THE FROBENIUS THEOREM ON N-DIMENSIONAL QUANTUM HYPERPLANE

C. CIUPALĂ

ABSTRACT. In this paper we introduce the universal ρ -differential calculus on a ρ -algebra and we prove the universality of the construction. We also present submanifolds, distributions, linear connections and two different ρ -differential calculi on S_N^q : the algebra of forms and the algebra of universal differential forms of S_N^q . Finally we prove the Frobenius theorem on the N-dimensional quantum hyperplane S_N^q in a general case, for any ρ -differential calculus on S_N^q .

1. Introduction

The basic idea of noncommutative geometry is to replace an algebra of smooth functions defined on a smooth manifold by an abstract associative algebra A which is not necessarily commutative. In the context of noncommutative geometry the basic role is the generalization of the notion of differential forms (on a manifold). A (noncommutative) differential calculus over the associative algebra A is a \mathbb{Z} -graded algebra $\Omega(A) = \bigoplus_{n\geq 0} \Omega^n(A)$ (where $\Omega^n(A)$ are A-bimodules and $\Omega^0(A) = A$) together with a linear operator $d: \Omega^n(A) \to \Omega^{n+1}(A)$ satisfying $d^2 = 0$ and $d(\omega\omega') = (d\omega)\omega' + (-1)^n\omega d\omega'$ where $\omega \in \Omega^n(A)$.

There are studied some differential calculi associated to A, here we recall two of them: the algebra of forms of A in [8] and the algebra of universal differential forms of A in [2]. These two differential calculi are studied even in the case when A is a superalgebra in [10] and in [11], but when A is a ρ -algebra there is studied only the algebra of forms of A in [1].

In this paper we introduce the notion of universal derivation of the order (α, β) , we construct the algebra of universal differential forms of a ρ -algebra A and we prove the universality of the construction. We apply this to the particular case of the N-dimensional quantum hyperplane S_N^q and thus we obtain a new differential calculus $\Omega_{\alpha}(S_N^q)$ on S_N^q , denoted the algebra of universal differential forms of S_N^q .

On the other hand we present submanifolds algebra on S_N^q in the context of noncommutative geometry, we also define linear connections, distributions on S_N^q

Received March 3, 2004.

²⁰⁰⁰ Mathematics Subject Classification. Primary 81R60, 16W99, 53C04.

Key words and phrases. noncommutative geometry, linear connections, submanifolds, distributions, quantum hyperplane.

22 C. CIUPALĂ

and we prove the Frobenius theorem on S_N^q , for any ρ -differential calculus ΩS_N^q on S_N^q .

2. Differential calculus on ρ -algebras

In this section we define the differential calculus on a ρ -algebra A and we give two examples of such differential calculus on A: the algebra of forms $\Omega(A)$ of a ρ -commutative algebra A from [1] and the algebra of universal differential forms $\Omega_{\alpha}(A)$ of a ρ -algebra A. We briefly review the basic notions of ρ -algebras and ρ -modules on ρ -algebras. (see [1], [3], [5] and [6] for details).

First we review the basic notions about ρ -algebras, ρ -bimodules over a ρ -algebra and the derivations on ρ -bimodules.

Let G be an abelian group, additively written, and let A be a G-graded algebra. A is a ρ -algebra if there is a map $\rho: G \times G \to k$ which satisfies the relations

(1)
$$\rho(a,b) = \rho(b,a)^{-1}$$
 and $\rho(a+b,c) = \rho(a,c)\rho(b,c)$, for any $a,b,c \in G$.

The G-degree of a (nonzero) homogeneous element f of A is denoted by |f|. The ρ -algebra A is ρ -commutative if $fg = \rho(|f|, |g|) \, gf$ for any $f \in A_{|f|}$ and $g \in A_{|g|}$.

The morphism $f: M \to N$ between the ρ -bimodules M and N over the ρ -algebra A is of degree $\beta \in G$ if $f: M_{\alpha} \to N_{\alpha+\beta}$ for any $\alpha \in \dot{G}$, $f(am) = \rho(\alpha, |a|)af(m)$ and f(ma) = f(m)a for any $a \in A_{|a|}$ and $m \in M$.

