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HOCHSHILD COHOMOLOGY AND EQUIVALENCE
OF GRADED STAR PRODUCTS

N. BEN AMAR and M. CHAABOUNI

Abstract. We study graded star products on dual of finite dimensional Lie al-
gebras. We prove that all graded star products are entirely determined by the

expression of X ? u where X belongs to the Lie algebra g and u is a polynomial
function on the dual g∗ of g. We also consider the Hochschild cohomology and we
prove that all graded differential star products are equivalent.

0. Introduction

Deformations of usual multiplication of functions are called star products. This
notion has been introduced by F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz
and D. Sternheimer [3] to give an autonomous phase space formulation of quan-
tum mechanics without operators in the general case of a Poisson manifold. Star
products were also used in the representation theory of Lie groups.

The problem of existence of star products has been solved by different steps.
In the case of finite dimensional symplectic manifolds, J.Vey has determined the
corresponding differential Hochschild cohomology [11] and S. Gutt has studied
the three first groups in the Chevally cohomology [6]. Then, M. Dewilde and
P. Lecomte have used these cohomologies to prove the existence of star products
on any symplectic manifold [4]. The classification of these star products was done
by A. Lichnerowicz [9] by using the second De Rham cohomological group.

An explicit star product on any Lie algebra was given in [7]. In fact S. Gutt
constructed a star product on the cotangent bundle of any Lie group G. This
star product can be restricted to the dual g∗ of the Lie algebra g. Since then,
a geometric construction of a star product has been done by B. F. Fedesov in [5].

Recently, M. Kontsevich has entirely solved the problem of existence of star
products on any finite dimensional Poisson manifold [8]. He built a star product
?K

α on Rd equipped with a general Poisson bracket α. This famous result has been
proved by considering some oriented admissible graphs

−→
Γ . In [1] D. Arnal proved

that in the nilpotent case Gutt’s star product coincides with Kontsevich’s star
product.
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These examples of star products i.e Gutt’s star product and Kontsevich’s star
product are graded star products i.e if u1 and u2 are polynomial functions on
Rd homogeneous with degree |u1| and |u2| , Cn (α) ( u1, u2 ) is still a polynomial
function, homogeneous with degree |u1|+ |u2| − n .

In the present paper, we study graded star products on dual of finite dimensional
Lie algebras and we prove the equivalence of all graded differential star products.

The paper is organized as follows :
In the first section, we prove that a graded star product on dual of Lie algebras

is totally determined by the expression of X ? u where X is in g and u is in S (g)
(polynomial functions on g∗). Our proof is original and elementary.

In the second section, we study the Hochschild cohomology on C∞ (g∗) and
S (g).

In the third section, we prove the equivalence of all graded differential star
products. The equivalence operator is constructed by induction.

Finally, in the fourth section, we study the case of Kontsevich’s star product,
we give explicitly the equivalence operator of this star product with Gutt’s star
product.

1. Graded star products on dual of Lie algebras

Definition 1.1. [3] Let W be a differentiable Poisson manifold with a poisson
bracket { , } and E be the space of formal series in the parameter ~ with coefficients
in C∞(W ).

A star product on C∞ (W ) is defined by a bilinear map from C∞ (W )×C∞ (W )
into E :

(u, v) 7→ u ?~ v =
∞∑

r=0

~r

r!
Cr(u, v) ∈ E

Where :
(i) Cr is a bidifferential operator on C∞ (W ) ( of maximum order r (r > 1) in

each argument, null on the constants ).
(ii) C0(u, v) = u.v ; C1(u, v) = {u, v}.
(iii) Cr is symmetric (resp skew symmetric) in (u, v) if r is even (resp odd).

(iv)
∑

r+s=t
(r!s!)−1Cr(Cs(u, v), w)) =

∑
r+s=t

(r!s!)−1Cr(u, Cs(v, w)) (t = 1, 2, . . .).

