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SOME GENERALIZATIONS OF MINIMAL FUZZY OPEN SETS

SAMER AL GHOUR

Abstract. Two new minimality concepts are defined and investigated in fuzzy

spaces. Relationships between them and the known one are obtained. Several

results concerning them are obtained. The results especially deal with products,
separation axioms, maps, and fuzzy topologically generated topologies.

1. Introduction

In this paper, the symbol I will denote the unit interval [0,1]. Let X be a non-
empty set. A fuzzy set in X [11] is a function with domain X and values in I;
that is, an element of IX .

Throughout this paper, for λ, µ ∈ IX we write λ ≤ µ iff λ (x) ≤ µ (x) for
all x ∈ X. By λ = µ we mean that λ ≤ µ and µ ≤ λ, i.e., λ (x) = µ (x)
for all x ∈ X. If {λj : j ∈ J} is a collection of fuzzy sets in X, then (

∨
λj)

(x) = sup {λj (x) : j ∈ J}, x ∈ X; and (
∧

λj) (x) = inf {λj (x) : j ∈ J}, x ∈
X. If r ∈ [0, 1] then rX denotes the fuzzy set given by rX (x) = r for all x ∈ X;
that is, rX denotes the “constant” fuzzy set of level r.

In this paper we shall follow [10] for the definitions of fuzzy topology, first
countable fuzzy spaces, the product fuzzy topology, the direct and the inverse
images of a fuzzy set under maps, fuzzy continuity and fuzzy openness. A fuzzy
set p defined by

p (x) =
{

t if x = xp

0 if x 6= xp

where 0 < t < 1 is called a fuzzy point in X, xp ∈ X is called the support of p and
p (xp) = t the value (level) of p [10]. Two fuzzy points p and q in X are said to
be distinct iff their supports are distinct, i.e., xp 6= xq. A fuzzy set p defined by

p (x) =
{

1 if x = xp

0 if x 6= xp

is called a fuzzy crisp point in X [10]. The set of all fuzzy points in a set X will
be denoted by FP (X). A fuzzy set that is either a fuzzy point or a fuzzy crisp
point is called fuzzy singleton [6].
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In this paper, we follow [9] for the definition of ‘belonging to’. Namely: A fuzzy
point p in X is said to belong to a fuzzy set λ in X (notation: p ∈ λ) iff p (xp) <
λ (xp).

If (X,=) is a fuzzy space and a ∈ [0, 1), then the set
{
λ−1 (a, 1] : λ ∈ =} is

a topology on X (see [8]). This topology is denoted by =a, and is said fuzzy
topologically generated.

A bijective function h : (X,=1) → (Y,=2); where (X,=1) and (Y,=2) are both
fuzzy spaces; will be called fuzzy homeomorphism [9] iff h and h−1 are both fuzzy
continuous.

A non-empty open set A of a space (X, τ) is called a minimal open set in X [7] if
any open set in X which is contained in A is ∅ or A. The authors in [7] gave various
results concerning minimal open sets. In [2], the author studied minimal preopen
sets and characterized them as singleton preopen sets. In [3] the authors extended
the concept of minimal open sets to include fuzzy spaces. A fuzzy open set λ of a
fuzzy space (X,=) is called minimal fuzzy open set [3] if λ is non-zero and there
is no non-zero proper fuzzy open subset of λ, many interesting results concerning
this concept are obtained. In this paper, as a generalization of minimal fuzzy open
sets we fuzzify minimality at some point by two methods, local minimality at a
point in X and local minimality at a fuzzy point in X.

Throughout this paper, for any set X, |X| will denote the cardinality of X.
If λ is a fuzzy set in X, then the support of λ is denoted by S (λ) and defined
by S (λ) = λ−1 (0, 1]. The set of all minimal fuzzy open subsets of a fuzzy space
(X,=) will be denoted by min (X,=).

2. local minimal fuzzy open sets

We start by the following two main definitions.

Definition 2.1. Let (X,=) be a fuzzy space, x ∈ X, and λ ∈ = such that
x ∈ S (λ). Then λ is called a local minimal fuzzy open set at x if there is no
proper fuzzy open subset of λ containing x in its support. The set of all local
minimal fuzzy open sets at a point x ∈ X will be denoted by min (X,=, x).

