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FUZZY SOLUTIONS FOR BOUNDARY VALUE PROBLEMS
WITH INTEGRAL BOUNDARY CONDITIONS

A. ARARA and M. BENCHOHRA

Abstract. The Banach fixed point theorem is used to investigate the existence

and uniquenness of fuzzy solutions for a class of second order nonlinear boundary

value problems with integral boundary conditions.

1. Introduction

In modelling real systems one can be frequently confronted with a differential
equation

y′(t) = f(t, y(t)), for all t ∈ [0, 1],

y(0) = y0

where the structure of the equation is known (represented by the vector field f)
but the model parameters and the initial values y0 are not known exactly. One
method of treating this incertainty is to use a fuzzy set theory formulation of
the problem. This note is concerned with the existence and uniqueness of fuzzy
solutions for more general boundary value problems for second order differential
equations with integral boundary conditions of the form

y′′(t) = f(t, y(t)), for all t ∈ [0, 1],(1)

y(0)− k1y
′(0) =

∫ 1

0

h1(y(s))ds,(2)

y(1) + k2y
′(1) =

∫ 1

0

h2(y(s))ds,(3)

with f : [0, 1] × En → En a continuous function, where we let En be the
set of all upper semi-continuous, convex, normal fuzzy numbers with α-level,
hi : En → En(i = 1, 2) are continuous functions and ki (i = 1, 2) are nonnega-
tive constants. Fuzzy boundary value problems with integral boundary conditions
constitute a very interesting and important class of problems. They include two,
three, multipoint and nonlocal boundary value problems as special cases. The
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theory of fuzzy sets, fuzzy valued functions and necessary calculus of fuzzy func-
tions have been investigated in the recent monograph by Lakshmikantham and
Mohapatra [13] and the references cited therein, and in the papers [7, 8, 11, 15].
Recently, fuzzy differential equations have also been developed and the basic prop-
erties of solutions of fuzzy differential equations are available, see for instance,
[6, 9, 10, 12, 16, 18, 21]. Balasubramaniam and Muralisankar [5] gave ex-
istence and uniqueness results for fuzzy integrodifferential equations of Volterra
type. Seikkala [20] defined the concept of fuzzy derivative which is generaliza-
tion of Hukuhara derivative [19]. Nieto [14] studied the Cauchy problem for first
order fuzzy differential equations. In [1] Benchohra et al. studied the existence
of fuzzy solutions for multipoint boundary value problems. Arara and Benchohra
[2] established the existence of solutions for fuzzy neutral functional differential
equations with nonlocal conditions. Park et al. [17] considered fuzzy differen-
tial equation with nonlocal condition. Balachandran and Prakash [4] proved the
existence of global solutions for fuzzy integrodifferential equations. For recent re-
sults on fuzzy differential equations and inclusions, we refer to the monograph of
Lakshmikantham and Mohapatra [13].

In this note we study the uniqueness of fuzzy solutions for boundary value
problems with integral boundary conditions. Since the boundary conditions (2)–
–(3) are more general than those considered in the previous literature, the result
of the present note can be considered as a contribution to the subject.

2. Preliminaries

In this section, we introduce notations, definitions, and preliminary facts which
are used throughout this note.

Definition 2.1. (fuzzy set). Let X be a nonempty set. A fuzzy set A in X is
characterized by its membership function A : X → [0, 1] and A(x) is interpreted
as the degree of membership of element x in fuzzy set A for each x ∈ X.

The value zero is used to represent complete non-membership, the value one
is used to represent complete membership, and values in between are used to
represent intermediate degrees of membership. The mapping A is also called the
membership function of fuzzy set A.

Example 2.2. The membership function of the fuzzy set of real numbers “close
to one” can be defined as

A(t) = exp(−β(t− 1)2),

where β is a positive real number.

Example 2.3. Let the membership function for the fuzzy set of real numbers
“close to zero” defined as follows

B(t) =
1

1 + x3
.

Using this function, we can determine the membership grade of each real number
in this fuzzy set, which signifies the degree to which that number is close to zero.
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For instance, the number 3 is assigned a grade of 0.035, the number 1 a grade of
0.5 and the number 0 a grade of 1.

