AN ASSOCIATED MOB OF A TOPOLOGICAL GROUP

S. GANGULY AND S. JANA

ABSTRACT. Here a typical topological semigroup C(G) is studied. A partial equivalence [1] is defined on C(G) compatible with its semigroup structure. Also a uniformity is constructed giving the Vietoris topology [3] on C(G).

1. INTRODUCTION

If G is a group then the product of subsets of G can be defined in a natural way to produce a semigroup of subsets; we present here the semigroup C(G) of all compact subsets of a topological group G endowed with the Vietoris topology [3]. Actually, this semigroup is a subsemigroup of the semigroup of all subsets; the construction of this semigroup is quite obvious in view of the fact that for compact subsets A and B of a topological group G, AB is compact.

In the second section we introduce a partial equivalence [1] on the semigroup consisting of all compact subsets of a topological group G, compatible with the semigroup structure and determine its several classes.

In the third article we show that the Vietoris topology [3] on the collection of aforesaid subsets of a topological group is compatible with the algebraic structure.

Lastly, we determine a uniformity giving the topology of the above space.

2. Construction of C(G)

Let G be a topological group which is assumed to be a Hausdorff space. We consider the collection of all nonempty compact subsets of G and denote this collection by C(G).

For $A, B \in C(G)$ we define, $AB = \{ab : a \in A, b \in B\}$. Then AB is again a compact subset of G and thus $AB \in C(G)$. This shows that C(G) becomes a semigroup under the aforesaid binary operation. Also $\{e\} \in C(G)$, where 'e' denotes the identity of the topological group G. We note that, $\{e\}$ also acts as an identity in C(G).

We now show that C(G) cannot be a group unless $G = \{e\}$.

Received June 1, 2004.

²⁰⁰⁰ Mathematics Subject Classification. Primary 22A15, 54E15, 54F05.

 $Key\ words\ and\ phrases.$ Vietoris topology, partial equivalence, closed pre-order, uniform structure.

The second author is thankful to CSIR, India for financial assistance.

Proposition 2.1. C(G) is a group iff |G| = 1, where |A| denotes the cardinality of $A(\subseteq G)$.

Proof. Let $A, B \in C(G)$ and $a \in A, b_1, b_2 \in B$. Then $ab_1 = ab_2$ iff $b_1 = b_2$. Thus |aB| = |B|, for any $a \in A$. Therefore

$$(*) |AB| \ge |B|.$$

Let A^* denotes the inverse of A in C(G). Then $1 = |\{e\}| = |A^*A| \ge |A| \ge 1$ [by (*)] $\Rightarrow |A| = 1 \Rightarrow A$ is a singleton set. Thus all invertible elements of C(G) are singleton. Therefore it follows that C(G) cannot be a group if |G| > 1. \Box

Note 2.2. Although C(G) itself cannot be a group if |G| > 1, C(G) contains the subgroup $\{\{a\} : a \in G\} = \mathcal{G}$ (say). We claim that \mathcal{G} is a unique maximal subgroup of C(G). It follows from the fact that, singletons of G are the only invertible elements of C(G) [as seen in Proposition 2.1]. Clearly this subgroup \mathcal{G} of C(G) is isomorphic to G.

Definition 2.3. Let $\mathcal{H} \subseteq C(G)$. We define,

$$\uparrow \mathcal{H} = \{ L \in C(G) : H \subseteq L \text{ for some } H \in \mathcal{H} \}$$
$$\downarrow \mathcal{H} = \{ L \in C(G) : L \subseteq H \text{ for some } H \in \mathcal{H} \}$$

Then clearly,

(i) $\mathcal{H} \subseteq \uparrow \mathcal{H}, \quad \mathcal{H} \subseteq \downarrow \mathcal{H};$

- (ii) $\uparrow(\mathcal{H}_1\cup\mathcal{H}_2)=\uparrow\mathcal{H}_1\cup\uparrow\mathcal{H}_2, \quad \downarrow(\mathcal{H}_1\cup\mathcal{H}_2)=\downarrow\mathcal{H}_1\cup\downarrow\mathcal{H}_2;$
- (iii) $\uparrow (\mathcal{H}_1 \cap \mathcal{H}_2) \subseteq \uparrow \mathcal{H}_1 \cap \uparrow \mathcal{H}_2, \quad \downarrow (\mathcal{H}_1 \cap \mathcal{H}_2) \subseteq \downarrow \mathcal{H}_1 \cap \downarrow \mathcal{H}_2;$
- (iv) $\uparrow(\uparrow \mathcal{H}) = \uparrow \mathcal{H}, \quad \downarrow(\downarrow \mathcal{H}) = \downarrow \mathcal{H};$
- (v) $\mathcal{H}_1 \subseteq \mathcal{H}_2 \Rightarrow \uparrow \mathcal{H}_1 \subseteq \uparrow \mathcal{H}_2, \quad \downarrow \mathcal{H}_1 \subseteq \downarrow \mathcal{H}_2$

Proposition 2.4. $(\downarrow \mathcal{H})A \subseteq \downarrow (\mathcal{H}A)$, for any $A \in C(G)$ and $\mathcal{H} \subseteq C(G)$.

Proof. Let $Z \in (\downarrow \mathcal{H})A \Rightarrow Z = XA$, for some $X \in \downarrow \mathcal{H}$. So $\exists H \in \mathcal{H}$ such that $X \subseteq H \Rightarrow Z = XA \subseteq HA \Rightarrow Z \in \downarrow (\mathcal{H}A)$.

Proposition 2.5. Let \mathcal{H} be a subsemigroup of C(G) and $H \in \mathcal{H}$. Then $(\downarrow \mathcal{H})H \subseteq \downarrow \mathcal{H}$.

Proof. Since \mathcal{H} is a subsemigroup and $H \in \mathcal{H}$, so $\mathcal{H}H \subseteq \mathcal{H} \Rightarrow (\downarrow \mathcal{H})H \subseteq \downarrow(\mathcal{H}H) \subseteq \downarrow(\mathcal{H})$ [by Proposition 2.4].

Proposition 2.6. Let $\mathcal{H} \subseteq C(G)$ and $S \in C(G)$. Then $\downarrow(\mathcal{H}S) = \downarrow((\downarrow \mathcal{H})S)$.