Let S (g) be the algebra of polynomial functions on the dual g∗ of a finite
dimensional Lie algebra g. The algebra S (g) is graded. If u is an homogeneous
element of S (g) we will denote |u| its degree. A multilinear function C:

C : S (g)× . . . × S (g) → S (g)

is said to be homogeneous with degree −n if for u1 , . . . , uk homogeneous elements
of S ( g ) one has C ( u1, . . . , uk ) is homogeneous with degree |u1|+ |u2|+ . . . +
|uk| − n.
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Definition 1.2. [2] Let S (g) be the algebra of the polynomial functions on g∗

and Sp be the space of homogeneous polynomials of degree p. A star product on
S (g) is called graded if

∀r, p, q ∈ N, ∀ (u, v) ∈ Sp × Sq, Cr(u, v) ∈ Sp+q−r.

Let us show that a graded ?-product is totally defined by X ? u where u belongs
to S (g) and X belongs to g.

Proposition 1.3. Let Cn be a sequence of bilinear map:

Cn : g× S (g) → S (g)

such that
1. C0(X, u) = X.u and C1(X, u) = [X, u].
2. If u is homogeneous then Cn(X, u) is homogeneous and its degree is |u| +

1− n.
3. Let σ be defined on g∗ by σ(ξ) = −ξ .

We set

uσ(ξ) = u(σ(ξ)) ∀ u ∈ S (g) and we define X ◦ u =
∞∑

n=0

Cn(X, u) .

We suppose that

a) u ◦X = (Xσ ◦ uσ)σ =
∞∑

n=0
(−1)nCn(X, u) .

b) X ◦ (u ◦ Y ) = (X ◦ u) ◦ Y ∀ X, Y ∈ g , ∀ u ∈ S (g).

c) X ◦ (Y ◦ u)− Y ◦ (X ◦ u) = [X, Y ] ◦ u ∀ X, Y ∈ g , ∀ u ∈ S (g).

Then there exists one and only one star product such that

X ? u = X ◦ u ∀ X ∈ g , ∀ u ∈ S (g) .

This star product is graded.

Proof. Let v ∈ S (g), we define u ? v by induction on the degree of u starting
with 1 ? v = v and X ? v = X ◦ v.
If u is an homogeneous polynomial function of the form u = Xu′ then there exists
a polynomial function u′′ such that

Xu′ = X ◦ u′ + u′′ and |u′′| ≤ |u| − 1.

We suppose u1 ? v defined for any u1 such that |u1| < |u|, we suppose also that:

u1 ? (v ? w) = (u1 ? v) ? w if |u1|+ |v| < |u| .
Then we set

(Xu′) ? v = X ◦ (u′ ? v) + u′′ ? v

This formula defines without ambiguity u ? v. In fact if u has the form

u = X1X2w = X1 ◦ (X2 ◦ w) + u′′1

= X2 ◦ (X1 ◦ w) + u′′2
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Then

X2 ◦ (X1 ◦ w) + u′′2 = X1 ◦ (X2 ◦ w) + u′′2 + [X2, X1] ◦ w.

Thus

u′′1 = u′′2 + [X2, X1] ◦ w

and one has
X1◦ ((X2 ◦ w) ? v) + u′′1 ? v

= X1 ◦ (X2 ◦ (w ? v)) + u′′2 ? v + ([X2, X1] ◦ w) ? v

= X1 ◦ (X2 ◦ (w ? v)) + [X2, X1] ◦ (w ? v) + u′′2 ? v

= X2 ◦ (X1 ◦ (w ? v)) + u′′2 ? v

= X2 ◦ ((X1 ◦ w) ? v) + u′′2 ? v.

The homogeneous term of the maximum degree in u ? v is C0(u, v) = u · v then we
set

Cn(u, v) = the homogeneous term of degree |u|+ |v| − n.

