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AN ASSOCIATED MOB OF A TOPOLOGICAL GROUP

S. GANGULY and S. JANA

Abstract. Here a typical topological semigroup C(G) is studied. A partial equiv-
alence [1] is defined on C(G) compatible with its semigroup structure. Also a

uniformity is constructed giving the Vietoris topology [3] on C(G).

1. Introduction

If G is a group then the product of subsets of G can be defined in a natural way to
produce a semigroup of subsets; we present here the semigroup C(G) of all compact
subsets of a topological group G endowed with the Vietoris topology [3]. Actually,
this semigroup is a subsemigroup of the semigroup of all subsets; the construction
of this semigroup is quite obvious in view of the fact that for compact subsets A
and B of a topological group G, AB is compact.

In the second section we introduce a partial equivalence [1] on the semigroup
consisting of all compact subsets of a topological group G, compatible with the
semigroup structure and determine its several classes.

In the third article we show that the Vietoris topology [3] on the collection of
aforesaid subsets of a topological group is compatible with the algebraic structure.

Lastly, we determine a uniformity giving the topology of the above space.

2. Construction of C(G)

Let G be a topological group which is assumed to be a Hausdorff space. We
consider the collection of all nonempty compact subsets of G and denote this
collection by C(G).

For A,B ∈ C(G) we define, AB = {ab : a ∈ A, b ∈ B}. Then AB is again
a compact subset of G and thus AB ∈ C(G). This shows that C(G) becomes
a semigroup under the aforesaid binary operation. Also {e} ∈ C(G), where ‘e’
denotes the identity of the topological group G. We note that, {e} also acts as an
identity in C(G).

We now show that C(G) cannot be a group unless G = {e}.
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Proposition 2.1. C(G) is a group iff |G| = 1, where |A| denotes the cardinality
of A(⊆ G).

Proof. Let A,B ∈ C(G) and a ∈ A, b1, b2 ∈ B. Then ab1 = ab2 iff b1 = b2.
Thus |aB| = |B|, for any a ∈ A. Therefore

|AB| ≥ |B|.(∗)

Let A? denotes the inverse of A in C(G). Then 1 = |{e}| = |A?A| ≥ |A| ≥ 1
[by (∗)]⇒ |A| = 1 ⇒ A is a singleton set. Thus all invertible elements of C(G) are
singleton. Therefore it follows that C(G) cannot be a group if |G| > 1. �

Note 2.2. Although C(G) itself cannot be a group if |G| > 1, C(G) contains
the subgroup {{a} : a ∈ G} = G (say). We claim that G is a unique maximal
subgroup of C(G). It follows from the fact that, singletons of G are the only
invertible elements of C(G) [as seen in Proposition 2.1]. Clearly this subgroup G
of C(G) is isomorphic to G.

Definition 2.3. Let H ⊆ C(G). We define,

↑H = {L ∈ C(G) : H ⊆ L for some H ∈ H}
↓H = {L ∈ C(G) : L ⊆ H for some H ∈ H}

Then clearly,

H ⊆↑H, H ⊆ ↓H;(i)

↑(H1 ∪H2) = ↑H1∪ ↑H2, ↓(H1 ∪H2) = ↓H1∪ ↓H2;(ii)

↑(H1 ∩H2) ⊆ ↑H1∩ ↑H2, ↓(H1 ∩H2) ⊆↓H1∩ ↓H2;(iii)

↑(↑H) = ↑H, ↓(↓H) = ↓H;(iv)

H1 ⊆ H2 ⇒ ↑H1 ⊆ ↑H2, ↓H1 ⊆ ↓H2(v)

Proposition 2.4. (↓H)A ⊆ ↓(HA), for any A ∈ C(G) and H ⊆ C(G).

Proof. Let Z ∈ (↓H)A ⇒ Z = XA, for some X ∈ ↓H. So ∃ H ∈ H such that
X ⊆ H ⇒ Z = XA ⊆ HA ⇒ Z ∈ ↓(HA). �

Proposition 2.5. Let H be a subsemigroup of C(G) and H ∈ H. Then
(↓H)H ⊆ ↓H.

Proof. Since H is a subsemigroup and H ∈ H, so HH ⊆ H ⇒ (↓ H)H ⊆
↓(HH) ⊆ ↓(H) [by Proposition 2.4]. �

Proposition 2.6. Let H ⊆ C(G) and S ∈ C(G). Then ↓(HS) = ↓((↓H)S).