 $\begin{array}{ll} \textit{Proof.} \downarrow ((\downarrow \mathcal{H})S) \subseteq \downarrow \downarrow (\mathcal{H}S) = \downarrow (\mathcal{H}S). & \text{Conversely, } \mathcal{H} \subseteq \downarrow \mathcal{H} \Rightarrow \downarrow (\mathcal{H}S) \subseteq \downarrow ((\downarrow \mathcal{H})S). & \Box \end{array}$

Proposition 2.7. Let \mathcal{H} be a subsemigroup of C(G) such that $H \in \mathcal{H} \Rightarrow H^{-1} \in \mathcal{H}$ where, $H^{-1} = \{a^{-1} : a \in H\}$. Then $\downarrow \mathcal{H}$ is also a subsemigroup such that $H \in \downarrow \mathcal{H} \Rightarrow H^{-1} \in \downarrow \mathcal{H}$.

Proof. Let $X, Y \in \downarrow \mathcal{H}$. Then $\exists H_1, H_2 \in \mathcal{H}$ such that $X \subseteq H_1$ and $Y \subseteq H_2 \Rightarrow XY \subseteq H_1H_2 \in \mathcal{H}$ [since \mathcal{H} is a subsemigroup] $\Rightarrow XY \in \downarrow \mathcal{H}$. So $\downarrow \mathcal{H}$ is a subsemigroup of C(G). Now, let $X \in \downarrow \mathcal{H}$. So $\exists H \in \mathcal{H}$ such that $X \subseteq H \Rightarrow X^{-1} \subseteq H^{-1} \in \mathcal{H} \Rightarrow X^{-1} \in \downarrow \mathcal{H}$. This completes the proof.

We can get same type of results if we replace $\downarrow \mathcal{H}$ by $\uparrow \mathcal{H}$ in the above propositions.

3. Partial Equivalence on C(G)

Definition 3.1. [1] Let S be a set and $T \subseteq S$. Let ρ be an equivalence relation on T. Then ρ will also be called a partial equivalence on S, T will be called the domain of ρ .

Note 3.2. [1] It is easily verified that a binary relation ρ on S is a partial equivalence on S iff ρ is symmetric and transitive.

Definition 3.3. [1] The domain of a partial equivalence ρ on S is the set $S_{\rho} = \{x \in S : s\rho x \text{ for some } s \in S\}$

Lemma 3.4. Let ρ be a partial equivalence on S and S_{ρ} denotes the domain of ρ . Then $s \in S_{\rho}$ iff $s\rho s$ holds.

Proof. If $s\rho s$ holds then by definition of S_{ρ} , $s \in S_{\rho}$. If $s \in S_{\rho}$ then $\exists x \in S$ such that $x\rho s$ holds. Since ρ is an equivalence relation on S_{ρ} , it is symmetric and transitive. Consequently, $(x, s) \in \rho \Rightarrow (s, x) \in \rho \Rightarrow (s, s) \in \rho$.

Definition 3.5. [1] Let S be a semigroup and ρ be a partial equivalence on S. Then ρ is said to be right [left] compatible on S if, for each $s \in S, (a, b) \in \rho \Rightarrow$ either $(as, bs) \in \rho$ [$(sa, sb) \in \rho$] or $as, bs \notin S_{\rho}$ [$sa, sb \notin S_{\rho}$]

Definition 3.6. [1] A partial equivalence on S which is right [left] compatible on S is called a partial right [left] congruence on S.

Partial equivalence on C(G):

Let \mathcal{K} be a subsemigroup of C(G) with the property : $K \in \mathcal{K} \Rightarrow K^{-1} \in \mathcal{K}^{1}$.

Let, $\mathcal{H} = \downarrow \mathcal{K}$. Then \mathcal{H} is also a subsemigroup of C(G) with the same property [by Proposition 2.7].

We define, $\Pi_{\mathcal{K}} = \{(S,T) \in C(G) \times C(G) : ST^{-1} \in \mathcal{H}\}$. We claim that, $\Pi_{\mathcal{K}}$ is a partial right congruence on C(G).

- (i) Let, $(S,T) \in \Pi_{\mathcal{K}}$. Then $ST^{-1} \in \mathcal{H}$. So $TS^{-1} = (ST^{-1})^{-1} \in \mathcal{H}$ [by hypothesis] $\Rightarrow (T,S) \in \Pi_{\mathcal{K}}$. Thus $\Pi_{\mathcal{K}}$ is symmetric.
- (ii) Let (S,T) and $(T,V) \in \Pi_{\mathcal{K}}$. Then $ST^{-1} \in \mathcal{H}$ and $TV^{-1} \in \mathcal{H}$. Now, $SV^{-1} \subseteq ST^{-1}TV^{-1} \in \mathcal{H}$ [since \mathcal{H} is a subsemigroup] $\Rightarrow SV^{-1} \in \downarrow \mathcal{H} = \mathcal{H}$ $\Rightarrow (S,V) \in \Pi_{\mathcal{K}}$. Therefore $\Pi_{\mathcal{K}}$ is transitive.

¹That such a subsemigroup of C(G) exists follows from the following fact: Let M be a subgroup of G. Then $\mathcal{K} = \{\{m\} : m \in M\}$ is a subsemigroup (in fact a subgroup) of C(G) with the desired property.

Thus $\Pi_{\mathcal{K}}$ is a partial equivalence on C(G) [by Note 3.2].

Now let, $(A, B) \in \Pi_{\mathcal{K}}$ and $S \in C(G)$. It now suffices to prove that, if $AS \in D_{\mathcal{K}}$ [the domain of $\Pi_{\mathcal{K}}$] then $(AS, BS) \in \Pi_{\mathcal{K}}$.

 $(A,B) \in \Pi_{\mathcal{K}} \Rightarrow AB^{-1} \in \mathcal{H}$. Again by Lemma 3.4, $AS \in D_{\mathcal{K}} \Rightarrow (AS,AS) \in$ $\Pi_{\mathcal{K}} \Rightarrow ASS^{-1}A^{-1} \in \mathcal{H}. \text{ Now, } ASS^{-1}B^{-1} \subseteq ASS^{-1}A^{-1}AB^{-1} \in \mathcal{H}AB^{-1} \subseteq \mathcal{H}$ [since $AB^{-1} \in \mathcal{H}$ and \mathcal{H} is a semigroup] $\Rightarrow ASS^{-1}B^{-1} \in \downarrow \mathcal{H} = \mathcal{H}$ $\Rightarrow (AS, BS) \in \Pi_{\mathcal{K}}.$

This shows that $\Pi_{\mathcal{K}}$ is right compatible on C(G).