Definition 1. Let $\alpha, \beta \in G$ and M a ρ -bimodule over the ρ -algebra A. A ρ -derivation of order (α, β) on M (ρ -derivation of degree α and of G-degree β) is a linear map $X: A \to M$, which fulfils the properties:

- 1. $X: A_* \to M_{*+\beta}$,
- 2. $X(fg) = (Xf)g + \rho(\alpha, |f|)f(Xg)$, for any $f \in A_{|f|}$ and $g \in A$.

The left product $fX:A\to M$ between the element $f\in A$ and a ρ -derivation X of the order (α,β) is defined in a natural way: by (fX)(g)=fX(g), for any $g\in A$.

Proposition 1. If is X a ρ -derivation of order (α, β) on M and $f \in A_{|f|}$, then fX is a derivation of the order $(|f| + \alpha, |f| + \beta)$ on M if and only if the algebra A is ρ -commutative.

Proof. We have to show that $(fX)(gh) = ((fX)g)h + \rho(|f| + \alpha, |g|)g(fX)h$ and $fX: A_* \to M_{*+|f|+|X|}$, for any $h \in A_{|h|}$ and $f \in A_{|f|}$.

$$\begin{split} (fX)\,(gh) &= f(X(gh)) = f(X(g)h + \rho(\alpha,|g|)gX(h)) \\ &= (fX)(g)h + \rho(\alpha,|g|)fgX(h) = (fX)(g)h + \rho(\alpha,|g|)\rho(|f|\,,|g|\,gfX(h)) \\ &= (fX)(g)h + \rho(\alpha,|f| + |g|)g(fX)(h). \end{split}$$

The second relation is obvious.

The linear map $X:A\to A$ is a ρ -derivation on A if it is a ρ -derivation of the order (|X|,|X|). Next we denote by ρ -Der(A) the ρ -bimodule over A of the all ρ -derivations on A.

Definition 2. Let A be a ρ -algebra. We say that $\Omega(A) = \bigoplus_{\substack{(n,\beta) \in \mathbb{Z} \times G \\ (n,\beta) \in \mathbb{Z} \times G}} \Omega_{\beta}^{n}(A)$ is a ρ -differential calculus on A if $\Omega(A)$ is a $\mathbb{Z} \times G$ -graded algebra, $\Omega(A)$ is a ρ -bimodule over A, $\Omega^{0}(A) = \bigoplus_{\beta \in G} \Omega_{\beta}^{0}(A) = A$ and there is an element $\alpha \in G$ and ρ -derivation $d: \Omega(A) \to \Omega(A)$ of the order $((1,\alpha),(1,0))$ such that $d^{2} = 0$.

The first example of a ρ -differential calculus over the ρ -commutative algebra A is the algebra of forms $(\Omega(A), d)$ of A from [1].

The second example of a ρ -differential calculus over a ρ -algebra is the universal differential calculus of A from the next subsection.

2.1. The algebra of universal differential forms of a ρ -algebra

In this subsection we define the algebra of universal differential forms of the ρ algebra A and we prove the universality of the construction. First we introduce
the universal derivation of the order (α, β) , $\alpha, \beta \in G$.

Definition 3. Let M be a ρ -bimodule over A. The ρ -derivation $D:A\to M$ of the order (α,β) is *universal* if for ρ -derivation $D':A\to N$ of the order $(\alpha,0)$, there is an unique morphism $\Phi:M\to N$ of ρ -bimodules of degree β such that $D'=\Phi\circ D$.

Next we will construct an universal derivation over the ρ -algebra A.

Let $\alpha \in G$, $\mu : A \otimes A \to A$ be the map $\mu(x \otimes y) = \rho(\alpha, |y|) xy$ and $\Omega^1_{\alpha} A = \ker(\mu)$.

We define the map

(2)
$$d: A \to \Omega^1_{\alpha} A$$

by

(3)
$$dx = 1 \otimes x - \rho(\alpha, |x|) x \otimes 1,$$

for any $x \in A$.

Proposition 2. $\Omega^1_{\alpha}A$ is a ρ -bimodule over A and the map $d: A \to \Omega^1_{\alpha}A$ is an universal derivation of the order $(\alpha, 0)$.

