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NORM FORM EQUATIONS AND CONTINUED FRACTIONS

R. A. MOLLIN

Abstract. We consider the Diophantine equation of the form x2−Dy2 = c, where

c
∣∣ 2D, gcd(x, y) = 1, and provide criteria for solutions in terms of congruence

conditions on the fundamental solution of the Pell Equation x2 − Dy2 = 1. The
proofs are elementary, using only basic properties of simple continued fractions.
The results generalize various criteria for such solutions, and expose the central
norm, defined by the infrastructure of the underlying real quadratic field, as the
foundational key that binds all the elements.

1. Introduction

It is a basic fact that the fundamental unit x0 + y0

√
D, of a real quadratic or-

der Z[
√

D] is given by certain penultimate values in the principal period of the
simple continued fraction expansion of

√
D (see Equation 8 below). Congruence

conditions on x0, to determine congruence conditions on the underlying radicand
D, were known to Lagrange in the case where D is prime (see Corollary 2 below).
We expand these notions to a much more general scenario where the central norm
(see Equation (9) below), is shown to play the main role in Lagrange’s result, our
more general result, and in the solution of certain quadratic Diophantine equa-
tions. This includes criteria for x0 ≡ ±1 in terms of fixed values of the central
norm.

2. Notation and Preliminaries

Herein, we will be concerned with the simple continued fraction expansions of
√

D,
where D is an integer that is not a perfect square. We denote this expansion by

√
D = 〈q0; q1, q2, . . . , q`−1, 2q0〉,

where ` = `(
√

D) is the period length, q0 = b
√

Dc (the floor of
√

D), and
q1q2, . . . , q`−1 is a palindrome.
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The jth convergent of α for j ≥ 0 are given by
Aj

Bj
= 〈q0; q1, q2, . . . , qj〉,

where

Aj = qjAj−1 + Aj−2,(1)

Bj = qjBj−1 + Bj−2,(2)

with A−2 = 0, A−1 = 1, B−2 = 1, B−1 = 0. The complete quotients are given by
(Pj +

√
D)/Qj , where P0 = 0, Q0 = 1, and for j ≥ 1,

Pj+1 = qjQj − Pj ,(3)

qj =

⌊
Pj +

√
D

Qj

⌋
,

and
D = P 2

j+1 + QjQj+1.

We will also need the following facts (which can be found in most introductory
texts in number theory, such as [3]. Also, see [2] for a more advanced exposition).

AjBj−1 −Aj−1Bj = (−1)j−1.(4)

Also,

Aj−1 = PjBj−1 + QjBj−2,(5)

DBj−1 = PjAj−1 + QjAj−2,(6)

and

A2
j−1 −B2

j−1D = (−1)jQj .(7)

In particular,

A2
`−1 −B2

`−1D = (−1)`,(8)

and it follows that (x0, y0) = (A`−1, B`−1) is the fundamental solution of the Pell
Equation x2 −Dy2 = (−1)`.

When ` is even, P`/2 = P`/2+1, so by Equation (3),

Q`/2

∣∣ 2P`/2,

where Q`/2 is called the central norm, (via Equation (7)), where

Q`/2

∣∣ 2D,(9)

and

q`/2 = 2P`/2/Q`/2.(10)

In the following (which we need in the next section), and all subsequent results,
the notation for the Aj , Bj , Qj and so forth apply to the above-developed notation
for the continued fraction expansion of

√
D.
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Theorem 1. Let D be a positive integer that is not a perfect square. Then
` = `(

√
D) is even if and only if one of the following two conditions occurs.

1. There exists a factorization D = ab with 1 < a < b such that the following
equation has an integral solution (x, y).

ax2 − by2 = ±1.(11)

Furthermore, in this case, each of the following holds, where (x, y) = (r, s)
is the fundamental solution of Equation (11).
(a) Q`/2 = a.
(b) A`/2−1 = ra and B`/2−1 = s.
(c) A`−1 = r2a + s2b and B`−1 = 2rs.
(d) r2a− s2b = (−1)`/2.