Note 3.7. Clearly $\mathcal{H} \subseteq D_{\mathcal{K}}$. Actually, \mathcal{H} is a $\Pi_{\mathcal{K}}$ -class. In fact: $H_1, H_2 \in \mathcal{H}$ \Rightarrow $(H_1, H_2) \in \Pi_{\mathcal{K}}$. Again, $S \in D_{\mathcal{K}}$ and $(S, H) \in \Pi_{\mathcal{K}}$ for some $H \in \mathcal{H} \Rightarrow$ $SH^{-1} \in \mathcal{H} \Rightarrow S \subseteq SH^{-1}H \in \mathcal{H}H \subseteq \mathcal{H}$ [since $H \in \mathcal{H}$ and \mathcal{H} is a semigroup] $\Rightarrow S \in \downarrow \mathcal{H} = \mathcal{H}.$

Proposition 3.8. Let $S \in C(G)$. Then $\mathcal{H}S \subseteq D_{\mathcal{K}}$ iff $S \in D_{\mathcal{K}}$.

Proof. If $S \in D_{\mathcal{K}}$ then $SS^{-1} \in \mathcal{H}$ [by Lemma 3.4]. Now, $HSS^{-1}H^{-1} \in \mathcal{H}$ $H\mathcal{H}H^{-1} \subseteq \mathcal{H}$ [since $H \in \mathcal{H}$ and \mathcal{H} is a semigroup] $\Rightarrow HS \in D_{\mathcal{K}}$ for any $H \in \mathcal{H}$. Thus, $\mathcal{H}S \subseteq D_{\mathcal{K}}$.

Conversely let, $\mathcal{H}S \subseteq D_{\mathcal{K}}$. Then, $HSS^{-1}H^{-1} \in \mathcal{H}$, for any $H \in \mathcal{H}$. Now, $SS^{-1} \subseteq H^{-1}HSS^{-1}H^{-1}H \in H^{-1}\mathcal{H}H \subseteq \mathcal{H} \Rightarrow SS^{-1} \in \mathcal{H} = \mathcal{H} \Rightarrow S \in D_{\mathcal{K}}.$

Proposition 3.9. Let $S \in D_{\mathcal{K}}$ and $H_1, H_2 \in \mathcal{H}$. Then $(H_1S, H_2) \in \Pi_{\mathcal{K}}$ iff $S \in \mathcal{H}$.

Proof. $(H_1S, H_2) \in \Pi_{\mathcal{K}} \Rightarrow H_1SH_2^{-1} \in \mathcal{H} \Rightarrow S \subseteq H_1^{-1}H_1SH_2^{-1}H_2 \in H_1^{-1}\mathcal{H}H_2 \subseteq H_1^{-1}\mathcal{H}H_2$ $\mathcal{H} \Rightarrow S \in \downarrow \mathcal{H} = \mathcal{H}.$ Conversely let, $S \in \mathcal{H}$. Then $H_1 S H_2^{-1} \in H_1 \mathcal{H} H_2^{-1} \subseteq \mathcal{H}$. Thus $(H_1 S, H_2) \in \Pi_{\mathcal{K}}$.

Corollary 3.10. If $S \notin \mathcal{H}$ then $\mathcal{H}S$ does not belong to the class \mathcal{H} .

Proof. It follows from Proposition 3.9.

Proposition 3.11. $D_{\mathcal{K}}$ is a decreasing set i.e. $\downarrow D_{\mathcal{K}} = D_{\mathcal{K}}$.

Proof. Let $K \in C(G)$ be such that $K \subseteq S$ for some $S \in D_{\mathcal{K}}$. $S \in D_{\mathcal{K}} \Rightarrow$ $SS^{-1} \in \mathcal{H}$. Again $K \subseteq S \Rightarrow K^{-1} \subseteq S^{-1} \Rightarrow KK^{-1} \subseteq SS^{-1} \in \mathcal{H} \Rightarrow KK^{-1} \in \mathcal{H}$ $\Rightarrow K \in D_{\mathcal{K}}$. Thus $\downarrow D_{\mathcal{K}} = D_{\mathcal{K}}$.

Note 3.12. From Proposition 3.8, if $S \in D_{\mathcal{K}}$ then $\mathcal{H}S \subseteq D_{\mathcal{K}} \Rightarrow \downarrow (\mathcal{H}S) \subseteq$ $\downarrow D_{\mathcal{K}} = D_{\mathcal{K}}$ [by Proposition 3.11].

Proposition 3.13. If $S \in D_{\mathcal{K}}$ then $\downarrow(\mathcal{H}S)$ is a $\Pi_{\mathcal{K}}$ -class.

Proof. From Note 3.12, $\downarrow(\mathcal{H}S) \subseteq D_{\mathcal{K}}$. We first prove that, any two member of $\downarrow(\mathcal{H}S)$ are comparable.

Let, $K_1, K_2 \in \downarrow(\mathcal{H}S)$. Then $\exists H_1, H_2 \in \mathcal{H}$ such that $K_1 \subseteq H_1S$ and $K_2 \subseteq$ $\begin{array}{l} H_{2}S \Rightarrow K_{2}^{-1} \subseteq S^{-1}H_{2}^{-1} \Rightarrow K_{1}K_{2}^{-1} \subseteq H_{1}SS^{-1}H_{2}^{-1} \\ \text{Since } S \in D_{\mathcal{K}} \text{ so } SS^{-1} \in \mathcal{H} \Rightarrow H_{1}SS^{-1}H_{2}^{-1} \in \mathcal{H} \text{ [since } \mathcal{H} \text{ is a semigroup]} \end{array}$

 $\Rightarrow K_1 K_2^{-1} \in \mathcal{H} \Rightarrow (K_1, K_2) \in \Pi_{\mathcal{K}}.$

Now let, $S_1 \in D_{\mathcal{K}}$ and $(S_1, K) \in \Pi_{\mathcal{K}}$ for some $K \in \downarrow(\mathcal{H}S)$. So $\exists H \in \mathcal{H}$ such that $K \subseteq HS \Rightarrow \mathcal{H}K \subseteq \mathcal{H}HS \subseteq \mathcal{H}S$. Now, $(S_1, K) \in \Pi_{\mathcal{K}} \Rightarrow S_1K^{-1} \in \mathcal{H} \Rightarrow S_1 \subseteq S_1K^{-1}K \in \mathcal{H}K \subseteq \mathcal{H}S \Rightarrow S_1 \in \downarrow(\mathcal{H}S)$.