Proof. We have to show that $a(b \otimes c) \in \Omega^1_{\alpha}A$, $(b \otimes c)a \in \Omega^1_{\alpha}A$ and $(a(b \otimes c))d = a((b \otimes c)d)$, for any $a, d \in A$ and $b \otimes c \in \Omega^1_{\alpha}A$. Indeed

$$\mu(a(b\otimes c)) = \mu(ab\otimes c) = \rho(\alpha,|ab|)abc = \rho(\alpha,|a|)a(\rho(\alpha,|b|)bc) = 0.$$

The other relations are obvious.

It is easy to see that $\Omega^1_{\alpha}A$ is the space $\{xdy: x,y\in A \text{ and } d \text{ from } (3)\}$. Now we show that $d:A\to\Omega^1_{\alpha}A$ is a ρ -derivation of the order $(\alpha,0)$:

$$(da)b + \rho(\alpha, |a|)adb = (1 \otimes a - \rho(\alpha, |a|)a \otimes 1)b + \rho(\alpha, |a|)a(1 \otimes b - \rho(\alpha, |b|)b \otimes 1)$$

$$= 1 \otimes ab - \rho(\alpha, |a|)a \otimes b + \rho(\alpha, |a|)a \otimes b - \rho(\alpha, |a| + |b|)ab \otimes 1$$

$$= 1 \otimes (ab) - \rho(\alpha, |ab|)(ab) \otimes 1 = d(ab).$$

Let M be a ρ -bimodule over A and $D:A\to M$ a ρ -derivation of the order (α,β) . We define the map $\Phi:\Omega^1_\alpha A\to M$ in the following way:

$$\Phi(a \otimes b) = \rho(\alpha, |a|) a D(b),$$

for any $a \otimes b \in \Omega^1_{\alpha} A$.

Now we show that Φ is a morphism of ρ -bimodules over A:

$$\Phi(a(b \otimes c)) = \phi((ab) \otimes c) = \rho(\alpha, |ab|)abD(c)$$

= $\rho(\alpha, |a|)a[\rho(\alpha, |b|)bD(c)] = \rho(\alpha, |a|)a\Phi(b \otimes c).$

On the other hand

$$\begin{split} \Phi((a\otimes b)c) &= \Phi(a\otimes (bc)) = \rho(\alpha,|a|)aD(bc) \\ &= \rho(\alpha,|a|)a[D(b)c + \rho(\alpha,|b|)bD(c)] \\ &= \rho(\alpha,|a|)aD(b)c + \rho(\alpha,|b|)[\rho(\alpha,|a|)ab]D(c) \\ &= \rho(\alpha,|a|)aD(b)c + \rho(\alpha,|b|)\mu(a\otimes b)D(c) \\ &\stackrel{a\otimes b\in \ker(\mu)}{=} \rho(\alpha,|a|)aD(b)c = \Phi(a\otimes b)c. \end{split}$$

Finally we get

$$(\Phi \circ d)(a) = \Phi(1 \otimes a - \rho(\alpha, |a|)a \otimes 1)$$

= $\rho(\alpha, |1|)D(a) - \rho(\alpha, |a|)\rho(\alpha, |a|)aD(1) = D(a)$

so we have proved that $\Phi \circ d = D$.

Let

$$\Omega_{\alpha}^{n} A = \underbrace{\Omega_{\alpha}^{1} A \otimes \ldots \otimes \Omega_{\alpha}^{1} A}_{n \text{ times}}, \quad \Omega_{\alpha}^{0} A = A \quad \text{and} \quad \Omega_{\alpha} A = \bigoplus_{n \geq 0} \Omega_{\alpha}^{n} A.$$

Naturally $\Omega_{\alpha}A$ is a ρ -bimodule over A and a algebra with the multiplication $(\omega, \theta) \mapsto \omega \underset{A}{\otimes} \theta$, for any ω , $\theta \in \Omega_{\alpha}A$.

Remark 1. The algebra $\Omega_{\alpha}A$ may be identified with the algebra generated by the algebra A and the derivations da, $a \in A$ which satisfies the following relations:

- 1. da is linear in a
- 2. the ρ -Leibniz rule: $d(ab) = d(a)b + \rho(\alpha, |a|)adb$
- 3. d(1) = 0.

