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HOCHSHILD COHOMOLOGY AND EQUIVALENCE
OF GRADED STAR PRODUCTS

N. BEN AMAR and M. CHAABOUNI

Abstract. We study graded star products on dual of finite dimensional Lie algebras. We prove that all graded star
products are entirely determined by the expression of X ? u where X belongs to the Lie algebra g and u is a polynomial
function on the dual g∗ of g. We also consider the Hochschild cohomology and we prove that all graded differential star
products are equivalent.

0. Introduction

Deformations of usual multiplication of functions are called star products. This notion has been introduced by
F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz and D. Sternheimer [3] to give an autonomous phase space
formulation of quantum mechanics without operators in the general case of a Poisson manifold. Star products
were also used in the representation theory of Lie groups.

The problem of existence of star products has been solved by different steps. In the case of finite dimensional
symplectic manifolds, J.Vey has determined the corresponding differential Hochschild cohomology [11] and S. Gutt
has studied the three first groups in the Chevally cohomology [6]. Then, M. Dewilde and P. Lecomte have used
these cohomologies to prove the existence of star products on any symplectic manifold [4]. The classification of
these star products was done by A. Lichnerowicz [9] by using the second De Rham cohomological group.
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An explicit star product on any Lie algebra was given in [7]. In fact S. Gutt constructed a star product on
the cotangent bundle of any Lie group G. This star product can be restricted to the dual g∗ of the Lie algebra
g. Since then, a geometric construction of a star product has been done by B. F. Fedesov in [5].

Recently, M. Kontsevich has entirely solved the problem of existence of star products on any finite dimensional
Poisson manifold [8]. He built a star product ?K

α on Rd equipped with a general Poisson bracket α. This famous
result has been proved by considering some oriented admissible graphs

−→
Γ . In [1] D. Arnal proved that in the

nilpotent case Gutt’s star product coincides with Kontsevich’s star product.
These examples of star products i.e Gutt’s star product and Kontsevich’s star product are graded star products

i.e if u1 and u2 are polynomial functions on Rd homogeneous with degree |u1| and |u2| , Cn (α) ( u1, u2 ) is still a
polynomial function, homogeneous with degree |u1|+ |u2| − n.

In the present paper, we study graded star products on dual of finite dimensional Lie algebras and we prove
the equivalence of all graded differential star products.

The paper is organized as follows :
In the first section, we prove that a graded star product on dual of Lie algebras is totally determined by the

expression of X ? u where X is in g and u is in S (g) (polynomial functions on g∗). Our proof is original and
elementary.

In the second section, we study the Hochschild cohomology on C∞ (g∗) and S (g).
In the third section, we prove the equivalence of all graded differential star products. The equivalence operator

is constructed by induction.
Finally, in the fourth section, we study the case of Kontsevich’s star product, we give explicitly the equivalence

operator of this star product with Gutt’s star product.

1. Graded star products on dual of Lie algebras

Definition 1.1. [3] Let W be a differentiable Poisson manifold with a poisson bracket { , } and E be the
space of formal series in the parameter ~ with coefficients in C∞(W ).
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A star product on C∞ (W ) is defined by a bilinear map from C∞ (W )× C∞ (W ) into E :

(u, v) 7→ u ?~ v =
∞∑

r=0

~r

r!
Cr(u, v) ∈ E

Where :

(i) Cr is a bidifferential operator on C∞ (W ) ( of maximum order r (r > 1) in each argument, null on the
constants ).

(ii) C0(u, v) = u.v ; C1(u, v) = {u, v}.
(iii) Cr is symmetric (resp skew symmetric) in (u, v) if r is even (resp odd).

(iv)
∑

r+s=t
(r!s!)−1Cr(Cs(u, v), w)) =

∑
r+s=t

(r!s!)−1Cr(u, Cs(v, w)) (t = 1, 2, . . .).

Let S (g) be the algebra of polynomial functions on the dual g∗ of a finite dimensional Lie algebra g. The
algebra S (g) is graded. If u is an homogeneous element of S (g) we will denote |u| its degree. A multilinear
function C:

C : S (g)× . . . × S (g) → S (g)

is said to be homogeneous with degree −n if for u1 , . . . , uk homogeneous elements of S ( g ) one has C ( u1, . . . , uk

) is homogeneous with degree |u1|+ |u2|+ . . . + |uk| − n.

Definition 1.2. [2] Let S (g) be the algebra of the polynomial functions on g∗ and Sp be the space of
homogeneous polynomials of degree p. A star product on S (g) is called graded if

∀r, p, q ∈ N, ∀ (u, v) ∈ Sp × Sq, Cr(u, v) ∈ Sp+q−r.

