is no longer compact (cf.
[23]). For the sake of completeness we mention the following result.

Theorem 4.1. Let ϕ be linear fractional selfmap of D. The following assertions
are equivalent:

1. Cϕ : D → D is compact.
2. Cϕ : D0 → D0 is compact.
3. Cϕ : D → D is Hilbert-Schmidt.
4. Cϕ : H2 → H2 is compact.
5. Cϕ : H2 → H2 is Hilbert-Schmidt.
6. ϕ(D) ⊂ D.

Proof. The proof is immediate from elemental considerations and the preceding
observation. �

Let ϕ and ψ be linear fractional selfmaps of the unit disc. The problem of the
compactness of CϕC∗

ψ and C∗
ψCϕ was studied on the Hardy space in [4] and on

the Bergman space in [5].
We obtain in the setting of the Dirichlet space a characterization of the com-

pactness of these operators analogous to that in [4]. In this context the proof is
simpler, as the adjoint formula is simpler on the Dirichlet space. As it was noted
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in [5] and is easy to see with the followings results, there are non compact com-
position operators Cϕ and Cψ linear fractionally induced, such that the product
CϕC∗

ψ or C∗
ψCϕ is compact. In a similar way we see that the compactness of CϕC∗

ψ

is not equivalent to the compactness of C∗
ψCϕ.

Theorem 4.2. (cf. [4, Th. 2.1]) Suppose that ϕ and ψ are linear fractional
self maps of D. Then CϕC∗

ψ is not compact as operator on D if and only if there
exist points η1 and η2 in ∂D such that ϕ(η1) = ψ(η2) ∈ ∂D.

Proof. We write σ = ρ ◦ ϕ−1 ◦ ρ and γ = ρ ◦ ψ−1 ◦ ρ with ρ(z) = 1/z, z ∈ Ĉ.
The adjoint formula 3.4 of E. Gallardo and A. Montes says that C∗

ϕ = Cσ and
C∗

ψ = Cγ (as operators on D0). So, CϕC∗
ψ : D → D is not compact if and only if

Cγ◦ϕ is not compact. Therefore, ρ ◦ ψ−1 ◦ ρ ◦ ϕ maps a point of ∂D onto ∂D and
this is equivalent to the conclusion of the theorem. �

Theorem 4.3. (cf. [4, Th. 2.2]) Suppose that ϕ and ψ are linear fractional
self maps of D. Then C∗

ψCϕ is not compact as operator on D if and only if there
exist points ω1 and ω2 in ∂D such that ϕ−1(ω1) = ψ−1(ω2) ∈ ∂D.

Proof. With the notation of the preceding theorem, C∗
ψCϕ : D → D is not

compact if and only if Cϕ◦γ is not compact. Hence, ϕ ◦ ρ ◦ ψ−1 ◦ ρ maps a point
of ∂D onto ∂D and this is equivalent to the conclusion of the theorem. �

5. Numerical Range of Linear Fractional Composition Operators

For a bounded operator T on a Hilbert space H, the numerical range of T is
defined as the subset of the complex plane:

W (T ) := {〈Tx, x〉 : x ∈ H, ‖x‖ = 1}.
There are some important properties of numerical range that we will use (see [21]
and [19] for example).

Proposition 5.1. For an operator T on a Hilbert space H:
1. W (T ) is invariant under unitary similarity.
2. W (T ) lies in the closed unit disc of radius ‖T‖ centered at the origin.
3. W (T ) contains all the eigenvalues of T . Moreover, if T is a unitarily diag-

onalizable operator, then W (T ) is the convex hull of its eigenvalues.
4. The spectrum of T belongs to the closure W (T ) of W (T ). Moreover, if T

is a normal operator then W (T ) equals the convex hull of its spectrum.
5. Toeplitz-Hausdorff Theorem: W (T ) is always convex.
6. W (T ∗) = {λ : λ ∈ W (T )}.

Due to properties 4. and 5. above, we have that W (T ) contains the convex hull
of the spectrum of T . An important difference between spectrum and numerical
range is that while the former is similarity invariant, the latter is not.

There is some work on the study of the shape of the numerical range of composi-
tion operators in Hilbert spaces. In particular, there are recent papers of Bourdon
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and Shapiro [2] and Matache [19] on this matter. Specifically, in [2] the shape
of the numerical range of composition operators induced on the Hardy space H2

by disc automorphisms is studied. In [19], the shape of composition operators
induced on the same space by monomials is studied. Here we do the same but in
the D0 space. For this we rely on the work by Gallardo and Montes [10]. We use
several of their results.