CC(IRn) denotes the set of all nonempty compact, convex subsets of IRn. De-
note by

En = {y : IRn → [0, 1] such that they satisfy (i) to (iv) mentioned below},
(i) y is normal, that is there exists an x0 ∈ IRn such that y(x0) = 1;
(ii) y is fuzzy convex, that is for x, z ∈ IRn and 0 < λ ≤ 1,

y(λx + (1− λ)z) ≥ min[y(x), y(z)];

(iii) y is upper semi-continuous;
(iv) [y]0 = {x ∈ IRn : y(x) > 0} is compact.

For 0 < α ≤ 1, we denote [y]α = {x ∈ IRn : y(x) ≥ α}. Then from (i) to (iv), it
follows that the α-level sets [y]α ∈ CC(IRn). If g : IRn × IRn → IRn is a function,
then, according to Zadeh’s extension principle we can extend g to En ×En → En

by the function defined by

g(y, y)(z) = sup
z=g(x,z̄)

min{y(x), y(z̄)}.

It is well known that
[g(y, y)]α = g([y]α, [y]α)

for all y, y ∈ En, 0 ≤ α ≤ 1 and continuous function g. Especially for addition
and scalar multiplication, we have

[y + y]α = [y]α + [y]α, [ky]α = k[y]α,

where y, y ∈ En, k ∈ IR, 0 ≤ α ≤ 1.
Let A and B be two nonempty bounded subsets of IRn. The distance between

A and B is defined by the Hausdorff metric

Hd(A,B) = max
{

sup
a∈A

inf
b∈B

‖a− b‖, sup
b∈B

inf
a∈A

‖a− b‖
}

where ‖ · ‖ denotes the usual Euclidean norm in IRn. Then (CC(IRn),Hd) is a
complete and separable metric space [19]. We define the supremum metric d∞ on
En by

d∞(u, u) = sup
0<α≤1

Hd([u]α, [u]α)

for all u, u ∈ En. (En, d∞) is a complete metric space. The supremum metric H1

on C([0, 1], En) is defined by

H1(w,w) = sup
t∈J

d∞(w(t), w(t)).

(C([0, 1], En),H1) is a complete metric space.

Definition 2.4. [19] A map f : [0, 1] → En is strongly measurable if, for all
α ∈ [0, 1], the multi-valued map fα : [0, 1] → CC(IRn) defined by

fα(t) = [f(t)]α
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is Lebesgue measurable, when CC(IRn) is endowed with the topology generated
by the Hausdorff metric d.

Definition 2.5. [19] A map f : [0, 1] → En is called levelwise continuous at
t0 ∈ [0, 1] if the multi-valued map fα(t) = [f(t)]α is continuous at t = t0 with
respect to the Hausdorff metric d for all α ∈ [0, 1].

A map f : [0, 1] → En is called integrably bounded if there exists an integrable
function h such that ‖y‖ ≤ h(t) for all y ∈ f0(t).

Definition 2.6. [3] Let f : [0, 1] → En. The integral of f over [0, 1], denoted∫ 1

0
f(t)dt is defined by the equation(∫ 1

0

f(t)dt

)α

=
∫ 1

0

fα(t)dt

=
{∫ 1

0

v(t)dt | v : [0, 1] → Rn is a measurable selection for fα

}
for all α ∈ (0, 1].

A strongly measurable and integrably bounded map f : [0, 1] → En is said to
be integrable over [0, 1], if

∫ 1

0
f(t)dt ∈ En.

If f : [0, 1] → En is strongly measurable and integrably bounded, then f is
integrable.

Definition 2.7. A map f : [0, 1] → En is called differentiable at t0 ∈ [0, 1] if
there exists a f ′(t0) ∈ En such that the limits

lim
h→0+

f(t0 + h)− f(t0)
h

and lim
h→0+

f(t0)− f(t0 − h)
h

exist and are equal to f ′(t0). Here the limit is taken in the metric space (En,Hd).
At the end points of [0, 1], we consider only the one-side derivatives.