Definition 2.2. Let (X,=) be a fuzzy space, p ∈ FP (X), and λ ∈ = such that
p ∈ λ. Then λ is called a local minimal fuzzy open set at p if there is no proper
fuzzy open subset β of λ with p ∈ β. The set of all local minimal fuzzy open sets
at a fuzzy point p ∈ FP (X) will be denoted by min (X,=, p).

The following two results characterize the concepts in the above two definitions
respectively.

Proposition 2.1. Let (X,=) be a fuzzy space, λ ∈ = and x ∈ S (λ). Then
λ ∈ min (X,=, x) iff for each β ∈ = such that x ∈ S (β) we have λ ≤ β.

Proof. =⇒) Suppose that λ ∈ min (X,=, x) and let β ∈ = with x ∈ S (β). Then
x ∈ S (λ) ∩ S (β) = S (λ ∧ β). Since λ ∧ β ≤ λ, it follows that λ ∧ β = λ. Hence
λ ≤ β.
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⇐=) Obvious. �

Proposition 2.2. Let (X,=) be a fuzzy space, λ ∈ = with p ∈ λ and p ∈
FP (X). Then λ ∈ min (X,=, p) iff for each β ∈ = such that p ∈ β we have
λ ≤ β.

Proof. The proof is similar to that used in Proposition 2.1. �

Proposition 2.3. Let (X,=) be a fuzzy space, x ∈ X and p ∈ FP (X). Then
|min (X,=, x)| ≤ 1 and |min (X,=, p)| ≤ 1.

Proof. Suppose that λ, β ∈ min (X,=, x). Then by Proposition 2.1, it follows
that λ ≤ β and β ≤ λ. Thus λ = β. Hence, |min (X,=, x)| ≤ 1. Similarly we can
show |min (X,=, p)| ≤ 1. �

Theorem 2.1. Let (X,=) be a fuzzy space, λ ∈ = and x ∈ X. Then the
following are equivalent.

(i) min (X,=, x) = {λ},
(ii) For each p ∈ λ with xp = x, min (X,=, p) = {λ}.

Proof. (i) =⇒ (ii). Let p ∈ λ with xp = x and let β ∈ = such that p ∈ β. Then
x ∈ S (β). Since min (X,=, x) = {λ}, then λ ≤ β. Therefore, min (X,=, p) = {λ}.

(ii) =⇒ (i) Let β ∈ = such that x ∈ S (β). Consider p ∈ FP (X) with xp = x

and p (xp) = min
{

λ(x)
2 , β(x)

2

}
. Then p ∈ λ ∧ β and hence by (ii), it follows that

min (X,=, p) = {λ}. Therefore, λ ≤ β and hence min (X,=, x) = {λ}. �

Example 2.1. Let X = {a, b} with the fuzzy topology = = {0X , 1X , λ, β,
(0.3)X} where λ = {(a, 0.3) , (b, 1)} and β = {(a, 1) , (b, 0.3)}. Consider p, q ∈
FP (X) with xp = xq = b, p (xp) = 0.5 and q (xq) = 0.2. Then min (X,=, p) =
{λ}, while min (X,=, q) 6= {λ}.

In Theorem 2.1 Example 2.1 shows that the statement ”For each p ∈ λ with
xp = x, min (X,=, p) = {λ}” cannot be replaced by the statement ”for some p ∈ λ
with xp = x, min (X,=, p) = {λ}”.

Theorem 2.2. Let (X,=) be a fuzzy space, λ ∈ = and p ∈ FP (X). Then the
following are equivalent.

(i) min (X,=, p) = {λ}.
(ii) min(X,=, q) = {λ} for every q ∈ FP (X) with q ∈ λ, xq = xp and p(xp) ≤

q(xq).

Proof. (i) =⇒ (ii) Let q ∈ FP (X) with q ∈ λ, xq = xp and p (xp) ≤ q (xq). Let
β ∈ = with q ∈ β. Then p (xp) ≤ q (xq) < β (xq) = β (xp) and so p ∈ β. Therefore,
by (i) it follows that λ ≤ β and hence min (X,=, q) = {λ}.