2. There exists a factorization D = ab with 1 ≤ a < b such that the following
equation has an integral solution (x, y) with xy odd.

ax2 − by2 = ±2(12)

Moreover, in this case each of the following holds, where (x, y) = (r, s)
is the fundamental solution of Equation (12).
(a) Q`/2 = 2a.
(b) A`/2−1 = ra and B`/2−1 = s.
(c) 2A`−1 = r2a + s2b and B`−1 = rs.
(d) r2a− s2b = 2(−1)`/2.

Proof. All of this is proved in [4]. �

3. Norm Form Diophantine Equations

Theorem 2. Let D be a positive integer, not a perfect square, with ` = `(
√

D),
and let c be an integer such that |c| is a prime divisor of 2D and D > |c|2. Then
the following are equivalent.

1. The Diophantine equation,

x2 −Dy2 = c,(13)

has a solution.
2. ` is even, then c = (−1)`/2Q`/2, in which case (A`/2−1, B`/2−1) is the

fundamental solution of Equation (13).
3. ` is even and A`−1 ≡ (−1)`/2(mod 2D/|c|).
4. ` is even, (−1)`/2Q`/2 = c,

(−1)`/2cq`/2 = 2P`/2,(14)

A`/2−1 = (−1)`/2c(B`/2 + B`/2−2)/2,(15)

and

DB`/2−1 = (−1)`/2c(A`/2 + A`/2−2)/2.(16)
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Proof. If Equation (13) has a solution, then |c|(x/|c|)2 − Dy2/|c| = ±1, with
D/|c| > |c| > 1, so by part 1 of Theorem 1, ` is even and

A2
`/2−1 −B2

`/2−1D = Q`/2(−1)`/2 = c.

Therefore, part 1 implies part 2. Now assume that part 2 holds.
If (−1)`/2Q`/2 = c, then by part 1 of Theorem 1,

|c|A`−1 ≡ A2
`/2−1 + B2

`/2−1D ≡ c + 2B2
`/2−1D ≡ c (mod 2D),

so A`−1 ≡ (−1)`/2 (mod 2D/|c|). We have shown that part 2 implies part 3. Now
assume that part 3 holds.

Since ` is even, we may invoke Theorem 1. If part 1 of that theorem holds, then
D = ab with 1 < a < b, Q`/2 = a,

(−1)`/2 ≡ A`−1 ≡ r2a + s2b ≡ 2s2b + (−1)`/2 (mod 2D/|c|).
It follows that a

∣∣ s2|c|. However, by Equation (4),

gcd(ra, s) = gcd(A`/2−1, B`/2−1) = 1,

so a
∣∣ |c|. Thus, Q`/2 = a = |c|. If part 2 of Theorem1 holds, then a similar ar-

gument yields that Q`/2 = |c|, namely that (−1)`/2Q`/2 = c. Therefore, Equation
(10) implies that Equation (14) holds. Next, we show that Equation (15) holds.

By Equations (5) and (14),

A`/2−1 = P`/2B`/2−1 + Q`/2B`/2−2 = (−1)`/2cq`/2B`/2−1/2 + (−1)`/2cB`/2−2 =

(−1)`/2c(q`/2B`/2−1 + 2B`/2−2)/2 = (−1)`/2c(B`/2 + B`/2−2),
where the last equality follows from Equation (2).

To complete the establishment of part 4, we now prove that Equation (16)
holds. By Equations (6) and (14),

2DB`/2−1 = 2P`/2A`/2−1 + 2Q`/2A`/2−2 = q`/2(−1)`/2cA`/2−1 + 2(−1)`/2cA`/2−2

= (−1)`/2c(q`/2A`/2−1 + 2A`/2−2) = (−1)`/2c(A`/2 + A`/2−2),

where the last equality follows from Equation (1). It remains to complete the circle
of equivalences by showing that part 4 implies part 1. However, this is immediate
from Equation (7), where (x, y) = (A`/2−1, B`/2−1). �

Remark 1. Theorem 2 completely generalizes [1, Theorem p. 183], wherein
only c = ±2 is considered. Moreover, they miss the importance of the central
norm which we now illustate and highlight as concluding features of this note.