If f : [0, 1] → En is differentiable at t0 ∈ [0, 1], then we say that f ′(t0) is
the fuzzy derivative of f(t) at the point t0 or the Hukuhara derivative of f(t) at
t0, usually noted by DHf(t0). For the concepts of fuzzy measurability and fuzzy
continuity we refer to [11].

Definition 2.8. A map f : [0, 1] × En → En is called levelwise continuous at
point (t0, x0) ∈ [0, 1] × En provided, for any fixed α ∈ [0, 1] and arbitrary ε > 0,
there exists a δ(ε, α) > 0 such that

Hd ([f(t, x)]α, [f(t, x0)]α) < ε

whenever |t− t0| < δ(ε, α) and Hd ([x]α, [x0]α) < δ(ε, α) for all t ∈ [0, 1], x ∈ En.

3. The Main Result

In this section, we are concerned with the existence and uniqueness of solutions
for the problem (1)–(3).
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Definition 3.1. A function y ∈ C2([0, 1], En) is said to be a solution of (1)–(3)
if y satisfies the equation y′′(t) = f(t, y(t)) on [0, 1] and the conditions (2)–(3).

We need the following auxiliary result. Its proof uses a standard argument.

Lemma 3.2. For any σ(t), ρ1(t), ρ2(t) ∈ C([0, 1], En), the nonhomogeneous
linear problem

x′′(t) = σ(t), for all t ∈ [0, 1],

x(0)− k1x
′(0) =

∫ 1

0

ρ1(s)ds, x(1) + k2x
′(1) =

∫ 1

0

ρ2(s)ds,

has a unique solution x ∈ C2((0, 1), En) given by

x(t) = P (t) +
∫ 1

0

G(t, s)σ(s)ds,
where

P (t) =
1

1 + k1 + k2
{(1− t + k2)

∫ 1

0

ρ1(s)ds + (k1 + t)
∫ 1

0

ρ2(s)ds}

is the unique solution of the problem

x′′(t) = 0, for all t ∈ [0, 1],

x(0)− k1x
′(0) =

∫ 1

0

ρ1(s)ds, x(1) + k2x
′(1) =

∫ 1

0

ρ2(s)ds,

and
G(t, s) =

−1
k1 + k2 + 1

{
(k1 + t)(1− s + k2), 0 ≤ t < s ≤ 1,

(k1 + s)(1− t + k2), 0 ≤ s < t ≤ 1

is the Green’s function of the homogeneous problem.

Let us introduce the following hypotheses which are assumed hereafter:

Theorem 3.3. Assume that

(H1) There exists a constant d such that

Hd([f(t, u)]α, [f(t, u)]α) ≤ dHd([u(t)]α, [u(t)]α),

for all t ∈ [0, 1] and all u, u ∈ En.
(H2) There exist constants di, i = 1, 2 such that

Hd([hi(y(t))]α, [hi(y(t))]α) ≤ diHd([y(t)]α, [y(t)]α).

If 1 + k2

1 + k1 + k2
d1 + d2(1 + k1) + d sup

(t,s)∈[0,1]×[0,1]

|G(t, s)| < 1,

then the BVP (1)–(3) has a unique fuzzy solution on [0, 1].

Proof. Transform the problem into a fixed point problem. It is clear that the
solutions of the problem (1)–(3) are fixed points of the operator N : C([0, 1], En) →
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C([0, 1], En) defined by:
N(y)(t) = P (y)(t) +

∫ 1

0

G(t, s)f(s, y(s))ds
with

P (y)(t) =
1

1 + k1 + k2
(1− t + k2)

∫ 1

0

h1(y(s))ds + (k1 + t)
∫ 1

0

h2(y(s))ds.