Proof. ↓ ((↓ H)S) ⊆ ↓↓ (HS) = ↓ (HS). Conversely, H ⊆↓H ⇒ ↓ (HS) ⊆
↓((↓H)S). �

Proposition 2.7. Let H be a subsemigroup of C(G) such that H ∈ H ⇒
H−1 ∈ H where, H−1 = {a−1 : a ∈ H}. Then ↓H is also a subsemigroup such
that H ∈ ↓H ⇒ H−1 ∈ ↓H.
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Proof. Let X, Y ∈ ↓H. Then ∃ H1,H2 ∈ H such that X ⊆ H1 and Y ⊆
H2 ⇒ XY ⊆ H1H2 ∈ H [since H is a subsemigroup] ⇒ XY ∈ ↓H. So ↓H is
a subsemigroup of C(G). Now, let X ∈ ↓H. So ∃ H ∈ H such that X ⊆ H ⇒
X−1 ⊆ H−1 ∈ H ⇒ X−1 ∈ ↓H. This completes the proof. �

We can get same type of results if we replace ↓H by ↑H in the above propositions.

3. Partial Equivalence on C(G)

Definition 3.1. [1] Let S be a set and T ⊆ S. Let ρ be an equivalence relation
on T . Then ρ will also be called a partial equivalence on S, T will be called the
domain of ρ.

Note 3.2. [1] It is easily verified that a binary relation ρ on S is a partial
equivalence on S iff ρ is symmetric and transitive.

Definition 3.3. [1] The domain of a partial equivalence ρ on S is the set
Sρ = {x ∈ S : sρx for some s ∈ S}

Lemma 3.4. Let ρ be a partial equivalence on S and Sρ denotes the domain
of ρ. Then s ∈ Sρ iff sρs holds.

Proof. If sρs holds then by definition of Sρ, s ∈ Sρ. If s ∈ Sρ then ∃ x ∈ S
such that xρs holds. Since ρ is an equivalence relation on Sρ, it is symmetric and
transitive. Consequently, (x, s) ∈ ρ ⇒ (s, x) ∈ ρ ⇒ (s, s) ∈ ρ. �

Definition 3.5. [1] Let S be a semigroup and ρ be a partial equivalence on S.
Then ρ is said to be right [left] compatible on S if, for each s ∈ S, (a, b) ∈ ρ ⇒
either (as, bs) ∈ ρ [(sa, sb) ∈ ρ] or as, bs 6∈ Sρ [sa, sb 6∈ Sρ]

Definition 3.6. [1] A partial equivalence on S which is right [left] compatible
on S is called a partial right [left] congruence on S.

Partial equivalence on C(G):
Let K be a subsemigroup of C(G) with the property : K ∈ K ⇒ K−1 ∈ K.1

Let, H = ↓K. Then H is also a subsemigroup of C(G) with the same property
[by Proposition 2.7].

We define, ΠK = {(S, T ) ∈ C(G)×C(G) : ST−1 ∈ H}. We claim that, ΠK is a
partial right congruence on C(G).

(i) Let, (S, T ) ∈ ΠK. Then ST−1 ∈ H. So TS−1 = (ST−1)−1 ∈ H [by
hypothesis] ⇒ (T, S) ∈ ΠK. Thus ΠK is symmetric.

(ii) Let (S, T ) and (T, V ) ∈ ΠK. Then ST−1 ∈ H and TV −1 ∈ H. Now,
SV −1 ⊆ ST−1TV −1 ∈ H [since H is a subsemigroup] ⇒ SV −1 ∈ ↓H = H
⇒ (S, V ) ∈ ΠK. Therefore ΠK is transitive.

1That such a subsemigroup of C(G) exists follows from the following fact: Let M be a

subgroup of G. Then K = {{m} : m ∈ M} is a subsemigroup (in fact a subgroup) of C(G) with

the desired property.
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Thus ΠK is a partial equivalence on C(G) [by Note 3.2].
Now let, (A,B) ∈ ΠK and S ∈ C(G). It now suffices to prove that, if AS ∈ DK

[the domain of ΠK] then (AS, BS) ∈ ΠK.
(A,B) ∈ ΠK ⇒ AB−1 ∈ H. Again by Lemma 3.4, AS ∈ DK ⇒ (AS, AS) ∈

ΠK ⇒ ASS−1A−1 ∈ H. Now, ASS−1B−1 ⊆ ASS−1A−1AB−1 ∈ HAB−1 ⊆ H
[since AB−1 ∈ H and H is a semigroup] ⇒ ASS−1B−1 ∈ ↓ H = H
⇒ (AS, BS) ∈ ΠK.

This shows that ΠK is right compatible on C(G).

Note 3.7. Clearly H ⊆ DK. Actually, H is a ΠK-class. In fact: H1,H2 ∈ H
⇒ (H1,H2) ∈ ΠK. Again, S ∈ DK and (S, H) ∈ ΠK for some H ∈ H ⇒
SH−1 ∈ H ⇒ S ⊆ SH−1H ∈ HH ⊆ H [since H ∈ H and H is a semigroup]
⇒ S ∈ ↓H = H.