(i) =⇒ (ii) Clear. �

Definition 2.3. A fuzzy space (X,=) is said to be
(i) minimal at a point x ∈ X if (

∧
{β ∈ = : x ∈ S (β)}) (x) = 0.

(ii) minimal at a fuzzy point p ∈ FP (X) if (
∧
{β ∈ = : p ∈ β}) (xp) = p (xp).
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Theorem 2.3. Let (X,=) be a fuzzy space, x ∈ X. Then the following are
equivalent:

(i) min (X,=, x) 6= ∅.
(ii) (X,=) is not minimal at x and

∧
{β ∈ = : x ∈ S (β)} ∈ =.

(iii) min (X,=, x) = {
∧
{β ∈ = : x ∈ S (β)}}.

Proof. (i) =⇒ (ii) Let min (X,=, x) = {λ}, then for each β ∈ = with x ∈ S (β),
λ ≤ β. Therefore λ ≤

∧
{β ∈ = : x ∈ S (β)}. On the other hand, since x ∈ S (λ)

then
∧
{β ∈ = : x ∈ S (β)} ≤ λ. Thus, λ =

∧
{β ∈ = : x ∈ S (β)}. Hence (X,=)

is not minimal at x and
∧
{β ∈ = : x ∈ S (β)} ∈ =.

(ii) =⇒ (iii) Let γ =
∧
{β ∈ = : x ∈ S (β)}, then γ ∈ =. Also, since (X,=) is

not minimal at x, it follows that x ∈ S (γ). If λ ∈ = with x ∈ S (λ), then it is
clear that γ ≤ λ. Therefore, γ ∈ min (X,=, x) and hence min (X,=, x) = {γ}.

(iii) =⇒ (i) Clear. �

Corollary 2.1. Let (X,=) be a fuzzy space with |=| < ∞. Then for each
x ∈ X, min (X,=, x) 6= ∅.

The proof of the following result is similar to that used in Theorem 2.3.

Theorem 2.4. Let (X,=) be a fuzzy space, p ∈ FP (X). Then the following
are equivalent:

(i) min (X,=, p) 6= ∅.
(ii) (X,=) is not minimal at p and

∧
{β ∈ = : p ∈ β} ∈ =.

(iii) min (X,=, p) = {
∧
{β ∈ = : p ∈ β}}

Corollary 2.2. Let (X,=) be a fuzzy space with |=| < ∞. Then for each
p ∈ FP (X), min (X,=, p) 6= ∅.

The following example shows that the condition ”|=| < ∞“ cannot be dropped
neither from Corollary 2.1 nor Corollary 2.2.

Example 2.2. Let X be any non-empty set with the fuzzy topology = =
{0X}

⋃ {
λ : λ (X) ⊆

(
1
2 , 1

]}
. If p ∈ FP (X) with p (xp) = 1

2 , then neither (X,=)
is not minimal at p nor

∧
{β ∈ = : p ∈ β} ∈ =, thus by Theorem 2.4 we conclude

strongly that min (X,=, p) = ∅. Therefore, by Theorem 2.1 we must also have
min (X,=, x) = ∅ for each x ∈ X.

Example 2.3. Let X = {a, b} with the fuzzy topology = = {0X , 1X}
⋃

{λ : 0<λ (a)≤1 and λ (b)=0}. Then min (X,=, b) = {1X}, but min (X,=, a) = ∅.

Example 2.3 shows that if a fuzzy set is locally minimal at some point in a fuzzy
space, then in general it is not true that each point on its support must have a
local minimal fuzzy open set. However, we have the following result.

Theorem 2.5. Let (X,=) be a fuzzy space and let λ ∈ =. Then the following
are equivalent:

(i) λ ∈ min (X,=).
(ii) For each x ∈ S (λ), min (X,=, x) = {λ}.
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(iii) For each p ∈ FP (X) with p ∈ λ, min (X,=, p) = {λ}.