 $\Omega_{\alpha}^{n}A$ is the space of *n*-forms $a_{0}da_{1}...da_{n}$, $a_{i} \in A$ for any $0 \leq i \leq n$. $\Omega_{\alpha}^{n}A$ is a ρ -bimodule over A with the left multiplication

$$(4) a(a_0da_1\dots da_n) = aa_0da_1\dots da_n,$$

and with the right multiplication given by:

$$(a_0 da_1 \dots da_n) a_{n+1} = \sum_{i=1}^n (-1)^{n-i} \rho(\alpha, \sum_{j=i+1}^n |a_j|) (a_0 da_1 \dots d(a_i a_{i+1}) \dots da_{n+1})$$
$$+ (-1)^n \rho(\alpha, \sum_{j=1}^n |a_j|) a_0 a_1 da_2 \dots da_{n+1}.$$

The multiplication in the algebra $\Omega_{\alpha}A$ is:

 $(a_0 da_1 \dots da_n)(a_{n+1} da_{n+2} \dots da_{m+n}) = ((a_0 da_1 \dots da_n)a_{n+1})da_{n+2} \dots da_{m+n}),$ for any $a_i \in A$, $0 \le i \le n+m$, $n, m \in \mathbb{N}$.

We define the G-degree of the n-form $a_0 da_1 \dots da_n$ in the following way

$$|a_0 da_1 \dots da_n| = \sum_{i=0}^n |a_i|.$$

It is obvious that $|\omega_n \cdot \omega_m| = |\omega_n| + |\omega_m|$ for any homogeneous forms $\omega_n \in \Omega_\alpha^n A$ and $\omega_m \in \Omega_\alpha^m A$.

 $\Omega_{\alpha}A$ is a $G' = \mathbb{Z} \times G$ -graded algebra with the G' degree of the n-form $a_0da_1 \dots da_n$ defined by

$$|a_0da_1\dots da_n|' = \left(n, \sum_{i=0}^n |a_i|\right).$$

We may define the cocycle $\rho': G' \times G' \to k$ on the algebra $\Omega_{\alpha}A$ thus:

(5)
$$\rho'(|a_0 da_1 \dots da_n|', |b_0 db_1 \dots db_m|') = (-1)^{nm} \rho \left(\sum_{i=0}^n |a_i|, \sum_{i=0}^m |b_i|\right)$$

and thus we have that $\Omega_{\alpha}A$ is a ρ' -algebra. It may be proved that the map $d:\Omega_{\alpha}A\to\Omega_{\alpha}A$ is a derivation of the order $((1,\alpha),(1,0))$. Concluding we have the following result:

Theorem 1. $(\Omega_{\alpha}A, d)$ is a ρ -differential calculus over A.

Example 1. In the case when the group G is trivial then A is the usual associative algebra and $\Omega_{\alpha}A$ is the algebra of universal differential forms of A.

Example 2. If the group G is \mathbb{Z}_2 and the cocycle ρ is defined by $\rho(a,b) = (-1)^{ab}$ then A is a superalgebra. In the case when $\alpha = 1$ $\Omega_{\alpha}A$ is the superalgebra of universal differential forms of A from [11].

3. The Frobenius Theorem on Quantum Hyperplane

In this section we give the Frobenius theorem on the N-dimensional quantum hyperplane S_N^q and we give the equations of any globally integrable distributions and parallel with respect to a connection ∇ . These results are valid for any ρ -differential calculus on S_N^q . In the first subsection we present two different ρ -differential calculi on S_N^q : the first one is the algebra of forms $\Omega\left(S_N^q\right)$ on S_N^q form [1] and the second one is the algebra of universal differential forms $\Omega_\alpha\left(S_N^q\right)$ on S_N^q . Both of these ρ -differential calculi on S_N^q are different by differential calculus on S_N^q of Wess and Zumino [15]. In the second subsection we present submanifolds on S_N^q , in the third subsection we review the basic notions about linear connections on S_N^q and finally we will give the main results of this paper.

26 C. CIUPALĂ

3.1. Differential calculi on S_N^q

First we review the basic notions about the N-dimensional quantum hyperplane S_N^q . For more details see [1] and [3].