This shows that $\downarrow(\mathcal{H}S)$ is a $\Pi_{\mathcal{K}}$ -class when $S \in D_{\mathcal{K}}$. We also note that, $\mathcal{H}S \subseteq \downarrow(\mathcal{H}S)$.

Proposition 3.14. \mathcal{H} must contain $\{e\}$ as an element.

Proof. Since $H \in \mathcal{H} \Rightarrow H^{-1} \in \mathcal{H}$ by hypothesis and $HH^{-1} \in \mathcal{H}$ [since \mathcal{H} is a semigroup] we have $\{e\} \subseteq HH^{-1} \in \mathcal{H} \Rightarrow \{e\} \in \downarrow \mathcal{H} = \mathcal{H}$.

Corollary 3.15. For any $a \in G, \{a\} \in D_{\mathcal{K}}$.

Proof. Since $\{a\}\{a^{-1}\} = \{e\} \in \mathcal{H}$ the corollary follows immediately. \Box

Corollary 3.16. For each $S \in D_{\mathcal{K}}, S \in \mathcal{H}S$.

Since $\{e\} \cdot S = S$ and $\{e\} \in \mathcal{H}$, the corollary follows.

Proposition 3.17. If $S \notin \mathcal{H}$ then \mathcal{H} and $\downarrow(\mathcal{H}S)$ [assume $S \in D_{\mathcal{K}}$] are two distinct $\prod_{\mathcal{K}}$ -classes.

Proof. If not, $\exists H \in \mathcal{H}$ and $K \in \downarrow (\mathcal{H}S)$ such that $(H, K) \in \Pi_{\mathcal{K}}$. Since, $S \in \downarrow (\mathcal{H}S)$ so it follows that $(S, H) \in \Pi_{\mathcal{K}}$. Then by Note 3.7, $S \in \mathcal{H}$

Proposition 3.18. (i) $D_{\mathcal{K}} = \bigcup_{S \in D_{\mathcal{K}}} \downarrow(\mathcal{H}S)$, (ii) $\downarrow(\mathcal{H}S_1) = \downarrow(\mathcal{H}S_2)$ iff $(S_1, S_2) \in \Pi_{\mathcal{K}}$.

Proof. Obvious.

Proposition 3.19. Let $M = \bigcup_{H \in \mathcal{H}} H$. Then M is a subgroup of G.

Proof. Let, $a, b \in M$. Then $\exists H_1, H_2 \in \mathcal{H}$ such that $a \in H_1$ and $b \in H_2$. So $b^{-1} \in H_2^{-1}$. Therefore, $ab^{-1} \in H_1H_2^{-1} \in \mathcal{H}$ [since \mathcal{H} is a semigroup] $\Rightarrow ab^{-1} \in M$. So, M is a subgroup of G.

Proposition 3.20. $S \notin \mathcal{H}$ iff $S \cap M = \Phi$.

Proof. Let $S \notin \mathcal{H}$ and if possible let, $S \cap M \neq \Phi$. Then $\exists a \in G$ such that $a \in S \cap M \Rightarrow a \in H$ for some $H \in \mathcal{H}$. Now $H \in \mathcal{H} \Rightarrow H^{-1} \in \mathcal{H}$. So, $e \in H^{-1}S \in \mathcal{H}S \Rightarrow \{e\} \in \downarrow(\mathcal{H}S)$. Thus $\downarrow(\mathcal{H}S) = \mathcal{H}$ [since $\{e\} \in \mathcal{H}] \Rightarrow S \in \mathcal{H}$ a contradiction.

Converse part is obvious.

Proposition 3.21. Let E be an idempotent element of C(G) such that $E \in D_{\mathcal{K}}$. Then $E \in \mathcal{H}$.

Proof. E being idempotent we have $E^2 = E \Rightarrow E \subseteq E^2 E^{-1} = E E^{-1} \in \mathcal{H}$ [since $E \in D_{\mathcal{K}}$] $\Rightarrow E \in \bigcup \mathcal{H} = \mathcal{H}$.

Thus, if E be an idempotent element of C(G) such that $E \notin \mathcal{H}$ then $E \notin D_{\mathcal{K}}$. \Box

Proposition 3.22. If $\mathcal{K}_1 \subseteq \mathcal{K}_2$ then, $D_{\mathcal{K}_1} \subseteq D_{\mathcal{K}_2}$.

S. GANGULY AND S. JANA

Proof. $\mathcal{K}_1 \subseteq \mathcal{K}_2 \Rightarrow \mathcal{H}_1 \subseteq \mathcal{H}_2$. So $S \in D_{\mathcal{K}_1} \Rightarrow SS^{-1} \in \mathcal{H}_1 \Rightarrow SS^{-1} \in \mathcal{H}_2 \Rightarrow S \in D_{\mathcal{K}_2}$.

Proposition 3.23. If $\mathcal{H} \subseteq \mathcal{G}$ then $D_{\mathcal{K}} = \mathcal{G}$, where $\mathcal{H} = \downarrow \mathcal{K}$.

Proof. From Corollary 3.15, we know $\mathcal{G} \subseteq D_{\mathcal{K}}$. Now let $S \in D_{\mathcal{K}} \Rightarrow SS^{-1} \in \mathcal{H} \subseteq \mathcal{G} \Rightarrow S$ must be a singleton set. Consequently, $S \in \mathcal{G}$. Therefore $D_{\mathcal{K}} = \mathcal{G}$. \Box

4. Topologization of C(G)

Here C(G) is topologized by Vietoris topology [3] which will be compatible with its algebraic structure.