Proof. (i) =⇒ (ii). Let x ∈ S (λ) and β ∈ = such that x ∈ S (β). Then
x ∈ S (λ) ∩ S (β) = S (λ ∧ β) and so λ ∧ β 6= 0X . Since λ ∧ β ≤ λ ∈ min (X,=), it
follows that λ ∧ β = λ and hence λ ≤ β. Therefore, min (X,=, x) = {λ}.

(ii) =⇒ (iii). Let p ∈ FP (X) with p ∈ λ and let β ∈ = such that p ∈ β. Then
xp ∈ S (λ) ∩ S (β). Since by (ii), min (X,=, xp) = {λ}, it follows that λ ≤ β and
hence min (X,=, p) = {λ}.

(iii) =⇒ (ii). Let β ∈ = − {0X} such that β ≤ λ. Choose x◦ ∈ X such that
β (x◦) > 0. Then λ (x◦) ≥ β (x◦) > 0. Consider the fuzzy point p with xp = x◦
and p (xp) = β(x◦)

2 . Then p ∈ λ ∧ β. Since by (iii) min (X,=, p) = {λ} it follows
that λ ≤ β. Therefore, λ = β and hence λ ∈ min (X,=). �

Recall that a subset A of a topological space (X, τ) is called minimal open set at
x ∈ X if there is no open proper subset of A containing x. The set of all minimal
open sets at a point x ∈ X will be denoted by min (X, τ, x).

Theorem 2.6. Let (X,=) be a fuzzy space and p ∈ FP (X). If min (X,=, p) =
{λ}, then for every a ∈ [p (xp) , λ (xp)), λ−1 (a, 1] ∈ min (X,=a, xp)

Proof. Suppose that min (X,=, p) = {λ} and let a ∈ [p (xp) , λ (xp)), then xp ∈
λ−1 (a, 1]. Let V ∈ =a with xp ∈ V ⊆ λ−1 (a, 1]. Choose β ∈ = such that
V = β−1 (a, 1]. Since p (xp) ≤ a and β (xp) > a, then p ∈ β. Since min (X,=, p) =
{λ} it follows that λ ≤ β and hence λ−1 (a, 1] ⊆ β−1 (a, 1] = V . Therefore,
V = λ−1 (a, 1] and hence λ−1 (a, 1] ∈ min (X,=a, x). �

Theorem 2.7. Let (X,=) be a fuzzy space, x ∈ X. If min (X,=, x) = {λ},
then for every a ∈ [0, λ (x)), λ−1 (a, 1] ∈ min (X,=a, x).

Proof. The proof is similar to that used in Theorem 2.6. �

Corollary 2.3. Let (X,=) be a fuzzy space, x ∈ X, min (X,=, x) = {λ}, and
a ∈ [0, 1). Then the following are equivalent:

(i) λ−1 (a, 1] ∈ min (X,=a, x).
(ii) a ∈ [0, λ (x)).

Proof. (i) =⇒ (ii) Clear.
(ii) =⇒ (i) Theorem 2.7. �

The following example shows that the converse of both Theorems 2.6 and 2.7
is not true in general.

Example 2.4. Let X = {b, c} with the fuzzy topology = = {0X , 1X , λ, β}
where λ = {(b, 0.3) , (c, 1)} and β = {(b, 0) , (c, 1)}. Consider p ∈ FP (X) with
xp = c and p (xp) = 0.5. If a ∈ [0, 0.3), then =a = {∅, X} and so λ−1 (a, 1] =
X ∈ min (X,=a) ⊆ (X,=a, c). Also, if a ∈ [0.3, 1), then =a = {∅, X, {c}}
and so λ−1 (a, 1] = {c} ∈ min (X,=a) ⊆ (X,=a, c). Since p ∈ β < λ, then
λ /∈ min (X,=, p) and hence λ /∈ min (X,=, c).
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3. Products, separation axioms, and maps

From now on =prod will denote the product fuzzy topology of =1 and =2.

We begin this section by the following main product theorem.

Theorem 3.1. Let (X,=1) and (Y,=2) be two fuzzy spaces, (x, y) ∈ X × Y .
Then

(i) If min (X × Y,=prod, (x, y)) = {γ} then there exist λ ∈ =1 and β ∈ =2 such
that γ = λ× β.