A simple calculation shows that ? is a star product in fact let us first show that
the C1(u, v) = {u, v}:

It is clear that the term of degree |u|+ |v| − 1 in u′′ ? v is −{X, u′} v (coming
from u′′ · v) and in X ◦ (u′ ? v) is X {u′, v}+{X, u′ · v}. Thus the term of degree
|u|+ |v| − 1 in u ? v is the sum of these two terms

X {u′, v}+ {X, u′v} − {X, u′} v = X {u′, v}+ u′ {X, v}
= {X u′, v} = {u, v}

Now one has
(u ◦X) ◦ Y − (u ◦ Y ) ◦X = (Y σ ◦ (u ◦X)σ)σ − ((Xσ ◦ (u ◦ Y )σ)σ

= (Y σ ◦ (Xσ ◦ uσ))σ − (Xσ ◦ (Y σ ◦ uσ))σ

= ([Y σ, Xσ] ◦ uσ)σ = ([X, Y ]σ ◦ uσ)σ

= u ◦ [X, Y ]

Using the same construction, we can then define similarly u ?′ v by induction “on
the right side” on the degree of v. Then ? and ?′ coincide in fact if |u| = |v| = 1
then by using a/ we deduce u ?′ v = u ? v. Now suppose that they coincide for u′

and v′ such that |u′|+ |v′| < |u|+ |v|, then

(X ′u′) ? (v′ ◦ Y ) = X ′(u′ ? (v′ ◦ Y )) = X ◦ (u′ ?′ (v′ ◦ Y ))

= X ◦ ((u′ ?′ v′) ◦ Y ) = (X ◦ (u′ ?′ v′)) ◦ Y

= ((X ◦ u′) ?′ v′) ◦ Y = (X ◦ u′) ?′ (v′ ◦ Y )

Finally, by construction, u ?′ v = (vσ ? uσ)σ then

Cn(u, v) = (−1)nCn(v, u).

By induction on the degree of u and w, we can show that ? is associative.



HOCHSHILD COHOMOLOGY AND GRADED STAR PRODUCTS 35

By definition u ? (v ? w) = (u ? v) ? w if |u| ≤ 1 and |w| ≤ 1. Then by induction
on |u| the same holds if |w| ≤ 1 since

((X ◦ u′) ? v) ? w = (X ◦ (u′ ? v)) ? w = X ◦ ((u′ ? v) ? w)

= X ◦ (u′ ? (v ? w)) = (X ◦ u′) ? (v ? w)

and similarly for any w′ since:

u ? (v ? (w′ ◦ Y )) = u ? ((v ? w′) ◦ Y )

= ((u ? v) ? w′) ◦ Y ) = (u ? v) ? (w′ ◦ Y )

Finally ? is a graded star product by construction. �

Thus we can conclude the following theorem.

Theorem 1.4. Let ? be a graded star product, then ? is totally determined by
the mapping from g× S (g) into S (g) :

g× S (g) → S (g) (X, u ) 7→ X ? u.

2. Hochschild cohomology

Let g be a finite dimensional real Lie algebra and g∗ its dual. Let M be the space
C∞(g∗) of C∞ functions on g∗, or the space S (g) of polynomial functions on g∗.

If β is a multi index we denote Dβ the differential operator

Dβ = (∂1)b1 . . . (∂n)bn if β = (b1, . . . , bn), bi ∈ N

A multi differential operator C on M is a p-linear application from M×M×. . .×M
to M such that

C(u1, . . . , up) =
∑

β1...βp

Cβ1...βp Dβ1u1 Dβ2u2 . . . Dβpup

where the Cβ1...βp are all in M and the sum is finite.
Now let us recall the Hochschild cohomology for p-cochain. We consider here

only differential, vanishing on constants cochains i.e a p-cochain is a p-differential
operator C:

C =
∑

β1...βp

Cβ1...βp
Dβ1 ∪ Dβ2 ∪ . . . ∪ Dβp

such that C(u0, . . . , ui−1, 1, ui+1, . . . , up) = 0 ∀ i or |βi| > 0 ∀ i .
The coboundary operator δ is given by :

(δC)(u0, . . . , up) = u0 · C(u1, . . . , up)− C(u0 · u1, u2, . . . , up) + . . .