The Vietoris topology is defined as follows: for each subset S of G we define, $S^+ = \{A \in C(G) : A \subseteq S\}$ and $S^- = \{A \in C(G) : A \cap S \neq \Phi\}$. A subbase for the Vietoris topology on C(G) is given by $\{W^+ : W \text{ is open in } G\} \bigcup \{W^- : W \text{ is open in } G\}$. It is easy to see that, $V_1^+ \cap \cdots \cap V_n^+ = (V_1 \cap \cdots \cap V_n)^+$ and hence a basic open set in Vietoris topology is of the form $V_1^- \cap \cdots \cap V_n^- \cap V_0^+$, where V_0, V_1, \ldots, V_n are open in G; We may also choose each $V_i \subseteq V_0, i = 1, 2, \ldots, n$ in such a basic open set.

We note the following properties [3]:

- (i) $A = B \Leftrightarrow A^+ = B^+;$
- (ii) $(\overline{A})^+ = \overline{A^+};$
- (iii) $(A^+)^o = (A^o)^+ [A^o \text{ being interior of } A];$
- (iv) $\overline{A_1^- \cap \cdots \cap A_n^- \cap A_0^+} = (\overline{A_1})^- \cap \cdots \cap (\overline{A_n})^- \cap (\overline{A_0})^+$

Now our first attempt is to show that C(G) with this Vietoris topology is a topological semigroup [4]. For this, we require the following lemma.

Lemma 4.1. Let A, B be two compact subsets of G and $AB \subseteq V$, where V is open in G. Then \exists an open neighbourhood (nbd. in short) L of 'e' in G such that $LABL \subseteq V$.

Proof. Let *a* ∈ *A*, *b* ∈ *B*. Then ∃ open nbds. W'_{ab}, W''_{ab} of *e* such that $W'_{ab} \cdot ab \cdot W''_{ab} \subseteq V$. Let $W_{ab} = W'_{ab} \cap W''_{ab}$. Then $W_{ab} \cdot ab \cdot W_{ab} \subseteq V$. Let L_{ab} be an open nbd. of *e* such that $L^2_{ab} \subseteq W_{ab}$. Now $\{L_{ab} \cdot ab \cdot L_{ab} : a \in A, b \in B\}$ is an open cover of *AB* and hence has a finite subcover such that $AB \subseteq \bigcup_{i=1}^{n} L_{a_ib_i} \cdot a_ib_i \cdot L_{a_ib_i}$. Put, $\bigcap_{i=1}^{n} L_{a_ib_i} = L$; Then *L* is an open nbd. of *e*. Now, $LABL \subseteq L(\bigcup_{i=1}^{n} L_{a_ib_i} \cdot a_ib_i \cdot a_ib_i \cdot L_{a_ib_i} \cdot a_ib_i \cdot L_{a_ib_i})$. L $\subseteq \bigcup_{i=1}^{n} L^2_{a_ib_i} \cdot a_ib_i \cdot L^2_{a_ib_i} \subseteq \bigcup_{i=1}^{n} W_{a_ib_i} \cdot a_ib_i \cdot W_{a_ib_i} \subseteq V$. This completes the proof.

Definition 4.2. [4] A semigroup (S, \cdot) having a topological structure is said to be a topological semigroup or mob if the binary operation ' \cdot ' is continuous in this topology.

Theorem 4.3. The semigroup C(G) together with the Vietoris topology is a mob.

Proof. We define a map $f : C(G) \times C(G) \longrightarrow C(G)$ by, f(A, B) = AB. To show that C(G) is a mob we are only to prove that f is continuous. Let, $A, B \in C(G)$

C(G) and V_0, V_1, \ldots, V_n be open in G such that $V_i \subseteq V_0, i = 1, 2, \ldots, n$ and $f(A, B) = AB \in V_1^- \cap \ldots \cap V_n^- \cap V_0^+$. We have to find two open nbds. \mathcal{L}, \mathcal{M} of A, B respectively in C(G) such that $f(\mathcal{L} \times \mathcal{M}) \subseteq V_1^- \cap \ldots \cap V_n^- \cap V_0^+$ i.e. $\mathcal{L} \cdot \mathcal{M} \subseteq V_1^- \cap \ldots \cap V_n^- \cap V_0^+$. $AB \subseteq V_0 \Rightarrow \exists$ open nbd. \hat{V}_0 of e in G such that $\hat{V}_0 \cdot AB \cdot \hat{V}_0 \subseteq V_0$ [by Lemma 4.1(i)]. Now, $AB \cap V_i \neq \Phi, i = 1, \ldots, n$. So $\exists a_i \in A, b_i \in B$ such that $a_i b_i \in V_i$ and this is true for all $i = 1, \ldots, n$. Since G is a topological group, \exists an open nbd. \hat{V}_i of e in G such that $a_i \cdot \hat{V}_i \hat{V}_i \cdot b_i \subseteq V_i$ i.e. $a_i \cdot \hat{V}_i^2 \cdot b_i \subseteq V_i$ for $i = 1, \ldots, n$ [by(ii)]

We take,

$$\mathcal{L} = (a_1 \cdot \widehat{V}_1)^- \cap \ldots \cap (a_n \cdot \widehat{V}_n)^- \cap (\widehat{V}_0 \cdot A)^+$$

and
$$\mathcal{M} = (\widehat{V}_1 \cdot b_1)^- \cap \ldots \cap (\widehat{V}_n \cdot b_n)^- \cap (B \cdot \widehat{V}_0)^+$$

Clearly, \mathcal{L}, \mathcal{M} are open sets in C(G). We claim that $A \in \mathcal{L}, B \in \mathcal{M}$. In fact: $A \subseteq \widehat{V}_0 \cdot A$ [since \widehat{V}_0 contains e] and $A \cap a_i \cdot \widehat{V}_i \neq \Phi$, $i = 1, \ldots, n$ [since $e \in \widehat{V}_i$, $i = 1, \ldots, n$]. Similarly, $B \in \mathcal{M}$.

Now let, $T_1 \in \mathcal{L}$, $T_2 \in \mathcal{M}$. So, $T_1 \subseteq \widehat{V}_0 \cdot A$ and $T_2 \subseteq B \cdot \widehat{V}_0$. So, $T_1 T_2 \subseteq \widehat{V}_0 \cdot AB \cdot \widehat{V}_0 \subseteq V_0$ [by (i)].

Now, $T_1 \cap a_i \cdot \widehat{V}_i \neq \Phi$, $i = 1, ..., n \Rightarrow \exists t_i \in T_1$ and $v_i \in \widehat{V}_i$ such that $t_i = a_i \cdot v_i$, i = 1, ..., n.