Theorem 5.2. [10, Th. 4.3] Let Cϕ be a linear fractional composition operator
acting on D0. Then:

1. If ϕ is conjugate to η(z) = µz, with 0 < |µ| ≤ 1, then Cϕ is unitarily similar
to a diagonal operator.

2. If ϕ is parabolic which is conjugate to τ(z) = z + a, then Cϕ is unitarily
similar to multiplication by φ(t) := eiat on L2(R+, tdt).

3. If ϕ is a hyperbolic automorphism conjugate to η(z) = λz, then Cϕ is
unitarily similar to multiplication by φ(t) := λ−it on L2(R, 2πdt).

4. If ϕ is hyperbolic with just one fixed point on ∂U, then Cϕ is unitarily
similar to the product of an unitary operator and a normal operator, or
viceversa.

As a consequence of the previous theorem, E. Gallardo and A. Montes obtained:

Theorem 5.3. [10, Th. 5.1] Let Cϕ be a linear fractional composition operator
acting on D0. Then:

1. If ϕ is an elliptic automorphism and the derivative ϕ′(α) at its interior fixed
point is an n-root of the unity, then σ(Cϕ), the spectrum of Cϕ, equals to
{ϕ′(α)k : k = 0, 1, . . . n − 1}.

2. If ϕ is an automorphism which is not conjugate to a rotation through a ra-
tional multiple of ϕ, then σ(Cϕ) = ∂D.

3. If ϕ is a parabolic non-automorphism which is conjugate to τ(z) = z + a,
Ima > 0, then σ(Cϕ) = {eiat : t ≥ 0} ∪ {0}.

4. If ϕ is hyperbolic with just one fixed point, then σ(Cϕ) = D.
5. If ϕ is not elliptic and has an exterior and an interior fixed point and ϕ′(α)

is the derivative at the latter fixed point, then σ(Cϕ) = {ϕ′(α)n : n =
1, 2, . . . } ∪ {0}.

In order to obtain the preceding theorem E. Gallardo and A. Montes (cf. [10]),
following and idea in [13] consider DΠ, the Dirichlet space of the upper half plane
consistig of those analytic functions F on Π, the upper half plane, for which the
integral

1
π

∫
Π

|F ′(x + iy)|2 dx dy

is finite. If we identify functions that differ by a constant, then DΠ becomes a
Hilbert space and it is isometrically isomorphic to D0. Additionally, the space DΠ

is isometrically isomorphic, under the Fourier transform, to L2(R+, tdt).
We will also use the following corollary Theorem 5.2:
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Corollary 5.4. [10, Cor. 6.1] Let ϕ be a linear fractional self-map of D. If ϕ
is elliptic or it has a boundary fixed point, then ‖Cϕ‖D0 = 1.

5.1. The Numerical Range on D0

In this section we will show properties of the shape of the numerical range of
linear fractional composition operators on the space D0. For this, we are heavily
borrowing from the last two results mentioned before.

Theorem 5.5. Let Cϕ be a linear fractional composition operator acting on
D0. Then,

1. If ϕ is an elliptic automorphism with interior fixed point α and ϕ′(α) is an
n-root of the unity, then

W (Cϕ) = co{ϕ′(α)k : k = 0, 1, . . . n − 1};
i.e. W (Cϕ) is the n-vertex polygonal closed region with vertex in the n-roots
of the unity.

2. If ϕ is conjugate to a rotation through an irrational multiple of π: z �→ µz,
|µ| = 1, then W (Cϕ) = D ∪ {µ, µ2, . . . }.

3. If ϕ is a hyperbolic or a parabolic automorphism, then W (Cϕ) = D.
4. If ϕ is a parabolic non-automorphism, then W (Cϕ) is the convex hull of a

spiral joining 1 to 0.
5. If ϕ is hyperbolic with just one boundary fixed point, then W (Cϕ) = D.
6. If ϕ is not elliptic and has an exterior and an interior fixed point and ϕ′(α)

is the derivative at the latter point, then

W (Cϕ) = co({ϕ′(α)n : n = 1, 2 . . . } ∪ {0}).
Proof. To prove (1) we observe that, by the first part of Theorem 5.3, we have

that Cϕ is unitarily similar to a diagonal operator with the family {ϕ′(α)k : k =

0, 1 . . . n− 1} as eigenvalues of Cϕ (taking
{

zm

√
m

}∞

m=1

as an orthonormal basis of

D0). Recall that the set of eigenvalues is invariant under unitary similarity. Then,
we use Proposition 5.1 to obtain the result.