+ (−1)i+1C(u0, . . . , ui−1, ui · ui+1, . . . , up) + . . .

+ (−1)p−1C(u0, . . . , up−1) · up



36 N. BEN AMAR and M. CHAABOUNI

Remark 2.1. Let us remark that we can write the associativity of a star
product by using the coboundary operator δ. In fact a bilinear map u ? v =∑
n≥0

Cn(u, v) such that C0(u, v) = u · v, defines an associative law at the order n if

∑
p+q=n

C
p
(Cq(u, v), w) =

∑
p+q=n

C
p
(u, Cq(v, w))

and if we know C0, C1, . . . , Cn−1 this relation can be written

δCn(u, v, w) =
n−1∑
p=1

C
p
(Cn−p(u, v), w)− C

p
(u, Cn−p(v, w)).

Remark 2.2. We also remark that if ? and ?′ are two star products coinciding
up to the order n−1 ,then we can change ?′ by an other star product ?′′ equivalent
coinciding with ? up to the order n if and only if there exists an operator Tn such
that

Cn(u, v) = C ′
n(u, v) + (δTn)(u, v).

Now we will define the graded cohomology.

Definition 2.3. Let n ∈ N, n ≥ 2. A bilinear map Cn

Cn : g× S (g) → S (g)

such that Cn(X, u) is homogeneous of degree 1 + |u| − n for all homogeneous
polynomial u is said to be a 2-cocycle if

δCn(X, u, Y )

= (−1)nXCn(Y, u)− (−1)nCn(Y, Xu) + Cn(X, uY )− Cn(X, u)Y ≡ 0

and
δCn(X, Y, u)− δCn(Y, X, u)

= XCn(Y, u) + Cn(X, Y u)− Y Cn(X, u)− Cn(Y, Xu) ≡ 0

If n is even, Cn is said to be a 2-cobord if there exists a linear map bn from S (g)
to S (g) which verifies bn(u) is homogeneous of degree |bn(u)| = |u| − n and such
that

Cn(X, u) = (δbn)(X, u) = Xbn(u)− bn(Xu)

It is not difficult to verify that the space B2
n of 2-cobords is a subspace of the

space Z2
n of 2-cocycles. Then we set

H2
n =

Z2
n

B2
n

The space H2
n is called the second cohomology group graded of degree n (if n is

odd then H2
n = Z2

n).
More generally, let M be the space C∞(g∗) or S(g). If Cp(M) is the space of

p-cochain, the space of p-cocycle Zp(M, δ) is the kernel of δ in Cp(M), the space
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of p-coboundary Bp(M, δ) is δ(Cp−1(M)) and the cohomology group Hp(M, δ) is
the quotient

Zp(M, δ)
Bp(M, δ)

.

These groups were studied by J. Vey [11]. The p-cochains considered are mul-
tidifferential operators with action on C∞ functions u1, u2, . . . , up.

Theorem 2.4. [11] Let g be a Lie algebra and let M the space of C∞ func-
tions on g∗. The P th cohomology group Hp(M, δ) is isomorphic to the space of
contravariant totally antisymmetric p-tensors γ

Hp(M, δ) ' Hom (∧pg,M)

The isomorphism is given by:
To [C] ∈ Hp(M, δ), we associate c ∈ Hom (∧pg,M) defined by

c (X1, . . . , Xp) =
∑

σ∈Σp

ε(σ)C(xσ(1), . . . xσ(p))

Σp is the group of permutations of {1, . . . , p}.

Now we can show the following proposition.

Proposition 2.5. Let C be a 2-cocycle homogeneous.
(1) If C is antisymmetric of degree −n (n > 2), then C = 0.
(2) If C is symmetric of degree −n (n ≥ 0), then, there exists an operator T

such that C = δT.