(ii) If min (X,=1, x) = {λ} and min (X,=2, y) = {β}, then

min(X × Y,=prod, (x, y)) = {λ× β} .

Proof. (i) Suppose that min (X × Y,=prod, (x, y)) = {γ}. Consider p ∈
FP (X × Y ) with xp = (x, y) and p (xp) = λ(x,y)

2 . Then p ∈ γ and so there
exist λ ∈ =1 and β ∈ =2 such that p ∈ λ× β ≤ γ. Now (λ× β) (x, y) > λ(x,y)

2 > 0
and so (x, y) ∈ S (λ× β). Since min (X × Y,=prod, (x, y)) = {γ}, it follows that
γ ≤ λ× β. Therefore, γ = λ× β.

(ii) Suppose that min (X,=1, x) = {λ} and min (X,=2, y) = {β}. Since x ∈
S (λ) and y ∈ S (β) it follows that (x, y) ∈ S (λ× β). Let γ ∈ =prod such that
(x, y) ∈ S (γ). Consider p ∈ FP (X × Y ) with xp = (x, y) and p (xp) = λ(x,y)

2 .
Then p ∈ λ and so there exist λ◦ ∈ =1 and β◦ ∈ =2 such that p ∈ λ◦× β◦ ≤ γ. It
is clear that x ∈ S (λ◦) and y ∈ S (β◦). Thus, λ ≤ λ◦ and β ≤ β◦, hence λ× β ≤
λ◦ × β◦ ≤ γ. Therefore, min (X × Y,=prod, (x, y)) = {λ× β}. �

In Theorem 3.1 (i) it is not necessarily true that min (X,=1, x) = {λ} and
min (X,=2, y) = {β}. This can be noted easily in Example 2.19 of [3].

Theorem 3.2. Let (X,=1) and (Y,=2) be two fuzzy spaces, s ∈ FP (X × Y )
with xs = (x◦, y◦), and min (X × Y,=prod, s) = {γ}. If p ∈ FP (X), q ∈ FP (Y )
with xp = x◦, xq = y◦ and p (xp) = q (xq) = s (xs), then there exist λ ∈ =1 and
β ∈ =2 such that p ∈ λ, q ∈ β, and γ = λ× β.

Proof. Since s ∈ γ, there exist λ ∈ =1 and β ∈ =2 such that s ∈ λ × β ≤ γ.
Since min (X × Y,=prod, s) = {γ}, then γ ≤ λ × β and hence γ = λ × β. On the
other hand, it is easy to see that p ∈ λ and q ∈ β. �

The following lemma will be needed in the proof of the next main result. Its
proof follows easily and is left to the reader.

Lemma 3.1. Let X and Y be two non-empty sets, λ and β be two fuzzy subsets
of X and Y respectively. Suppose there exist p ∈ FP (X) and q ∈ FP (Y ) such
that p (xp) = q (xq) and the fuzzy point p× q ∈ λ× β. Then p ∈ λ and q ∈ β.

The following example shows that the condition ”p (xp) = q (xq)“ in Lemma 3.1
cannot be dropped.
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Example 3.1. Let X =Y ={a, b}. Let λ = {(a, 1) , (b, 0)}, β =
{(

a, 1
2

)
, (b, 0)

}
,

p ∈ FP (X) with xp = a and p (xp) = 1
4 , q ∈ FP (Y ) with xq = a and q (xq) = 3

4 .
Then it is easy to see that p× q ∈ λ× β while q /∈ β.

Theorem 3.3. Let (X,=1) and (Y,=2) be two fuzzy spaces and let p ∈ FP (X),
q ∈ FP (Y ) such that p (xp) = q (xq). If min (X,=1, p) = {λ} and min (X,=2, q) =
{β}, then min (X × Y,=prod, p× q) = {λ× β}.

Proof. Since p ∈ λ and q ∈ β, it is clear that p × q ∈ λ × β. If γ ∈ =prod such
that p×q ∈ γ then there exists λ1 ∈ =1 and β1 ∈ =2 such that p×q ∈ λ1×β1 ≤ γ.
Thus by Lemma 3.1, it follows that p ∈ λ1 and q ∈ β1. Since min (X,=1, p) = {λ}
and min (X,=2, q) = {β}, then λ ≤ λ1 and β ≤ β1. Therefore, λ×β ≤ λ1×β1 ≤ γ
and hence min (X × Y,=prod, p× q) = {λ× β}. �

The following definition is needed in the sequel.