For parts 2. and 3. we use the fact that the operator Cϕ is normal on D0 (3.2)
and then, by proposition 5.1, we have that W (Cϕ) = co(σ(Cϕ)). But in both cases
the symbol ϕ is an automorphism which is not conjugate to a rotation through a
rational multiple of π, and then σ(Cϕ) = ∂D, so W (Cϕ) = D.

If ϕ is as in part (2), we have again that Cϕ is unitarily similar to a diagonal
operator, but now with the sequence {µ, µ2, . . . } as eigenvalues of Cϕ. Then
W (Cϕ) = D ∪ {µ, µ2, . . . }.

Suppose now that ϕ is a hyperbolic automorphism conjugate to η(z) = λz,
λ > 0, then it has two fixed points in ∂D, and by Corollary 3.2 we have ‖Cϕ‖D0 = 1.
Now if there is a point z ∈ W (Cϕ) such that |z| = 1, then there exist f ∈ D0,
‖f‖D0 = 1 such that 〈Cϕf, f〉 = z, but by Cauchy-Schwartz inequality:

1 = |z| = |〈Cϕf, f〉| ≤ ‖Cϕf‖D0 ≤ ‖Cϕ‖D0 = 1,(1)
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so there exists α ∈ C such that Cϕf = αf , and therefore, z = 〈Cϕf, f〉 = α〈f, f〉 =
α. Then an element belongs to W (Cϕ) ∩ ∂D if and only if it is an eigenvalue of
Cϕ.

Now Theorem 5.2 says that Cϕ is unitarily similar to a multiplication operator
Mφ on L2(R, 2πdt) induced by the multiplier φ : R −→ C, t �→ λ−it (= e−it log λ).
We know that if α is an eigenvalue of Cϕ then so is of Mφ, and therefore, it must
exist f ∈ L2(R, 2πdt), f �= 0 such that e−it log λf(t) = αf(t) for all t ∈ R. As
f must be nonzero in a positive Lebesgue measure set, e−it log λ = α in that set,
which is impossible. Therefore, Cϕ does not have any eigenvalue and the convexity
of W (Cϕ) ensures that W (Cϕ) = D.

The case in which the symbol ϕ is a parabolic automorphism conjugate to
τ(z) = z +a, Ima = 0, a �= 0, is similar: Again we have that ϕ has a fixed point in
∂D and hence ‖Cϕ‖D0 = 1 and the same reasoning about equation 1, brings up that
only eigenvalues can belong in W (Cϕ) ∩ ∂D. Now we have, by Theorem 5.2, that
Cϕ is unitarily similar to a multiplication operator on L2(R+, tdt) with multiplier
φ : R

+ −→ C, t �→ eiat. But the tdt measure is absolutely continuous with respect
to the Lebesgue measure, and the reasoning follows as in the latter case.

Cases 4. and 6. follow easily from the fact that Cϕ is normal on D0 (Theo-
rem 3.2) and hence (Proposition 5.1) W (Cϕ) = co(σ(Cϕ)).

To prove case 5. we use the fact that ϕ has one fixed point in ∂D and hence
‖Cϕ‖D0 = 1. But since σ(Cϕ) ⊂ W (Cϕ), then (Theorem 5.3) D ⊂ W (Cϕ), and
again because of Proposition 5.1, we have that W (Cϕ) lies in the closed unit disc
of radius ‖Cϕ‖ centered at the origin, thus W (Cϕ) = D. Moreover, we can deduce
using equation (1) that α ∈ W (Cϕ) ∩ ∂D if and only if there is f ∈ D0, such that
Cϕf = αf .

Suppose for a moment that another fixed point of ϕ is interior, then (see [10,
Th. 4.3]) Cϕ is unitarily similar to Cψ : DΠ −→ DΠ; where ψ(z) = λz+a, Ima > 0
and 0 < λ < 1. Now, if α is an eigenvalue of Cψ, it must exist g ∈ DΠ, g �= 0 such
that Cψg = αg, that is,

g(ψ(z)) = αg(z) for all z ∈ Π.