The N-dimensional quantum hyperplane S_N^q is the k-algebra generated by the unit element and N linearly independent elements x_1, \ldots, x_N satisfying the relations: $x_i x_j = q x_j x_i$, i < j for some fixed $q \in k$, $q \neq 0$.

 S_N^q is a \mathbb{Z}^N -graded algebra

$$S_N^q = \bigoplus_{n_1, \dots, n_N}^{\infty} (S_N^q)_{n_1, \dots, n_N},$$

with $(S_N^q)_{n_1,\ldots,n_N}$ the one-dimensional subspace spanned by products $x^{n_1}\ldots x^{n_N}$. The \mathbb{Z}^N -degree of $x^{n_1}\ldots x^{n_N}$ is $n=(n_1,\ldots,n_N)$. The cocycle $\rho:\mathbb{Z}^N\times\mathbb{Z}^N\to k$ is

$$\rho(n, n') = q^{\sum_{k=1}^{N} n_j n'_k \alpha_{jk}},$$

with $\alpha_{jk} = 1$ for j < k, 0 for j = k and -1 for j > k.

It may be proved that the N-dimensional quantum hyperplane S_N^q is a ρ -commutative algebra.

Remark that the space of ρ -derivations ρ -Der (S_N^q) is a free S_N^q -module of rank N with $\partial/\partial x_1, \ldots, \partial/\partial x_N$ as the basis, where $\partial/\partial x_i(x_j) = \delta_{ij}$.

Remark 2. Let $(\Omega S_N^q, d)$ a ρ -differential calculus on S_N^q , with $d: \Omega S_N^q \to \Omega S_N^q$ a ρ -derivation of the order $((1, \alpha), (1, 0))$, where $\alpha, 0 \in \mathbb{Z}^N$ It is easy to see that ΩS_N^q is generated by $\{x_1, \ldots, x_N\}$ and there differentials $\{y_1 = dx_1, \ldots, y_N = dx_N\}$ with some relations between them.

Next we give some examples of ρ -differential calculi on S_N^q .

3.1.1. The algebra of forms $\Omega(S_N^q)$ **of** S_N^q . $\Omega(S_N^q)$ ([1], [3]) is the algebra determined by the elements x_1, \ldots, x_N and $y_1 = dx_1, \ldots, y_N = dx_N$ with the relations

(6)
$$x_j x_k = q^{\alpha_{jk}} x_k x_j, \qquad y_j y_k = -q^{\alpha_{jk}} y_k y_j, \qquad x_j y_k = q^{\alpha_{jk}} y_k x_j.$$

3.1.2. The algebra of universal differential forms $\Omega_{\alpha}\left(A\right)$ of S_{N}^{q} . Next we will apply the construction of the algebra of the universal differential forms of a ρ -algebra from the remark 1 to the ρ -algebra S_{N}^{q} and, thus, we will give a new differential calculus on S_{N}^{q} denoted by $\Omega_{\alpha}\left(S_{N}^{q}\right)$.

Let $\alpha = (n_1, \dots, n_N)$ be an arbitrary element from \mathbb{Z}^N . $\Omega_{\alpha}(S_N^q)$ is the algebra generated by $a \in S_N^q$ and the symbols da, which satisfies the following relations:

- 1. da is linear in a.
- 2. the ρ -Leibniz rule: $d(ab) = (da)b + \rho(n, |a|)adb$.
- 3. d(1) = 0.

Next we present the structure of the algebra $\Omega_{\alpha}(S_N^q)$.

We use the following notations $y_i = dx_i$, for any $i \in \{1, ..., N\}$. By an easy computation we get the following lemmas:

Lemma 1. $y_i x_j = \rho(\alpha + |x_i|, |x_j|) x_j y_i$, for any $i, j \in \{1, ..., N\}$.

Lemma 2. $y_j y_i = \rho(\alpha, |x_i|) \rho(n + |x_i|, |x_j|) y_i y_j$, for any $i, j \in \{1, ..., N\}$.

Lemma 3.
$$d(x_i^m) = m\rho^{m-1}(\alpha, |x_i|)x_i^{m-1}y_i$$
, for any $m \in \mathbb{N}$ and $i \in \{1, ..., N\}$.