Let us show that a graded ?-product is totally defined by X ? u where u belongs to S (g) and X belongs to g.



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Proposition 1.3. Let Cn be a sequence of bilinear map:

Cn : g× S (g) → S (g)

such that
1. C0(X, u) = X.u and C1(X, u) = [X, u].
2. If u is homogeneous then Cn(X, u) is homogeneous and its degree is |u|+ 1− n.
3. Let σ be defined on g∗ by σ(ξ) = −ξ .

We set

uσ(ξ) = u(σ(ξ)) ∀ u ∈ S (g) and we define X ◦ u =
∞∑

n=0

Cn(X, u) .

We suppose that

a) u ◦X = (Xσ ◦ uσ)σ =
∞∑

n=0
(−1)nCn(X, u) .

b) X ◦ (u ◦ Y ) = (X ◦ u) ◦ Y ∀ X, Y ∈ g , ∀ u ∈ S (g).

c) X ◦ (Y ◦ u)− Y ◦ (X ◦ u) = [X, Y ] ◦ u ∀ X, Y ∈ g , ∀ u ∈ S (g).

Then there exists one and only one star product such that

X ? u = X ◦ u ∀ X ∈ g , ∀ u ∈ S (g) .

This star product is graded.

Proof. Let v ∈ S (g), we define u ? v by induction on the degree of u starting with 1 ? v = v and X ? v = X ◦ v.
If u is an homogeneous polynomial function of the form u = Xu′ then there exists a polynomial function u′′ such
that

Xu′ = X ◦ u′ + u′′ and |u′′| ≤ |u| − 1.
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We suppose u1 ? v defined for any u1 such that |u1| < |u|, we suppose also that:

u1 ? (v ? w) = (u1 ? v) ? w if |u1|+ |v| < |u| .

Then we set

(Xu′) ? v = X ◦ (u′ ? v) + u′′ ? v

This formula defines without ambiguity u ? v. In fact if u has the form

u = X1X2w = X1 ◦ (X2 ◦ w) + u′′1

= X2 ◦ (X1 ◦ w) + u′′2

Then

X2 ◦ (X1 ◦ w) + u′′2 = X1 ◦ (X2 ◦ w) + u′′2 + [X2, X1] ◦ w.

Thus

u′′1 = u′′2 + [X2, X1] ◦ w

and one has
X1◦ ((X2 ◦ w) ? v) + u′′1 ? v

= X1 ◦ (X2 ◦ (w ? v)) + u′′2 ? v + ([X2, X1] ◦ w) ? v

= X1 ◦ (X2 ◦ (w ? v)) + [X2, X1] ◦ (w ? v) + u′′2 ? v

= X2 ◦ (X1 ◦ (w ? v)) + u′′2 ? v

= X2 ◦ ((X1 ◦ w) ? v) + u′′2 ? v.

The homogeneous term of the maximum degree in u ? v is C0(u, v) = u · v then we set

Cn(u, v) = the homogeneous term of degree |u|+ |v| − n.
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A simple calculation shows that ? is a star product in fact let us first show that the C1(u, v) = {u, v}:
It is clear that the term of degree |u|+ |v| − 1 in u′′ ? v is −{X, u′} v (coming from u′′ · v) and in X ◦ (u′ ? v)

is X {u′, v}+ {X, u′ · v}. Thus the term of degree |u|+ |v| − 1 in u ? v is the sum of these two terms

X {u′, v}+ {X, u′v} − {X, u′} v = X {u′, v}+ u′ {X, v}
= {X u′, v} = {u, v}

Now one has

(u ◦X) ◦ Y − (u ◦ Y ) ◦X = (Y σ ◦ (u ◦X)σ)σ − ((Xσ ◦ (u ◦ Y )σ)σ

= (Y σ ◦ (Xσ ◦ uσ))σ − (Xσ ◦ (Y σ ◦ uσ))σ

= ([Y σ, Xσ] ◦ uσ)σ = ([X, Y ]σ ◦ uσ)σ

= u ◦ [X, Y ]

Using the same construction, we can then define similarly u ?′ v by induction “on the right side” on the degree
of v. Then ? and ?′ coincide in fact if |u| = |v| = 1 then by using a/ we deduce u ?′ v = u ? v. Now suppose that
they coincide for u′ and v′ such that |u′|+ |v′| < |u|+ |v|, then

(X ′u′) ? (v′ ◦ Y ) = X ′(u′ ? (v′ ◦ Y )) = X ◦ (u′ ?′ (v′ ◦ Y ))

= X ◦ ((u′ ?′ v′) ◦ Y ) = (X ◦ (u′ ?′ v′)) ◦ Y

= ((X ◦ u′) ?′ v′) ◦ Y = (X ◦ u′) ?′ (v′ ◦ Y )

Finally, by construction, u ?′ v = (vσ ? uσ)σ then

Cn(u, v) = (−1)nCn(v, u).