In particular, g
(
ψ

(
a

1−λ

))
= αg

(
a

1−λ

)
and so, g

(
a

1−λ

)
= αg

(
a

1−λ

)
; therefore, if

g
(

a
1−λ

) �= 0 then α = 1 and we can choose z0 ∈ Π such that g(z0) �= 0 and since
g(ψn(z0)) = αng(z0) = g(z0) for all n (here ψn denotes the composition of ψ with
itself n-times), g takes the each value non zero in its range infinitely-many times,
this contradicts the fact that g ∈ DΠ and hence W (Cϕ) = D.

If g
(

a
1−λ

)
= 0, then choose z0 ∈ Π such that g(z0) �= 0; now it is easy to see

that ψn(z0)
n−→ a

1−λ and then

lim
n

g(ψn(z0)) = g(lim
n

ψn(z0)) = g

(
a

1 − λ

)
= 0,

but this contradicts the fact that |g(ψn(z0))| = |αng(z0)| = |g(z0)| �= 0 for all n.
Hence W (Cϕ) = D.
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In case that the other fixed point were exterior, then C∗
ϕ = Cφ, with φ a linear

fractional self map of D having just one boundary fixed point and an interior fixed
point, so W (Cφ) = D and by Proposition 5.1 we can conclude that W (Cϕ) =
D. �

5.2. The Essential Numerical Range on D
If H is a Hilbert space and T ∈ L(H), the space of bounded operators on H, let
K(H) be the subspace of L(H) formed by all compact operators, and [T ] be the
coset of T in the Calkin algebra, i.e. the quotient space L(H)/K(H).

We recall that the essential norm of T is its norm in the Calkin algebra, i.e.
‖T‖e = inf{‖T − K‖ : K ∈ K(H)}, and the essential numerical range of T
(We(T )) is the numerical range of the coset [T ]. We denote by we(T ) the essential
numerical radius of T , that is, we(T ) = sup{|r| : r ∈ We(T )}. The notion of
essential numerical range was introduced by Stampfli and Williams in [22]. It
could be seen that We(T ) =

⋂
K∈K(H) W (T + K) and hence, We(T ) is a closed

subset of W (T ).
Similarly, the essential spectrum σe(T ) of an operator T is defined to be the

spectrum of the coset [T ] in the Calkin algebra. The essential spectrum σe(T ) is
always a compact subset contained in σ(T ) (cf [6], for example).

We have the following properties on We(T ) (See [3] and [12] for example).

Proposition 5.6. Let T ∈ L(H), then:
1. We(T ) is a non-void compact and convex set.
2. We(T ) = {0} if and only if T is compact.
3. If T is an essentially normal operator, We(T ) = co(σe(T )) and we(T ) =

‖T‖e.
4. If M is a closed linear subspace of H such that M⊥ has finite dimension,

t hen We(T ) = We(PMT |M ), where PM denotes the orthogonal projection
onto M .

In this section, we will find the shape of the essential numerical range of linear
fractional composition operators acting on the Dirichlet space D. For this, we will
use some results from [10].

Proposition 5.7.
1. [10, Remark 5.2] The essential spectrum σe(Cϕ) of a linear fractional com-

position operator Cϕ acting on D coincides with the essential spectrum of
Cϕ acting on D0.

2. [10, Cor. 5.2] Let Cϕ be a linear fractional composition operator acting on
D0. Then σe(Cϕ) = σ(Cϕ), except if ϕ is non elliptic and has an exterior
and an interior fixed point, in which case σe(Cϕ) = {0}.

In Section 3 we showed that a composition operator Cϕ induced on D by a
linear fractional self-map ϕ of the unit disc is essentially normal if and only if ϕ is
not a hyperbolic non-automorphism with a fixed point on ∂D. So, we can easily
deduce the following result.
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Theorem 5.8. Let Cϕ be a linear fractional composition operator acting on D.
Then:

1. If ϕ is an elliptic automorphism and the derivative ϕ′(α) at its interior fixed
point is an n-root of the unity, then

We(Cϕ) = co({ϕ′(α)k : k = 0, . . . n − 1}).
2. If ϕ is an automorphism which is not conjugate to a rotation through a

rational multiple of π, then We(Cϕ) = D.
3. If ϕ is a parabolic non-automorphism which is conjugate to τ(z) = z + a,

then We(Cϕ) = co({eiat : t ≥ 0} ∪ {0}).
4. If ϕ is not elliptic and has an exterior and an interior fixed point, then

We(Cϕ) = {0}.
5. If ϕ is hyperbolic with just one boundary fixed point, then We(Cϕ) = D.