Putting together the previous lemmas we obtain the following theorem which gives the structures of the algebra $\Omega_{\alpha}(S_N^q)$:

Theorem 2. $\Omega_{\alpha}(S_N^q)$ is the algebra spanned by the elements x_i and y_i with $i \in \{1, ..., N\}$ which satisfies the following relations:

- 1. $x_i x_j = \rho(|x_i|, |x_j|) x_j x_i$,
- 2. $y_i x_j = \rho(\alpha + |x_i|, |x_j|) x_i y_i$
- 3. $y_i y_i = \rho(,|x_i|)\rho(\alpha + |x_i|,|x_j|)y_i y_j$, for any $i, j \in \{1,\ldots,N\}$.

3.2. Submanifolds in S_N^q

In this section we use the definition of submanifolds algebra in noncommutative geometry from [11] to introduce submanifolds in the quantum hyperplane.

Let C be an ideal in S_N^q . We denote by $Q = S_N^q/C$ the quotient algebra and by $p: S_N^q \to Q$ the quotient map. We consider the following two Lie ρ -subalgebras of ρ -Der S_N^q :

$$G_C = \{ X \in \rho \text{-} \mathrm{Der} S_N^q / XC \subset C \}$$

and

$$G_A = \{X \in \rho\text{-}\mathrm{Der}S_N^q/X(S_N^q) \subset C\}$$

We define the map $\pi: G_C \to \rho\text{-Der}S_N^q$ by $\pi(X)p(a) = p(Xa)$ for any $a \in S_N^q$ and $X \in G_C$.

Definition 4. The quotient algebra $Q = S_N^q/C$ is a submanifold algebra of S_N^q if the map π is sujective.

In this situation we obtain the following the short exact sequence of $\rho\text{-Lie}$ algebras.

(7)
$$0 \to G_A \to G_C \to \rho\text{-Der}Q \to 0$$

Let C be the ideal from S_N^q generated by the elements x_1, x_2, \ldots, x_p with $p \in \{1, \ldots, N\}$. Then the algebra Q generated by the elements x_{p+1}, \ldots, x_N and we have that $A = C \oplus Q$.

Theorem 3. $G_C = (\rho \operatorname{-Der} Q) \oplus G_A$.

Proof. Let X be a colour derivation from ρ -Der S_N^q , then

$$X = \sum_{i=1}^{N} X_i \frac{\partial}{\partial x_i}$$
 and $X_i = X_i^C + X_i^Q$

with $X_i^C \in C$ and $X_i^Q \in Q$ for any $i \in \{1, \dots, N\}$.

If $X \in G_C$ then $X(c) \in C$ for any $c \in C$ so

$$X(c) = \sum_{i=1}^{N} X_{i}^{C} \frac{\partial c}{\partial x_{i}} + \sum_{i=1}^{N} X_{i}^{Q} \frac{\partial c}{\partial x_{i}}$$

$$= \underbrace{\sum_{i=1}^{N} X_{i}^{C} \frac{\partial c}{\partial x_{i}}}_{\in C} + \underbrace{\sum_{i=1}^{p} X_{i}^{Q} \frac{\partial c}{\partial x_{i}}}_{\in C} + \underbrace{\sum_{i=p+1}^{N} X_{i}^{Q} \frac{\partial c}{\partial x_{i}}}_{\in C} \in C$$

Results that $X_i^Q = 0$ for any $i \in \{1, \dots, p\}$.

So any element $X = \sum_{i=1}^{N} X_i \partial/\partial x_i$ from G_C may be written is the following way

$$X = X^{G_A} + X^Q$$

where

$$X^{G_A} = \sum_{i=1}^N X_i^C \frac{\partial}{\partial x_i} \in G_A \quad \text{and} \quad X^Q = \sum_{i=1}^N X_i^Q \frac{\partial}{\partial x_i} \in \rho\text{-Der}Q$$
 with $X_i^Q = 0$ for $i \in \{1, \dots, p\}$.

Corollary 1. Q is submanifolds algebra of S_N^q .