Definition 3.1. [5] A fuzzy space (X,=) is said to be:
1. T0 iff for any two distinct fuzzy points p, q in X, there exists an open fuzzy

set µ such that (p ∈ µ and µ ∩ q = 0 (i.e., µ (xq) = 0)) or (q ∈ µ and µ ∩ p = 0
(i.e., µ (xp) = 0)).

2. T1 iff for any two distinct fuzzy points p, q in X, there exist open fuzzy sets
µ1 and µ2 such that p ∈ µ1, µ1 ∩ q = 0 (i.e., µ1 (xq) = 0), µ2∩ p = 0 (i.e., µ2 (xp)
= 0) and q ∈ µ2.

Theorem 3.4. Let (X,=) be a T0 fuzzy space, λ ∈ = and p, q ∈ FP (X). If
min (X,=, p) = min (X,=, q) = {λ}, then xp = xq.

Proof. Suppose on the contrary that xp 6= xq. Then p and q are distinct fuzzy
points in the T0 fuzzy space (X,=), so there exists µ ∈ = such that (p ∈ µ and
µ (xq) = 0) or (q ∈ µ and µ (xp) = 0). Without loss of generality we may assume
that p ∈ µ and µ (xq) = 0. Since min (X,=, p) = {λ}, then λ ≤ µ. Since q ∈ λ,
then λ (xq) > 0 and so µ (xq) > 0, a contradiction. �

Corollary 3.1. Let (X,=) be a T0 fuzzy space, λ ∈ = and x, y ∈ X. If
min (X,=, x) = min (X,=, y) = {λ}, then x = y.

Proof. Consider p, q ∈ FP (X) with xp = x, xq = y and p (xp) = q (xq) =

min
{

λ(x)
2 , λ(y)

2

}
. Then p, q ∈ λ and by Theorem 2.1, it follows that min (X,=, p) =

min (X,=, q) = {λ}. Therefore, by Theorem 3.4 we conclude that xp = xq. Hence
x = y. �

Corollary 3.2. Let (X,=) be a T0 fuzzy space. If λ ∈ min (X,=), then λ is a
fuzzy singleton.

Proof. Suppose to the contrary there are x, y ∈ S (λ) with x 6= y. Then by
Theorem 2.5, it follows that min (X,=, x) = min (X,=, y) = {λ}. Thus by corol-
lary 3.1 it follows that x = y, a contradiction. �

The following example shows that the condition ”T0 fuzzy space“ cannot be
dropped in Corollaries 3.1, 3.2 and Theorem 3.4.
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Example 3.2. Let X = {a, b} with the indiscrete fuzzy topology. Let
p, q ∈ FP (X) with xp = a, xq = b and p (xp) = q (xq) = 1

2 . Then min (X,=, x) =
min (X,=, y) = min (X,=, p) = min (X,=, q) = min (X,=) = {1X}.

The discrete fuzzy space shows that the converse of Corollary 3.2 is not true in
general. However, we have the following result.

Corollary 3.3. Let (X,=) be a T0 fuzzy space. If min (X,=, x) = {λ}, then
the following are equivalent:

(i) λ ∈ min (X,=).
(ii) λ is a fuzzy singleton.

Proof. (i) =⇒ (ii) Corollary 3.2 and (ii) =⇒ (i) Theorem 2.3. �

Theorem 3.5. Let (X,=) be a T1 fuzzy space and let p ∈ FP (X). If

min (X,=, p) = {λ} ,

then λ is a fuzzy singleton.

Proof. Suppose to the contrary that there exists y ∈ S (λ) with y 6= xp. Con-
sider q ∈ FP (X) with xq = y and q (xq) = 1

2 . Since (X,=) is a T1 fuzzy space,
there exists µ ∈ = such that p ∈ µ and µ (xq) = 0. Since min (X,=, p) = {λ} and
p ∈ µ, it follows that λ ≤ µ, but λ (y) > 0 and µ (y) = 0, a contradiction. �

Corollary 3.4. Let (X,=) be a T1 fuzzy space and let x ∈ X. If min (X,=, x) =
{λ}, then λ is a fuzzy singleton.