 $T_2 \cap \widehat{V}_i \cdot b_i \neq \Phi, \ i = 1, \dots, n \Rightarrow \exists t'_i \in T_2 \text{ and } w_i \in \widehat{V}_i \text{ such that } t'_i = w_i \cdot b_i, \\ i = 1, \dots, n. \text{ So, } t_i \cdot t'_i = a_i \cdot v_i \cdot w_i \cdot b_i \in a_i \cdot \widehat{V}_i^2 \cdot b_i \subseteq V_i \text{ for } i = 1, \dots, n \text{ [by (ii)]} \\ \Rightarrow T_1 T_2 \cap V_i \neq \Phi, \ i = 1, \dots, n.$

Therefore $T_1T_2 \in V_1^- \cap \ldots \cap V_n^- \cap V_0^+$. Thus, $\mathcal{LM} \subseteq V_1^- \cap \ldots \cap V_n^- \cap V_0^+$. This completes the proof.

Now we study the topological status of C(G); for this we require the following definition and theorems:

Definition 4.4. [2] Let ' \leq ' be a preorder in a topological space X; the preorder is said to be closed iff its graph $\{(x, y) \in X \times X : x \leq y\}$ is closed in $X \times X$ (endowed with the product topology).

Theorem 4.5. [2] The preorder ' \leq ' of X is closed iff for every two points $a, b \in X$ with $a \not\leq b, \exists$ nbds. V, W of a, b respectively in X such that $\uparrow V \cap \downarrow W = \Phi$ [where $\uparrow V$ and $\downarrow W$ are defined with the help of the preorder ' \leq '].

Theorem 4.6. The inclusion order ' \subseteq ' which is obviously a partial order in C(G) is closed as well.

Proof. Let $A \not\subseteq B$ where $A, B \in C(G)$. Then $\exists x \in A$ such that $x \notin B$. Since G is T_2 and $\{x\}$, B are two disjoint compact subsets of G, \exists two open sets U, V in G such that $x \in U$, $B \subseteq V$ and $U \cap V = \Phi \Rightarrow A \in U^-$ and $B \in V^+$. Now $U^- \cap V^+ = \Phi$ since $U \cap V = \Phi$ and $\uparrow (U^-) \cap \downarrow (V^+) = U^- \cap V^+ = \Phi$ [2]. Then by Theorem 4.5, it follows that ' \subseteq ' is a closed order.

Theorem 4.7. C(G) is a T_2 -space.

Proof. Let $A, B \in C(G)$ with $A \neq B$. Then either $A \not\subseteq B$ or $B \not\subseteq A$. We assume $A \not\subseteq B$. Since ' \subseteq ' is a closed order by Theorem 4.6, \exists two open sets U, V in G such that $A \in U^-$, $B \in V^+$ and $U^- \cap V^+ = \Phi$. This shows that C(G) is a T_2 -space.

Theorem 4.8. The family of all finite subsets of G is dense in C(G).

Proof. Let $\mathcal{F} = V_1^- \cap \ldots \cap V_n^- \cap V_0^+$ be any nonempty basic open set in C(G) where $V_i \subseteq V_0, i = 1, \ldots, n$. Since \mathcal{F} is nonempty, $\exists F \in \mathcal{F}$. So $\exists p_i \in F \cap V_i$, $i = 1, \ldots, n$ and $p_0 \in F \subseteq V_0$. We take $K = \{p_0, p_1, \ldots, p_n\}$. Clearly $K \in \mathcal{F}$ and K is in the aforesaid family. This completes the proof.

We have seen in the first article that although C(G) itself cannot be a group, it contains a unique maximal subgroup \mathcal{G} . This \mathcal{G} inherits a subspace topology from C(G). It is now a pertinent question to ask whether \mathcal{G} is a topological group. The answer is in the affirmative. This follows from the following theorem.

Theorem 4.9. The mapping

$$\left. \begin{array}{ccc} F:C(G) & \longrightarrow & C(G) \\ A & \longmapsto & A^{-1} \end{array} \right\}$$

is continuous.

Proof. Let $A \in C(G)$ and V_0, V_1, \ldots, V_n be open in G such that $V_i \subseteq V_0$, $i = 1, \ldots, n$ and $F(A) = A^{-1} \in V_1^- \cap \ldots \cap V_n^- \cap V_0^+ = \mathcal{H}$. Then, $A^{-1} \subseteq V_0 \Rightarrow A \subseteq V_0^{-1}$ and $A^{-1} \cap V_i \neq \Phi$, $i = 1, \ldots, n \Rightarrow A \cap V_i^{-1} \neq \Phi$, $i = 1, \ldots, n$. Since G is a topological group and inversion of an element in G is a homeomorphism, it follows that V_i^{-1} , $i = 0, 1, \ldots, n$ are open in G. Clearly, $A \in (V_1^{-1})^- \cap \ldots \cap (V_n^{-1})^- \cap (V_0^{-1})^+ = \mathcal{L}$. Now, \mathcal{L} is open in C(G). Also, $F(\mathcal{L}) = \mathcal{L}^{-1} \subseteq \mathcal{H}$, where $\mathcal{L}^{-1} = \{B^{-1} : B \in \mathcal{L}\}$. This shows that F is continuous.

Corollary 4.10. \mathcal{G} is a topological group.

Proof. Since C(G) is a topological semigroup [by Theorem 4.3] and restriction of a continuous function is again continuous, it follows that the group operation on \mathcal{G} is continuous. Also by above Theorem 4.9, the mapping $\{x\} \longrightarrow \{x^{-1}\}$ is continuous. Consequently, \mathcal{G} is a topological group. \Box

We have seen in first article that \mathcal{G} and G are group isomorphic. Now it is very natural to ask whether they are topologically same or not. Answer to this question follows from the next theorem.

Theorem 4.11. The map

$$\left. \begin{array}{ccc} f:G & \longrightarrow & C(G) \\ x & \longmapsto & \{x\} \end{array} \right\}$$

is a homeomorphism.

Proof. Obviously, f is a bijective function between G and \mathcal{G} . Let U be open in G. Now $f(U) = \{\{x\} : x \in U\} = U^- \cap \mathcal{G}$. Thus f(U) is open in \mathcal{G} (with the relative topology). Consequently, f is an open map.