Example 1. Let D = 2337 = 3 · 19 · 41, for which ` = 18, Q`/2 = 41, c = −41,

A`−1 = 672604673 ≡ 113 ≡ −1 ≡ (−1)`/2 (mod 2D/|c|),

A2
`/2−1 −B2

`/2−1D = 1174242 − 24292D = −c = (−1)`/2Q`/2 = −41,

q`/2 = 2, P`/2 = 41 = (−1)`/2c = Q`/2,

A`/2−1 = 117424 = 41(5293 + 435)/2 = (−1)`/2c(B`/2 + B`/2−2)/2,



NORM FORM EQUATIONS AND CONTINUED FRACTIONS 277

and

DB`/2−1 = 5676573 = 41(255877 + 21029)/2 = (−1)`/2c(A`/2 + A`/2−2)/2.

Example 2. Let D = 4715 = 5 · 23 · 41, where ` = 4, Q`/2 = c = 46,

A`−1 = 206 ≡ (−1)`/2 (mod 2D/c),

A2
`/2−1 −B2

`/2−1D = 692 − 4715 = 46 = c = (−1)`/2Q`/2,

q`/2 = 1, (−1)`/2cq`/2 = 46 = 2P`/2,

A`/2−1 = 69 = 46(2 + 1)/2 = (−1)`/2c(B`/2 + B`/2−2)/2,

and
DB`/2−1 = 4715 = 46(137 + 68)/2 = (−1)`/2(A`/2 + A`/2−2)/2.

A key consequence of Theorem 2 involves condition 3. When |c| = 2, the result
boils down to a rather pleasant criterion for the central norm to be 2, in terms of
congruence conditions on the fundamental solution of the Pell Equation.

Corollary 1. If D is a positive nonsquare integer and ` = `(
√

D) is even, then
A`−1 ≡ (−1)`/2(mod D) if and only if Q`/2 = 2.

Proof. If Q`/2 = 2, then by Theorem 1, either Equation (11) holds with a = 2
or Equation (12) holds with a = 1. In the former case, D is even so Equation (13)
holds with c = ±2, and in the latter case, D is odd so Equation (13) holds with
c = ±2. By Theorem 2, in either case, A`−1 ≡ (−1)`/2(mod D/2). Conversely, if
A`−1 ≡ (−1)`/2(mod D), then by Theorem 2, Q`/2 = 2. �

The following celebrated result of Lagrange is shown to essentially be a central
norm 2 issue.

Corollary 2 (Lagrange). If p > 2 is prime and (x0, y0) is the fundamental
solution of x2 − py2 = 1, then x0 ≡ 1(mod p) if and only if p ≡ 7(mod 8).

Proof. If x0 ≡ 1 (mod p) and ` = `(
√

p) is odd, then by Equation (8),
A2

`−1≡ −1(mod p), and x0 = A2`−1 = A2
`−1 + B2

`−1p ≡ −1(mod p), a contra-
diction. Thus, ` is even, and x0 = A`−1. Thus, by Theorem 1, the only possibility
is part 2 which tells us that Q`/2 = 2, and Theorem 2 tells us that `/2 even, so
the following Legendre symbol equalities hold.(

2
p

)
=

(
x2 − py2

p

)
= 1,

which implies by elementary number theory (see [3, Corollary 4.1.6, p. 192], for
instance), p ≡ ±1(mod 8). However, p ≡ 1(mod 8) is precluded by the fact that
x2 − py2 = 2, via Equation (13).

Conversely, if p ≡ 7(mod 8), ` is even by Equation (8). Thus, by Theorem 1,
Q`/2 = 2, and by a simple Legendre symbol argument as above, `/2 is even. Thus,
by Theorem 2, x0 ≡ 1(mod p). �
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Remark 2. A consequence of the proof of Corollary 2 is that x0 ≡ 1(mod p)
if and only if p ≡ 7(mod 8) if and only if ` ≡ 0(mod 4) and Q`/2 = 2. Central
norm 2 plays an important part in such results, not previously highlighted in the
literature.
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