Proof. Consider p ∈ FP (X) with xp = x and p (xp) = λ(x)
2 . Then by Theo-

rem 2.1, it follows that min (X,=, p) = {λ}. Therefore, by Theorem 3.5, it follows
that λ is a fuzzy singleton. �

Theorem 3.6. Let (X,=1) and (Y,=2) be two fuzzy spaces and let f : (X,=1)
−→ (Y,=2) be fuzzy continuous map. If x0 ∈ X such that min (X,=1, x0) = {λ}
and f (λ) ∈ =2 then min (Y,=2, f (x0)) = {f (λ)}.

Proof. Since λ (x0) > 0, then (f (λ)) (f (x0)) = sup {λ (x) : f (x) = f (x0)} ≥
λ (x0) > 0 and so f (x0) ∈ S (f (λ)). Suppose that for some β ∈ =2, f (x0) ∈ S (β),
then x0 ∈ S

(
f−1 (β)

)
. Since min (X,=1, x0) = {λ}, then λ ≤ f−1 (β) and so

f (λ) ≤ f
(
f−1 (β)

)
≤ β. Therefore, min (Y,=2, f (x0)) = {f (λ)}. �

Theorem 3.7. Let (X,=1) and (Y,=2) be two fuzzy spaces and let f : (X,=1)
−→ (Y,=2) be an injective open fuzzy map. If min (Y,=2, y0) = {λ}, x0 ∈
f−1 ({y0}), and f−1 (λ) ∈ =1 then min (X,=1, x0) =

{
f−1 (λ)

}
.

Proof. Since
(
f−1 (λ)

)
(x0) = λ (f (x0)) = λ (y0) > 0, x0 ∈ S

(
f−1 (λ)

)
. Sup-

pose for some β ∈ =1, x0 ∈ S (β), then f (β) ∈ =2 and y0 ∈ S (f (β)). Since
min (X,=2, y0) = {λ}, it follows that λ ≤ f (β). Hence f−1 (λ) ≤ f−1 (f (β)).
Since f is an injection, f−1 (f (β)) = β. Therefore, f−1 (λ) ≤ β and hence
min (X,=1, x0) =

{
f−1 (λ)

}
. �
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The following result follows immediately either from Theorem 3.6 or Theo-
rem 3.7.

Corollary 3.5. Let (X,=1) and (Y,=2) be two fuzzy spaces and let f : (X,=1)
−→ (Y,=2) be a fuzzy homeomorphism. Then for each x ∈ X, min (X,=1, x) =
{λ} iff min (Y,=2, f (x)) = {f (λ)}.

Definition 3.2. [4] A fuzzy space (X,=) is called homogeneous if for any two
points x, y ∈ X there exists a fuzzy homeomorphism h : (X,=) −→ (X,=) such
that h (x) = y.

Theorem 3.8. Let (X,=) be a homogeneous fuzzy space. Then the following
are equivalent:

(i) min (X,=, x) 6= ∅ for some x ∈ X.
(ii) min (X,=, x) 6= ∅ for each x ∈ X and whenever min (X,=, x) = {λ} and

min (X,=, y) = {β} then λ (x) = β (y).

Proof. (i) =⇒ (ii) Suppose for some x ∈ X, min (X,=, x) 6= ∅ and let
min (X,=, x) = {λ}. Let y ∈ X. Since (X,=) is homogeneous, there exists a fuzzy
homeomorphism h : (X,=) −→ (X,=) such that h (x) = y. Therefore by Corol-
lary 3.5, it follows that min (X,=, y) = {h (λ)}. Also, (h (λ)) (y) = λ

(
h−1 (y)

)
=

λ (x).
(ii) =⇒ (i) Obvious. �

Definition 3.3. Let (X,=) be a fuzzy space and let t ∈ (0, 1]. Then (X,=)
is called first countable of level t if it is first countable at each p ∈ FP (X) with
p (xp) < t.