Proof. By the above theorem Hp(M, δ) is isomorphic to the space of contravari-
ant totally antisymmetric p-tensors γ. Then if C is a p-differential cocycle, there
exists a differential operator T homogeneous of degree p such that

C = Cγ + δT,

where Cγ is a p-tensor contravariant totally antisymmetric

Cγ(u1, . . . , up) =
∑

i1...ip

γi1...ip ∂i1u1 . . . ∂ip
up

A multidifferential operator is totally determined by its restriction to polyno-
mial functions. Such operator sends S (g)× S (g)× . . .× S (g) to S (g) if and only
if its coefficients are polynomials.

In particular let C be a 2-cocycle homogeneous antisymmetric of degree −n
(n > 2). δT being symmetric, we can deduce, from the equality C = Cγ +δT, that
C = Cγ . But for all i, j we have Cγ(xi, xj) = γij is an homogeneous polynomial
of degree 2−n .
Then we obtain

C(xi, xj) = γij = 0.

Thus we can deduce that C = 0.
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Now let C be a 2-cocycle homogeneous symmetric, Cγ being antisymmetric
then C = δT .

An explicit calculation of such T is given by Gutt in [6] . If u = xa1
1 . . .xad

d then

(T (u))(ξ) =
d∑

i=1

ai−1∑
j=1

C(xi, xa1
1 . . . x

ai−1
i−1 xj

i )|ξ ξ
ai−j−1
i ξ

ai+1
i+1 . . . ξad

d , ∀ξ ∈ g∗.

This operator T is differential and homogeneous of degree n. �

3. Equivalence of graded star products

Let us recall the definition of the equivalence of two star products.

Definition 3.1. Two graded star products ? and ?′ are said to be equivalent
if there exists a linear map T

T : S (g) → S (g)

u 7→ T (u) =
∞∑

n=0

Tn(u)

such that
(1) T0(u) = u.
(2) If u is homogeneous then Tn(u) is also homogeneous and its degree is |u|−n.
(3) T (u ? v) = (T (u)) ?′ (T (v)).

Now we can show the following theorem.

Theorem 3.2. Two differential graded star products on S (g) are equivalent by
an operator of the form

T = Id +
∞∑

k=1

T2k

where T2k is a differential operator homogeneous of degree −2k.

Proof. Let ? and ?′ be two differential graded star products on S (g). We shall
construct the operator T by induction. Assume that there exist 2(k−1) differential
operators T0, . . . , T2(k−1) for k ≥ 1 such that T0 = Id and each T2j (0 ≤ j ≤ k− 1)
is homogeneous of degree −2j.

Then the following star product ?′′ defined by

u ?′′ v = (T0 + . . . + T2(k−1))−1((T0 + . . . + T2(k−1))u) ?′ ((T0 + . . . + T2(k−1))v),

satisfies

C ′′
j (u, v) = Cj(u, v) for ∀j ≤ 2(k − 1).

By construction ?′′ is a differential star product, then by using the associativity
of ?′′, we obtain

δ(C ′′
2k−1 − C2k−1) = 0 .
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Now, if k − 1 = 0, then we have

C ′′
1 (u, v) = C1(u, v) = {u, v} .

If k ≥ 2, then 2k − 1 > 2 and 2k − 1 is odd, we obtain by (1) of the above
proposition that:

C ′′
2k−1 = C2k−1.

Thus by the associativity condition, we deduce that

δ(C ′′
2k − C2k) = 0,

Finally (2) of the Proposition 2.5, proves that there exists a differential operator
homogeneous of degree −2k such that

C ′′
2k − C2k = δ(T2k).

We continue the construction by induction. �

In the next section,we will give an example of the equivalence operator T .