Again let, $V_1^- \cap \ldots \cap V_n^- \cap V_0^+ \cap \mathcal{G}$ be any open set in \mathcal{G} containing $\{x\}$. Since \mathcal{G} consists of singletons only, $\{y\} \in V_0^+ \cap \mathcal{G} \iff \{y\} \in V_0^- \cap \mathcal{G}$ and thus, $V_1^- \cap \ldots \cap V_n^- \cap V_0^+ \cap \mathcal{G} = V_1^+ \cap \ldots \cap V_n^+ \cap V_0^+ \cap \mathcal{G} = (V_1 \cap \ldots \cap V_n \cap V_0)^+ \cap \mathcal{G}$. Obviously, $V_1 \cap \ldots \cap V_n \cap V_0$ is an open nbd. of x in \mathcal{G} such that, $f(V_1 \cap \ldots \cap V_n \cap V_0) = (V_1 \cap \ldots \cap V_n \cap V_0)^+ \cap \mathcal{G} = V_1^- \cap \ldots \cap V_n^- \cap V_0^+ \cap \mathcal{G}$. Thus f is continuous. Hence f is a homeomorphism and $f(\mathcal{G}) = \mathcal{G}$.

Also f is a group isomorphism. Thus, \mathcal{G} and G are isomorphic and homeomorphic.

Note 4.12. It is very easy to check that, if G_1 and G_2 be two isomorphic and homeomorphic topological groups then so are the corresponding semigroups $C(G_1)$ and $C(G_2)$. Our question is: "is the converse true?". The answer is in the affirmative.

Theorem 4.13. If G_1 and G_2 are topological groups such that $C(G_1)$ and $C(G_2)$ are homeomorphic and isomorphic then G_1 and G_2 are also homeomorphic and isomorphic.

Proof. Let $F : C(G_1) \longrightarrow C(G_2)$ be the homeomorphism and isomorphism. \mathcal{G}_1 is a unique maximal subgroup of $C(G_1)$. So $F(\mathcal{G}_1)$ is also a subgroup of $C(G_2)$. We claim that $F(\mathcal{G}_1)$ is also a maximal subgroup of $C(G_2)$. If not, \exists a subgroup \mathcal{H} of $C(G_2)$ such that $F(\mathcal{G}_1) \subset \mathcal{H} \Rightarrow \mathcal{G}_1 \subset F^{-1}(\mathcal{H})$. F being an isomorphism, $F^{-1}(\mathcal{H})$ is also a subgroup of $C(G_1)$. Since \mathcal{G}_1 is a maximal subgroup, $\mathcal{G}_1 = F^{-1}(\mathcal{H}) \Rightarrow F(\mathcal{G}_1) = \mathcal{H}$. Again, since \mathcal{G}_2 is the unique maximal subgroup of $C(G_2)$ it follows that $F(\mathcal{G}_1) = \mathcal{G}_2$. Thus \mathcal{G}_1 and \mathcal{G}_2 are homeomorphic [restriction of a homeomorphism being an homeomorphism] and isomorphic. The rest follows from Theorem 4.11.

5. Uniform Structure on C(G)

Michael [3] proved that C(G) is completely regular iff G is so. G being a topological group it is completely regular. Also we know that, a topological space is uniformizable iff it is completely regular. Thus we find that, C(G) is uniformizable. Here we construct an uniformity on C(G) giving its topology. Let,

$$V_s = \left\{ (M, N) \in C(G) \times C(G) : \text{ for each } m \in M, \exists n \in N \text{ such that } n^{-1}m \in V \\ \& \text{ for each } n \in N, \exists m \in M \text{ such that } m^{-1}n \in V \right\}$$

where, $V \in \eta_e, \eta_e$ being the nbd. system of e in G.

- We claim that $\mathcal{B} = \{V_s : V \in \eta_e\}$ forms a base for some uniformity on C(G).
- (i) $\{(M,M) : M \in C(G)\} \subseteq V_s$ for each $V \in \eta_e$. In fact: for each $m \in M$ $\exists m \in M$ such that $m^{-1}m = e \in V$.
- (ii) Obviously, $V_s^{-1} = V_s, \forall V \in \eta_e$ where, $V_s^{-1} = \{(M, N) : (N, M) \in V_s\}.$

S. GANGULY AND S. JANA

- (iii) Let $V_s \in \mathcal{B}$. Then $V \in \eta_e$. So $\exists W \in \eta_e$ such that $W^2 \subseteq V$. We claim that $W_s \circ W_s \subseteq V_s$ where, $W_s \circ W_s = \{(M, N) \in C(G) \times C(G) : (M, P), (P, N) \in W_s, \text{ for some } P \in C(G)\}$. In fact: $(M, N) \in W_s \circ W_s \Rightarrow \exists P \in C(G)$ such that $(M, P), (P, N) \in W_s \Rightarrow \text{ for each } m \in M, \exists p \in P \text{ such that } p^{-1}m \in W$ and for $p \in P \exists n \in N$ such that $n^{-1}p \in W$. So, $n^{-1}m = n^{-1}p \cdot p^{-1}m \in W^2 \subseteq V$. Similarly, for each $n \in N \exists q \in P$ such that $q^{-1}n \in W^2 \subseteq V$. This shows that $(M, N) \in V_s$. i.e. $W_s \circ W_s \subseteq V_s$.
- (iv) Let, $(V_1)_s, (V_2)_s \in \mathcal{B}$. Then clearly, $(V_1 \cap V_2)_s \subseteq (V_1)_s \cap (V_2)_s$.

Thus our assertion is proved.

Let the topology that this uniformity generates be $\tau(\mathcal{B})$. Obviously $\{V_s[M] : V \in \eta_e\}$ forms the nbd. system of $M \in C(G)$ in $\tau(\mathcal{B})$ where, $V_s[M] = \{N \in C(G) : (M, N) \in V_s\}$. We now show that this uniformity actually gives the Vietoris topology on C(G).

Theorem 5.1. $\tau(\mathcal{B})$ is the Vietoris topology on C(G).