We shall show that N is a contraction operator. Indeed, consider y, y∈C([0, 1], En)
and α ∈ (0, 1], then

Hd([N(y)(t)]α, [N(y)(t)]α)

= Hd

([
1− t + k2

1 + k1 + k2

∫ 1

0

h1(y(s))ds + (k1 + t)
∫ 1

0

h2(y(s))ds

+
∫ 1

0

G(t, s)f(s, y(s))ds

]α

,[
1− t + k2

1 + k1 + k2

∫ 1

0

h1(y(s))ds + (k1 + t)
∫ 1

0

h2(y(s))ds

+
∫ 1

0

G(t, s)f(s, y(s))ds

]α
)

≤ Hd

([
1− t + k2

1 + k1 + k2

∫ 1

0

h1(y(s))ds

]α

,

[
1− t + k2

1 + k1 + k2

∫ 1

0

h1(y(s))ds

]α
)

+ Hd

([
(k1 + t)

∫ 1

0

h2(y(s))ds

]α

,

[
(k1 + t)

∫ 1

0

h2(y(s))ds

]α
)

+ Hd

([∫ 1

0

G(t, s)f(s, y(s))ds

]α

,

[∫ 1

0

G(t, s)f(s, y(s))ds

]α
)

≤ 1− t + k2

1 + k1 + k2
Hd

([∫ 1

0

h1(y(s))ds

]α

,

[∫ 1

0

h1(y(s))ds

]α
)

+ (k1 + t)Hd

([∫ 1

0

h2(y(s))ds

]α

,

[∫ 1

0

h2(y(s))ds

]α
)

+ sup
(t,s)∈[0,1]×[0,1]

|G(t, s)|Hd

([∫ 1

0

f(s, y(s))ds

]α

,

[∫ 1

0

f(s, y(s))ds

]α
)

≤ 1− t + k2

1 + k1 + k2

∫ 1

0

Hd ([h1(y(s))]α , [h1(y(s))]α) ds

+ (k1 + t)
∫ 1

0

Hd ([h2(y(s))]α , [h2(y(s))]α) ds

+ sup
(t,s)∈[0,1]×[0,1]

|G(t, s)|
∫ 1

0

Hd ([f(s, y(s))]α , [f(s, y(s))]α) ds
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≤ 1 + k2

1 + k1 + k2
d1 sup

α∈[0,1]

d∞ (y(t), y(t)) + (k1 + 1)d2d∞ (y(t), y(t))

+ d sup
(t,s)∈[0,1]×[0,1]

|G(t, s)|d∞ (y(t), y(t))

≤

(
1 + k2

1 + k1 + k2
d1 + d2(k1 + 1) + d sup

(t,s)∈[0,1]×[0,1]

|G(t, s)|

)
d∞(y(t), y(t))

≤
(

1 + k2

1 + k1 + k2
d1 + d2(k1 + 1) + d sup

(t,s)∈[0,1]×[0,1]

|G(t, s)|

)
H1(y, y).

Hence

H1(N(y),N(y))

≤

(
1 + k2

1 + k1 + k2
d1 + d2(k1 + 1) + d sup

(t,s)∈[0,1]×[0,1]

|G(t, s)|

)
H1(y, y).

So, N is a contraction and thus, by Banach fixed point theorem, N has a unique
fixed point which is solution to (1)–(3). �

4. An Example

In this section we present a simple example to show the advantage gained by the
fuzzification of the differential operator in the differential equation.

Consider the crisp initial value problem with unknown initial value y0, that is,

y′ = −y, y(0) = y0 ∈ [−1, 1].(4)

The solution of problem (4) when restricted to the interval [−1, 1] is

y(t) = [−e−t, e−t], t ≥ 0.

The fuzzy differential equation corresponding to (4) in E1 is

DHy = −y y(0) = y0 = [−1, 1], y0 ∈ E1.(5)

Suppose that [y]α = [yα
1 , yα

2 ], [DHy]α =
[
dyα

1

dt
,
dyα

2

dt

]
are α-level sets for 0 ≤ α ≤ 1.

By extension principle, (5) becomes

dyα
1

dt
= −yα

2 ,
dyα

2

dt
= −yα

1 , 0 ≤ α ≤ 1.(6)

The solution of (6) is given by

yα
1 (t) = −et, yα

2 (t) = et, t ≥ 0

and therefore the fuzzy function y(t) solving (5) is

y(t) = [−et, et], t ≥ 0,
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which shows that the diameter diam(y(t)) → ∞ as t → ∞. This may be in-
terpreted as the increasing of incertainty to go by the time, which is, in fact,
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