By induction on the degree of u and w, we can show that ? is associative.
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By definition u ? (v ? w) = (u ? v) ? w if |u| ≤ 1 and |w| ≤ 1. Then by induction on |u| the same holds if |w| ≤ 1
since

((X ◦ u′) ? v) ? w = (X ◦ (u′ ? v)) ? w = X ◦ ((u′ ? v) ? w)

= X ◦ (u′ ? (v ? w)) = (X ◦ u′) ? (v ? w)

and similarly for any w′ since:

u ? (v ? (w′ ◦ Y )) = u ? ((v ? w′) ◦ Y )

= ((u ? v) ? w′) ◦ Y ) = (u ? v) ? (w′ ◦ Y )

Finally ? is a graded star product by construction. �

Thus we can conclude the following theorem.

Theorem 1.4. Let ? be a graded star product, then ? is totally determined by the mapping from g×S (g) into
S (g) :

g× S (g) → S (g) (X, u ) 7→ X ? u.

2. Hochschild cohomology

Let g be a finite dimensional real Lie algebra and g∗ its dual. Let M be the space C∞(g∗) of C∞ functions on
g∗, or the space S (g) of polynomial functions on g∗.

If β is a multi index we denote Dβ the differential operator

Dβ = (∂1)b1 . . . (∂n)bn if β = (b1, . . . , bn), bi ∈ N
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A multi differential operator C on M is a p-linear application from M ×M × . . .×M to M such that

C(u1, . . . , up) =
∑

β1...βp

Cβ1...βp
Dβ1u1 Dβ2u2 . . . Dβpup

where the Cβ1...βp
are all in M and the sum is finite.

Now let us recall the Hochschild cohomology for p-cochain. We consider here only differential, vanishing on
constants cochains i.e a p-cochain is a p-differential operator C:

C =
∑

β1...βp

Cβ1...βp
Dβ1 ∪ Dβ2 ∪ . . . ∪ Dβp

such that C(u0, . . . , ui−1, 1, ui+1, . . . , up) = 0 ∀ i or |βi| > 0 ∀ i .
The coboundary operator δ is given by

(δC)(u0, . . . , up) = u0 · C(u1, . . . , up)− C(u0 · u1, u2, . . . , up) + . . .

+ (−1)i+1C(u0, . . . , ui−1, ui · ui+1, . . . , up) + . . .

+ (−1)p−1C(u0, . . . , up−1) · up

Remark 2.1. Let us remark that we can write the associativity of a star product by using the coboundary
operator δ. In fact a bilinear map u ? v =

∑
n≥0

Cn(u, v) such that C0(u, v) = u · v, defines an associative law at the

order n if ∑
p+q=n

C
p
(Cq(u, v), w) =

∑
p+q=n

C
p
(u, Cq(v, w))

and if we know C0, C1, . . . , Cn−1 this relation can be written

δCn(u, v, w) =
n−1∑
p=1

C
p
(Cn−p(u, v), w)− C

p
(u, Cn−p(v, w)).
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Remark 2.2. We also remark that if ? and ?′ are two star products coinciding up to the order n − 1 ,then
we can change ?′ by an other star product ?′′ equivalent coinciding with ? up to the order n if and only if there
exists an operator Tn such that

Cn(u, v) = C ′
n(u, v) + (δTn)(u, v).

Now we will define the graded cohomology.

Definition 2.3. Let n ∈ N, n ≥ 2. A bilinear map Cn

Cn : g× S (g) → S (g)

such that Cn(X, u) is homogeneous of degree 1+ |u|−n for all homogeneous polynomial u is said to be a 2-cocycle
if

δCn(X, u, Y )

= (−1)nXCn(Y, u)− (−1)nCn(Y, Xu) + Cn(X, uY )− Cn(X, u)Y ≡ 0

and
δCn(X, Y, u)− δCn(Y, X, u)

= XCn(Y, u) + Cn(X, Y u)− Y Cn(X, u)− Cn(Y, Xu) ≡ 0

If n is even, Cn is said to be a 2-cobord if there exists a linear map bn from S (g) to S (g) which verifies bn(u) is
homogeneous of degree |bn(u)| = |u| − n and such that

Cn(X, u) = (δbn)(X, u) = Xbn(u)− bn(Xu)

It is not difficult to verify that the space B2
n of 2-cobords is a subspace of the space Z2

n of 2-cocycles. Then we
set

H2
n =

Z2
n

B2
n



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

The space H2
n is called the second cohomology group graded of degree n (if n is odd then H2

n = Z2
n).