It is clear that a fuzzy space is first countable iff it is first countable of level 1.

Theorem 3.9. Let (X,=) be a homogeneous fuzzy space. If for some x ∈ X
min (X,=, x) = {λ}, then (X,=) is a first countable fuzzy space of level λ (x).

Proof. Let p ∈ FP (X) with p (xp) < λ (x). Then by Theorem 3.8, it follows
that there exists β ∈ = such that min (X,=, xp) = {β} and β (xp) = λ (x). Since
p (xp) < λ (x) = β (xp), then p ∈ β. It is not difficult to see that {β} is a countable
local base at p. Therefore, (X,=) is a first countable fuzzy space of level λ (x). �

Theorem 3.10. Let (X,=1) and (Y,=2) be two fuzzy spaces and let f : (X,=1)
−→ (Y,=2) be fuzzy continuous map. If p ∈ FP (X) with min (X,=1, p) = {λ}
and f (λ) ∈ =2 then min (Y,=2, f (p)) = {f (λ)}.

Proof. The proof is similar to that used in Theorem 3.6. �

Lemma 3.2. Let (X,=1) and (Y,=2) be two fuzzy spaces and let f : (X,=1)
−→ (Y,=2) be a fuzzy map. If p ∈ FP (Y ) with f−1 ({yp}) = {x0} then f−1 (p) ∈
FP (X) with support xf−1(p) = x0 and level p (yp).

Proof. Straightforward. �
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Theorem 3.11. Let (X,=1) and (Y,=2) be two fuzzy spaces and let f : (X,=1)
−→ (Y,=2) be an injective open fuzzy map and p ∈ FP (Y ). If min (X,=2, p) =
{λ}, f−1 ({yp}) = {x0}, and f−1 (λ) ∈ =1 then min

(
X,=1, f

−1 (p)
)

=
{
f−1 (λ)

}
.

Proof. Let q = f−1 (p), then by Lemma 3.1 it follows that q ∈ FP (X) with
support xq = x0 and level q (xq) = p (yp). To complete the proof just mimic the
proof of Theorem3.7. �

The following result follows immediately either from Theorem 3.10 or Theo-
rem 3.11.

Corollary 3.6. Let (X,=1) and (Y,=2) be two fuzzy spaces and let f : (X,=1)
−→ (Y,=2) be a fuzzy homeomorphism. Then for every p ∈ FP (X),

min (X,=1, p) = {λ}

iff min (Y,=2, f (p)) = {f (λ)}.

The following lemma will be used in the proof of the following result.

Lemma 3.3. [1] Let h : X → Y be a bijective function and let p, q be any two
fuzzy points of X. Then h (p) = q iff p (xp) = q (xq) and h (xp) = xq.

Theorem 3.12. Let (X,=) be a homogeneous fuzzy space and t ∈ (0, 1). The
following are equivalent:

(i) min (X,=, p) 6= ∅ for some p ∈ FP (X) with p (xp) = t,
(ii) min (X,=, p) 6= ∅ for each p ∈ FP (X) with p (xp) = t.

Proof. (i) =⇒ (ii). Suppose for some p ∈ FP (X) with p (xp) = t,
min (X,=, p) 6= ∅ and let min (X,=, p) = {λ}. Let q ∈ FP (X) with q (xq) = t.
Since (X,=) is homogeneous, there exists a fuzzy homeomorphism h : (X,=) −→
(X,=) such that h (xp) = xq. Thus by Lemma 3.3, it follows that h (p) = q.
Therefore by Corollary 3.6, it follows that min (X,=, q) = {h (λ)}.

(ii) =⇒ (i). Obvious. �

The following example shows that the condition ”homogeneous“ on the fuzzy
space (X,=) in Theorems 3.8 and 3.12 cannot be dropped.

Example 3.3. Let X = {a, b} with the fuzzy topology = = {0X , 1X , λ} where
λ = {(a, 0) , (b, 1)}. Then min (X,=, b) = {λ} but min (X,=, a) = ∅. Consider
p, q ∈ FP (X) with xp = a, xq = b, and p (xp) = q (xq) = 1

2 . Then min (X,=, p) =
{λ} but min (X,=, q) = ∅.
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