4. The case of Kontsevich star product and Gutt star product

We recall that the star product ?G
α constructed by Gutt in [7] and the star product

?K
α built by Kontsevich in [8] are graded. Thus by the Theorem 3.2 these two star

products are equivalent. We can give explicitly the equivalence operator between
these two well known star products. In fact, Gutt’s star product has an integral
formula given for u1, u2 polynomial functions on g∗ or u1, u2 such that û1, û2 are
smooth functions with sufficiently small support

u1 ?G
α u2(ξ) =

∫
g2

û1(X)û2(Y )e2iπ〈X×αY,ξ〉dXdY ,

if

û(X) =
∫

g∗
u(ξ)e−2iπ〈X,ξ〉dξ .

Here X ×α Y is the Baker-Campbell-Hausdorff formula for any Lie algebra g
equipped with a linear Poisson bracket α and any X and Y in g

expX · expY = exp(X ×α Y ).

In [10], Shoiket compared the Kontsevich star product and the Duflo formula
in the case of linear Poisson bracket. From his results, we can deduce that the
Kontsevich star product has the following universal integral formula

(u1 ?K
α u2)(ξ) =

∫
g2

û1(X)û2(Y )
J(X)J(Y )
J(X ×α Y )

e2iπ〈X×αY,ξ〉dXdY ,

where

J(X) =

[
det

(
sh(adX

2 )
adX

2

)] 1
2

.
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Proposition 4.1. The Kontsevich star product is equivalent to the Gutt star
product through the equivalence operator T defined by

T (u1)(ξ) =
∫

g

û1(X)J(X)e2iπ〈X,ξ〉dX .

Proof. Let T be the operator defined by

(T (u1))
∧ (X) = û1(X)J(X) .

We have:(
T (u1 ?K

α u2)
)∧

(X ×α Y ) = ( ̂u1 ?K
α u2) (X ×α Y )J(X ×α Y )

Now, by the integral formula, we obtain

( ̂u1 ?K
α u2)(X ×α Y )J(X ×α Y ) = û1(X)û2(Y )J(X)J(Y )

= (T (u1))
∧ (X) (T (u2))

∧ (Y )

=
(
T (u1) ?G

α T (u2)
)∧

(X ×α Y )

Thus (
T (u1 ?K

α u2)
)∧

=
(
T (u1) ?G

α T (u2)
)∧

This proves our proposition. �

This equivalence operator T is a formal series of differential operators Tk

T = Id +
∞∑

n=1

∑
|k1+k2+...kp|=n

ak1...kp Tk1 ◦ Tk2 ◦ . . . ◦ Tkp .

Here Tk is the operator

Tk(u)(ξ) = (2iπ)k

∫
g

û(X)Tr(adX)ke2iπ〈X,ξ〉dX.

These operators Tk are “wheel operators”. In fact, each Tk is associated to a graph
Γk called by Kontsevich a “wheel”. Γk has k vertices of the first kind p1, . . . , pk,
one vertex of the second kind q1 and the edges of Γk are

{ −−→p1p2,
−−→p1q1,

−−→p2p3,
−−→p2q1, . . . ,

−−−−→pk−1pk, −−−−→pk−1q1,
−−→pkp1,

−−→pkq1}

Tk can be written

Tk(u) =
∑

i1...ik

∑
j1...jk

Cj2
i1j1

Cj3
i2 j2

. . . Cj1
ik jk

∂i1...ik
u,

where the Ck
ij are the structure constants of the Lie algebra g.

Acknowledgement. We want to thank professor Didier Arnal for advices and
suggestions.



HOCHSHILD COHOMOLOGY AND GRADED STAR PRODUCTS 41

References

1. Arnal D., Le produit star de Kontsevich sur le dual d’une algèbre de Lie nilpotente C. R.
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7. Gutt S., An explicit ?-product on the cotangent bundle of a Lie group. Lett. Math. Phys 7
(1983) 249–259.

8. Kontsevich M., Deformation quantization of Poisson manifolds. I. q-alg/9709040 (1997).
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