More generally, let M be the space C∞(g∗) or S(g). If Cp(M) is the space of p-cochain, the space of p-cocycle
Zp(M, δ) is the kernel of δ in Cp(M), the space of p-coboundary Bp(M, δ) is δ(Cp−1(M)) and the cohomology
group Hp(M, δ) is the quotient

Zp(M, δ)
Bp(M, δ)

.

These groups were studied by J. Vey [11]. The p-cochains considered are multidifferential operators with action
on C∞ functions u1, u2, . . . , up.

Theorem 2.4. [11] Let g be a Lie algebra and let M the space of C∞ functions on g∗. The P th cohomology
group Hp(M, δ) is isomorphic to the space of contravariant totally antisymmetric p-tensors γ

Hp(M, δ) ' Hom (∧pg,M)

The isomorphism is given by:
To [C] ∈ Hp(M, δ), we associate c ∈ Hom (∧pg,M) defined by

c (X1, . . . , Xp) =
∑

σ∈Σp

ε(σ)C(xσ(1), . . . xσ(p))

Σp is the group of permutations of {1, . . . , p}.

Now we can show the following proposition.

Proposition 2.5. Let C be a 2-cocycle homogeneous.
(1) If C is antisymmetric of degree −n (n > 2), then C = 0.
(2) If C is symmetric of degree −n (n ≥ 0), then, there exists an operator T such that C = δT.
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Proof. By the above theorem Hp(M, δ) is isomorphic to the space of contravariant totally antisymmetric p-
tensors γ. Then if C is a p-differential cocycle, there exists a differential operator T homogeneous of degree p
such that

C = Cγ + δT,

where Cγ is a p-tensor contravariant totally antisymmetric

Cγ(u1, . . . , up) =
∑

i1...ip

γi1...ip ∂i1u1 . . . ∂ip
up

A multidifferential operator is totally determined by its restriction to polynomial functions. Such operator
sends S (g)× S (g)× . . .× S (g) to S (g) if and only if its coefficients are polynomials.

In particular let C be a 2-cocycle homogeneous antisymmetric of degree −n (n > 2). δT being symmetric,
we can deduce, from the equality C = Cγ + δT, that C = Cγ . But for all i, j we have Cγ(xi, xj) = γij is an
homogeneous polynomial of degree 2−n .
Then we obtain

C(xi, xj) = γij = 0.

Thus we can deduce that C = 0.
Now let C be a 2-cocycle homogeneous symmetric, Cγ being antisymmetric then C = δT .

An explicit calculation of such T is given by Gutt in [6] . If u = xa1
1 . . .xad

d then

(T (u))(ξ) =
d∑

i=1

ai−1∑
j=1

C(xi, xa1
1 . . . x

ai−1
i−1 xj

i )|ξ ξ
ai−j−1
i ξ

ai+1
i+1 . . . ξad

d , ∀ξ ∈ g∗.

This operator T is differential and homogeneous of degree n. �
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3. Equivalence of graded star products

Let us recall the definition of the equivalence of two star products.

Definition 3.1. Two graded star products ? and ?′ are said to be equivalent if there exists a linear map T

T : S (g) → S (g)

u 7→ T (u) =
∞∑

n=0

Tn(u)

such that
(1) T0(u) = u.
(2) If u is homogeneous then Tn(u) is also homogeneous and its degree is |u| − n.
(3) T (u ? v) = (T (u)) ?′ (T (v)).

Now we can show the following theorem.

Theorem 3.2. Two differential graded star products on S (g) are equivalent by an operator of the form

T = Id +
∞∑

k=1

T2k

where T2k is a differential operator homogeneous of degree −2k.

Proof. Let ? and ?′ be two differential graded star products on S (g). We shall construct the operator T by
induction. Assume that there exist 2(k− 1) differential operators T0, . . . , T2(k−1) for k ≥ 1 such that T0 = Id and
each T2j (0 ≤ j ≤ k − 1) is homogeneous of degree −2j.