3.3. Linear connections on S_N^q

In this subsection we use the definition of linear connections on ρ -algebras from the paper [3]. Let $(\Omega S_N^q, d)$ be a ρ -differential calculus on S_N^q and $n \in \mathbb{Z}^N$. A linear connection along the field $X = \sum_{i=1}^{N} X_i \frac{\partial}{\partial x_i}$ on the ρ -bimodule $\Omega^n S_N^q$ over S_N^q is a linear map

$$\nabla: \rho\text{-}\mathrm{Der}\left(S_N^q\right) \to \mathrm{End}\left(\Omega^n S_N^q\right)$$

of degree |X| such that

$$\nabla(X)(a\omega) = \nabla_X(a\omega) = \rho(|X|, |\omega|)X(a)\omega + a\nabla_X\omega$$

for any $X \in \rho$ - $\mathrm{Der}S_N^q$, $a \in S_N^q$ and $\omega \in \Omega^n S_N^q$. Using the structure of the free bimodule $\Omega^n S_N^q$ we deduce that any such connection ∇ is well defined by the *connections coefficients* $\Gamma^{j_1,\dots,j_n}_{i,i_1,\dots,i_n} \in S^q_N$ defined

(8)
$$\nabla_{\frac{\partial}{\partial x_i}}(y_{i_1}\dots y_{i_n}) = \Gamma_{i,i_1,\dots,i_n}^{j_1,\dots,j_n} y_{j_1}\dots y_{j_n}$$

Remark 3. The connection coefficients $\Gamma^{j_1,\dots,j_n}_{i,i_1,\dots,i_n}$ satisfy the some properties which depend on the choice of the ρ -differential calculus $(\Omega S_N^q, d)$.

Example 3. If $(\Omega S_N^q, d)$ is the algebra of forms $\Omega(S_N^q)$ of S_N^q we obtain that

(9)
$$\Gamma^{j_1,\dots,j_n}_{i,i_1,\dots,i_k,i_{k+1},\dots,i_n} = -q^{\alpha_{i_k,i_{k+1}}} \Gamma^{j_1,\dots,j_n}_{i,i_1,\dots,i_{k+1},i_k,\dots,i_n}$$
 for any $i,i_1,\dots,i_n,\,j_1,\dots,j_n \in \{1,\dots,n\}.$

Example 4. If $(\Omega S_N^q, d)$ is the algebra of universal differential forms $\Omega_{\alpha}(S_N^q)$ of S_N^q using an easy computation we obtain that

$$(10) \qquad \Gamma^{j_{1},\dots,j_{m}}_{i,i_{1},\dots,i_{k},i_{k+1},\dots,i_{m}} = \rho(\alpha,|y_{i_{k}}|)\rho(\alpha+|y_{i_{k}}|,\left|y_{i_{k+1}}\right|)\Gamma^{j_{1},\dots,j_{m}}_{i,i_{1},\dots,i_{k+1},i_{k},\dots,i_{m}}.$$

3.4. Distributions in S_N^q

Next we introduce distributions on S_N^q . Let $(\Omega S_N^q, d)$ be a ρ -differential calculus on S_N^q .

Definition 5. A distribution \mathcal{D} on S_N^q is a S_N^q -subbimodule of $\Omega^1 S_N^q$. The distribution \mathcal{D} is globally integrable if there is a subset B of S_N^q such that \mathcal{D} is the subspace generated by $S_N^q d(B)$ and by $d(B)S_N^q$.

Definition 6. We say that the distribution \mathcal{D} is parallel with respect to the connection $\nabla: \rho\text{-Der}S_N^q \to \operatorname{End}(\Omega^1S_N^q)$ if

$$\nabla_X(m) = 0$$
, for any $X \in \rho\text{-Der}S_N^q$ and for any $m \in \mathcal{D}$.

Using the structure of ΩS_N^q we obtain the following structure theorem of globally integrable distributions.

Theorem 4. Any globally integrable distributions \mathcal{D} determined by $S_N^q d(B)$ and $d(B)S_N^q$ where B is the subset $\{x_1, \ldots, x_p\}$. In this situation we say that the distribution \mathcal{D} has the dimension p.