Proof. Let \mathcal{H} be open in $\tau(\mathcal{B})$ and $M \in \mathcal{H}$. Then \exists an open set $V \in \eta_e$ such that $M \in V_s[M] \subseteq \mathcal{H}$. Let \widehat{V} be a symmetric open nbd. of 'e' in G such that $\widehat{V}^2 \subseteq V$. Since M is compact and $\{m\widehat{V} : m \in M\}$ is an open cover of M, it has a finite subcover $\{m_i\widehat{V} : i = 1, \ldots, t\}$ (say). Also MV is open in G. Let, $\mathcal{L} = (m_1\widehat{V})^- \cap \ldots \cap (m_t\widehat{V})^- \cap (MV)^+$. Then \mathcal{L} is an open set in C(G) in the Vietoris topology and clearly $M \in \mathcal{L}$. We claim that, $\mathcal{L} \subseteq V_s[M]$.

Let, $N \in \mathcal{L}$. Then $N \cap m_i \widehat{V} \neq \Phi, i = 1, ..., t$. Let $m \in M$. Then $m \in m_i \widehat{V}$, for some $i \Rightarrow m = m_i v$, for some $v \in \widehat{V}$. Now, $m_i \widehat{V} \cap N \neq \Phi \Rightarrow \exists n \in N$ such that $n = m_i v_1$ for some $v_1 \in \widehat{V}$. Therefore, $n^{-1}m = v_1^{-1}m_i^{-1}m_i v = v_1^{-1}v \in \widehat{V}^2 \subseteq V$ [since \widehat{V} is symmetric]. Again, $N \subseteq MV \Rightarrow$ for each $n \in N, \exists m \in M$ and $v \in V$ such that $n = mv \Rightarrow m^{-1}n = v \in V$. Thus, $(M, N) \in V_s$. Consequently, $N \in V_s[M]$. Hence $M \in \mathcal{L} \subseteq V_s[M] \subseteq \mathcal{H}$.

Conversely, let $M \in V_1^- \cap \ldots \cap V_t^- \cap V_0^+ = \mathcal{L}$ where, V_i , $i = 0, 1, \ldots, t$ are open in G with $V_i \subseteq V_0$, $i = 1, \ldots, t$. Now, $M \subseteq V_0 \Rightarrow$ for $m \in M, \exists$ an open set $V_0^m \in \eta_e$ such that $m \in mV_0^m \subseteq V_0$. Let W_0^m be an open symmetric nbd. of 'e' in G such that $(W_0^m)^2 \subseteq V_0^m$.

Now $\{mW_0^m : m \in M\}$ is an open cover of M and M is compact. So it has a finite subcover $\{m_jW_0^{m_j} : j = 1, ..., p\}$. We put, $W_0 = \bigcap_{j=1}^p W_0^{m_j}$. Then W_0 is an open symmetric nbd. of 'e' in G.

Again, $\widehat{M} \cap V_i \neq \Phi$, $i = 1, \ldots, t \Rightarrow \exists m'_i \in M \cap V_i$, $i = 1, \ldots, t$. Let W_i be an open symmetric nbd. of 'e' in G such that $m'_i \in m'_i W_i \subseteq V_i$, $i = 1, \ldots, t$. We put $\widehat{W} = \bigcap_{i=1}^t W_i$. Then \widehat{W} is an open symmetric nbd. of 'e' in G. Let, $W = W_0 \cap \widehat{W}$. Then W is an open symmetric nbd. of 'e' in G. We claim that, $M \in W_s[M] \subseteq V_1^- \cap \ldots \cap V_t^- \cap V_0^+ = \mathcal{L}$.

 $\begin{array}{l} M \in W_0(+W) \colon \text{Ind} \ W \text{ is an open by influence field. Of } e^{-m} \text{ G}^{\circ}, \forall e^{\circ} \text{ claim char}, \\ M \in W_s[M] \subseteq V_1^{-} \cap \ldots \cap V_t^{-} \cap V_0^{+} = \mathcal{L}. \\ \text{Let, } N \in W_s[M]. \text{ Then } (M, N) \in W_s. \text{ Let, } n \in N. \text{ Then } \exists \ m \in M \text{ such that } m^{-1}n \in W \Rightarrow n \in mW. \text{ Now, } m \in m_j W_0^{m_j} \text{ for some } j \in \{1, \ldots, p\}. \text{ So } n \in mW \subseteq m_j W_0^{m_j} W_0^{m_j} = m_j (W_0^{m_j})^2 \subseteq m_j V_0^{m_j} \subseteq V_0 \text{ [since } W \subseteq W_0^{m_j}, \forall j]. \\ \text{Thus, } N \subseteq V_0. \end{array}$

Now, for $m'_i \in M, \exists n_i \in N$ such that $n_i^{-1}m'_i \in W \Rightarrow n_i^{-1} \in W(m'_i)^{-1} \Rightarrow n_i \in m'_iW^{-1} = m'_iW$ [since W is symmetric] $\Rightarrow n_i \in m'_iW \subseteq m'_iW_i \subseteq V_i, i = 1, \dots, t$ [since $W \subseteq W_i, \forall i$] $\Rightarrow N \cap V_i \neq \Phi, i = 1, \dots, t$. Consequently, $N \in V_1^- \cap \dots \cap V_t^- \cap V_0^+ = \mathcal{L}$. Hence, $M \in W_s[M] \subseteq \mathcal{L}$.

This shows that, $\tau(\mathcal{B})$ is actually the Vietoris topology on C(G).

References

- 1. Clifford A. H. and Preston G. B., *The Algebraic Theory of Semigroups (vol. II)*, Math Surveys of the Amer. Math. Soc. R. I. Providence 1967.
- McCOY R. A., Epi-Topology on Spaces of Lower Semicontinuous Functions into Partially Ordered Spaces and Hyperspaces, Set-Valued Analysis 1 (1993) 273–287.
- 3. Michael E., Topologies on spaces of subsets, Trans. Amer. Math. Soc. 71 (1951), 152–182.
- 4. Paalman A. B. and De Miranda, *Topological Semigroups*, Mathematisch Centrum, Amsterdam 1970.

S. Ganguly, University of Calcutta, 35, Ballygunge Circular Road, Kolkata-700019 India, *e-mail*: sjpm12@yahoo.co.in

S. Jana, University of Calcutta, 35, Ballygunge Circular Road, Kolkata-700019 India, *e-mail*: sjpm12@yahoo.co.in