Then the following star product ?′′ defined by

u ?′′ v = (T0 + . . . + T2(k−1))−1((T0 + . . . + T2(k−1))u) ?′ ((T0 + . . . + T2(k−1))v),
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satisfies

C ′′
j (u, v) = Cj(u, v) for ∀j ≤ 2(k − 1).

By construction ?′′ is a differential star product, then by using the associativity of ?′′, we obtain

δ(C ′′
2k−1 − C2k−1) = 0 .

Now, if k − 1 = 0, then we have

C ′′
1 (u, v) = C1(u, v) = {u, v} .

If k ≥ 2, then 2k − 1 > 2 and 2k − 1 is odd, we obtain by (1) of the above proposition that:

C ′′
2k−1 = C2k−1.

Thus by the associativity condition, we deduce that

δ(C ′′
2k − C2k) = 0,

Finally (2) of the Proposition 2.5, proves that there exists a differential operator homogeneous of degree −2k such
that

C ′′
2k − C2k = δ(T2k).

We continue the construction by induction. �

In the next section,we will give an example of the equivalence operator T .
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4. The case of Kontsevich star product and Gutt star product

We recall that the star product ?G
α constructed by Gutt in [7] and the star product ?K

α built by Kontsevich in
[8] are graded. Thus by the Theorem 3.2 these two star products are equivalent. We can give explicitly the
equivalence operator between these two well known star products. In fact, Gutt’s star product has an integral
formula given for u1, u2 polynomial functions on g∗ or u1, u2 such that û1, û2 are smooth functions with sufficiently
small support

u1 ?G
α u2(ξ) =

∫
g2

û1(X)û2(Y )e2iπ〈X×αY,ξ〉dXdY ,

if

û(X) =
∫

g∗
u(ξ)e−2iπ〈X,ξ〉dξ .

Here X ×α Y is the Baker-Campbell-Hausdorff formula for any Lie algebra g equipped with a linear Poisson
bracket α and any X and Y in g

expX · expY = exp(X ×α Y ).

In [10], Shoiket compared the Kontsevich star product and the Duflo formula in the case of linear Poisson bracket.
From his results, we can deduce that the Kontsevich star product has the following universal integral formula

(u1 ?K
α u2)(ξ) =

∫
g2

û1(X)û2(Y )
J(X)J(Y )
J(X ×α Y )

e2iπ〈X×αY,ξ〉dXdY ,

where

J(X) =

[
det

(
sh(adX

2 )
adX

2

)] 1
2

.
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Proposition 4.1. The Kontsevich star product is equivalent to the Gutt star product through the equivalence
operator T defined by

T (u1)(ξ) =
∫

g

û1(X)J(X)e2iπ〈X,ξ〉dX .

Proof. Let T be the operator defined by

(T (u1))
∧ (X) = û1(X)J(X) .

We have: (
T (u1 ?K

α u2)
)∧

(X ×α Y ) = ( ̂u1 ?K
α u2) (X ×α Y )J(X ×α Y )

Now, by the integral formula, we obtain

( ̂u1 ?K
α u2)(X ×α Y )J(X ×α Y ) = û1(X)û2(Y )J(X)J(Y )

= (T (u1))
∧ (X) (T (u2))

∧ (Y )

=
(
T (u1) ?G

α T (u2)
)∧

(X ×α Y )

Thus (
T (u1 ?K

α u2)
)∧

=
(
T (u1) ?G

α T (u2)
)∧

This proves our proposition. �

This equivalence operator T is a formal series of differential operators Tk

T = Id +
∞∑

n=1

∑
|k1+k2+...kp|=n

ak1...kp
Tk1 ◦ Tk2 ◦ . . . ◦ Tkp

.
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Here Tk is the operator

Tk(u)(ξ) = (2iπ)k

∫
g

û(X)Tr(adX)ke2iπ〈X,ξ〉dX.

These operators Tk are “wheel operators”. In fact, each Tk is associated to a graph Γk called by Kontsevich a
“wheel”. Γk has k vertices of the first kind p1, . . . , pk, one vertex of the second kind q1 and the edges of Γk are

{ −−→p1p2,
−−→p1q1,

−−→p2p3,
−−→p2q1, . . . ,

−−−−→pk−1pk, −−−−→pk−1q1,
−−→pkp1,

−−→pkq1}

Tk can be written

Tk(u) =
∑

i1...ik

∑
j1...jk

Cj2
i1j1

Cj3
i2 j2

. . . Cj1
ik jk

∂i1...ik
u,

where the Ck
ij are the structure constants of the Lie algebra g.
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