3.4.1. The Frobenius theorem for quantum hyperplane. In this section we will give a Frobenius theorem for N-dimensional quantum hyperplane which is obvious from the previous results.

Theorem 5. The Frobenius theorem for quantum hyperplane. Any globally integrable distribution from S_N^q is given by a maximal submanifold algebra of S_N^q and conversely any submanifold algebra of S_N^q give a globally integrable distribution with the same dimension.

Proof. Let \mathcal{D} be a global integrable distribution from S_N^q . Then from the theorem 10, \mathcal{D} is given by $S_N^q dQ$, where Q is a subset with p elements from $\{x_1, \ldots x_N\}$. If we denote by C the ideal of S_N^q generated by $\{x_1, \ldots x_N\} \setminus Q$ and using the Corollary 9 we obtain that $Q = S_N^q / C$ is a submanifold algebra of S_N^q of the dimension p.

Conversely, if Q is a submanifold algebra of the dimension p of S_N^q results that there is an ideal C of the dimension N-p of S_N^q such that $Q=S_N^q/C$. If we denote by $\{x_1,\ldots,x_{N-p}\}$ is the subset of $\{x_1,\ldots,x_N\}$ which generates the ideal C then the set $Q=\{x_{N-p+1},\ldots,x_N\}$ generates a distribution of the dimension p of S_N^q .

We may find the equations of an globally integrable distributions and parallel with respect to a connection ∇ .

Theorem 6. Any globally integrable and parallel distribution \mathcal{D} with respect to a connection $\nabla : \rho\text{-}\mathrm{Der}S_N^q \to \mathrm{End}(\Omega^1S_N^q)$ of dimension p is given by the following equations:

(11)
$$\Gamma_{i,j}^k = 0$$

for a subset I of $\{1, ..., N\}$ with p elements and for any $i \in \{1, ..., N\}$, $j \in I$, $k \in \{1, ..., N\} \setminus I$.

References

- Bongaarts P. J. M. and Pijls H. G. J., Almost commutative algebra and differential calculus on the quantum hyperplane. J. Math. Phys. 35(2) (1994), 959-970.
- Cap A., Kriegl A., Michor P. W. and Vanžura J., The Frőlicher-Nijenhuis bracket in noncommutative differential geometry. Acta Math. Univ. Comenianiae 62 (1993), 17–49.
- 3. Ciupală C., Linear connections on almost commutative algebras. Acta Math. Univ. Comenianiae 72(2) (2003), 197–207.
- _____, ρ-differential calculi and linear connections on matrix algebra. Int. J. Geom. Methods in Mod. Phys. 1 (2004), 847–863.
- Fields and forms on ρ-algebras. Proc. Indian Acad. Sci. -Math. Sciences. 115 (2005),
- 6. _____, Linear connections on quaternionic algebra, Manuscript in preparation.
- 7. Connes A., Non-commutative Geometry. Academic Press, 1994.
- Dubois-Violette M. and Michor P. W., Connections on central bimodules, J. Geom. Phys. 20 (1996), 218–232.
- Dubois-Violette M., Lectures on graded differential algebras and noncommutative geometry. Vienne, Preprint, E.S.I. 842 (2000).
- Jadczyk A., Kastler D., Graded Lie-Cartan pairs. II. The fermionic differential calculus. Ann. of Physics 179 (1987), 169–200.
- 11. Kastler D., Cyclic Cohomology within the differential envelope. Hermann, Paris 1988.
- Lychagin V., Colour calculus and colour quantizations. Acta Appl. Math. 41 (1995), 193-226.
- Mourad J., Linear connections in noncommutative geometry. Class. Quantum Grav. 12 (1995) 965.
- Masson T., Submanifolds and quotient manifolds in noncommutative geometry. Lett. Math. Phys. 37 (1996), 2484–2497.
- Wess J. and Zumino B., Differential calculus on quantum hyperplane. Nuclear Physics 18B (1990), 303–312.
- Woronowicz S. L., Differential calculus on compact matrix pseudogroups (quantum groups).
 Comm. Math. Phys. 112(1) (1989), 125–170.
- C. Ciupală, The "Andrei Şaguna" National College, Andrei Şaguna str. No. 1, Braşov, Romania, e-mail: cciupala@yahoo.com