Proof. Cases 1. to 4. follows easily from the last two results mentioned before
the Theorem. To prove case 5. we know that D = σe(Cϕ) ⊂ We(Cϕ), but

by Proposition 5.7 we have that We(Cϕ) = We(C̃ϕ) ⊂ W (C̃ϕ) = D and result
follows. �

Corollary 5.9. Let Cϕ be a linear fractional composition operator acting on
D. Then ‖Cϕ‖e = 1 except if ϕ is non elliptic and has an exterior and an interior
fixed point, in which case ‖Cϕ‖e = 0.

Corollary 5.10. Let Cϕ be a linear fractional composition operator acting on
D. Then Cϕ is compact if and only if ϕ is non elliptic and has an exterior and an
interior fixed point.

5.3. The Numerical Range on the Hardy space of the upper half plane

Let Π denote the upper half plane of the complex plane. The Hardy space of the
upper half plane H2(Π) is the space of holomorphic functions on Π for which the
norm

‖f‖2
H2(Π) = sup

y>0

1
2π

∫ ∞

−∞
|f(x + iy)|2dx

is finite.
In this space the situation for studying linear fractional composition operators

is much simpler than in the Dirichlet space: only linear fractional transformations
ϕ(z) = az + b with a > 0 and Imb ≥ 0 induce bounded composition operators on
H2(Π) (See [18]).

Again in [10] we can find a proof for the following result.

Theorem 5.11. Let ϕ(z) = az+b be such that a > 0 and Im b ≥ 0 and consider
Cϕ acting on H2(Π). Then

1. If ϕ is parabolic, then Cϕ is unitarily similar to multiplication by eibt on
L2(R+, dt).

2. If ϕ is a hyperbolic automorphism, then Cϕ is unitarily similar to multipli-
cation by z−it−1/2 on L2(R, 2πdt).
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In [10] and as a consequence of the last result, they prove that for ϕ as in 5.11,
Cϕ acting on H2(Π) is normal if and only if ϕ is an automorphism of Π or ϕ

is parabolic. They also prove that ‖Cϕ‖H2(Π) = a−1/2 and obtain the spectrum
of Cϕ:

Theorem 5.12. Let ϕ(z) = az+b be such that a > 0 and Im b ≥ 0 and consider
Cϕ acting on H2(Π). Then

1. If ϕ is an automorphism, then σ(Cϕ) = {z ∈ C : .|z| = a−1/2}.
2. If ϕ is a parabolic non automorphism, then σ(Cϕ) = {eibt : t ≥ 0} ∪ {0}.
3. If ϕ is an hyperbolic non automorphism, then σ(Cϕ) = {z ∈ C : |z| ≤

a−1/2}.
Now with a similar reasoning as in the proof of Theorem 5.5, one can easily see:

Theorem 5.13. Let ϕ(z) = az+b be such that a > 0 and Im b ≥ 0 and consider
Cϕ acting on H2(Π). Then

1. If ϕ is an automorphism, then W (Cϕ) = {z ∈ C : .|z| < a−1/2}.
2. If ϕ is a parabolic non automorphism, then W (Cϕ) = co ({eibt : t ≥ 0} ∪

{0}).
3. If ϕ is an hyperbolic non automorphism, then W (Cϕ) = {z ∈ C : |z| ≤

a−1/2}.

5.4. Final Remarks

Some work remains to be done in this matter: in cases 1., 2., 3. and 5. of
Theorem 5.5 we know exactly the properties of W (Cϕ) is, but in cases 4. and 6.
we just know the shape of W (Cϕ) and do not know the properties of ∂W (Cϕ). By
using the same reasoning to prove part (3), we can prove that 1 does not belong to
W (Cϕ) when ϕ is a parabolic non-automorphism, but nothing else. The next step
is to calculate the numerical range of linear fractional composition operators acting
on D. Some direct consequences from the last results are: since We(Cϕ) ⊂ W (Cϕ),
we can conclude that if ϕ is hyperbolic with just one boundary fixed point, then
W (Cϕ) = D. In [10] it is shown that a linear fractional composition operator Cϕ

acting on D is normal if and only if ϕ(z) = µz, with 0 < |µ| ≤ 1, so for this kind
of operators W (Cϕ) = co{µk : k = 0, 1, . . . }. It is easy to see that ‖Cϕ‖ = 1 in
D if ϕ is a linear fractional self-map of D that fixes the origin, hence W (Cϕ) = D

if ϕ is an automorphism that fixes the origin and is not conjugate to a rotation
through a rational multiple of π.
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