Proposition 3.8. Let S ∈ C(G). Then HS ⊆ DK iff S ∈ DK.

Proof. If S ∈ DK then SS−1 ∈ H [by Lemma 3.4]. Now, HSS−1H−1 ∈
HHH−1 ⊆ H [since H ∈ H and H is a semigroup] ⇒ HS ∈ DK for any H ∈ H.
Thus, HS ⊆ DK.

Conversely let, HS ⊆ DK. Then, HSS−1H−1 ∈ H, for any H ∈ H. Now,
SS−1 ⊆ H−1HSS−1H−1H ∈ H−1HH ⊆ H ⇒ SS−1 ∈ ↓H = H ⇒ S ∈ DK. �

Proposition 3.9. Let S ∈ DK and H1,H2 ∈ H. Then (H1S, H2) ∈ ΠK iff
S ∈ H.

Proof. (H1S, H2)∈ΠK⇒H1SH−1
2 ∈H ⇒ S ⊆ H−1

1 H1SH−1
2 H2 ∈ H−1

1 HH2 ⊆
H ⇒ S ∈ ↓H = H.

Conversely let, S ∈ H. Then H1SH−1
2 ∈ H1HH−1

2 ⊆ H. Thus (H1S, H2)∈ΠK.
�

Corollary 3.10. If S 6∈ H then HS does not belong to the class H.

Proof. It follows from Proposition 3.9. �

Proposition 3.11. DK is a decreasing set i.e. ↓DK = DK.

Proof. Let K ∈ C(G) be such that K ⊆ S for some S ∈ DK. S ∈ DK ⇒
SS−1 ∈ H. Again K ⊆ S ⇒ K−1 ⊆ S−1 ⇒ KK−1 ⊆ SS−1 ∈ H ⇒ KK−1 ∈ H
⇒ K ∈ DK. Thus ↓DK = DK. �

Note 3.12. From Proposition 3.8, if S ∈ DK then HS ⊆ DK ⇒↓ (HS) ⊆
↓DK = DK [by Proposition 3.11].

Proposition 3.13. If S ∈ DK then ↓(HS) is a ΠK-class.

Proof. From Note 3.12, ↓(HS) ⊆ DK. We first prove that, any two member of
↓(HS) are comparable.

Let, K1,K2 ∈ ↓(HS). Then ∃ H1,H2 ∈ H such that K1 ⊆ H1S and K2 ⊆
H2S ⇒ K−1

2 ⊆ S−1H−1
2 ⇒ K1K

−1
2 ⊆ H1SS−1H−1

2 .
Since S ∈ DK so SS−1 ∈ H ⇒ H1SS−1H−1

2 ∈ H [since H is a semigroup]
⇒ K1K

−1
2 ∈ H ⇒ (K1,K2) ∈ ΠK.
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Now let, S1 ∈ DK and (S1,K) ∈ ΠK for some K ∈ ↓(HS). So ∃ H ∈ H such
that K ⊆ HS ⇒ HK ⊆ HHS ⊆ HS. Now, (S1,K) ∈ ΠK ⇒ S1K

−1 ∈ H ⇒ S1 ⊆
S1K

−1K ∈ HK ⊆ HS ⇒ S1 ∈ ↓(HS).
This shows that ↓(HS) is a ΠK-class when S ∈ DK. We also note that, HS ⊆
↓(HS). �

Proposition 3.14. H must contain {e} as an element.

Proof. Since H ∈ H ⇒ H−1 ∈ H by hypothesis and HH−1 ∈ H [since H is a
semigroup] we have {e} ⊆ HH−1 ∈ H ⇒ {e} ∈ ↓H = H. �

Corollary 3.15. For any a ∈ G, {a} ∈ DK.

Proof. Since {a}{a−1} = {e} ∈ H the corollary follows immediately. �

Corollary 3.16. For each S ∈ DK, S ∈ HS.

Since {e} · S = S and {e} ∈ H, the corollary follows.

Proposition 3.17. If S 6∈ H then H and ↓ (HS) [assume S ∈ DK] are two
distinct ΠK-classes.

Proof. If not, ∃ H ∈ H and K ∈ ↓ (HS) such that (H,K) ∈ ΠK. Since,
S ∈ ↓(HS) so it follows that (S, H) ∈ ΠK. Then by Note 3.7, S ∈ H �

Proposition 3.18. (i) DK =
⋃

S∈DK
↓(HS),

(ii) ↓(HS1) = ↓(HS2) iff (S1, S2) ∈ ΠK.

Proof. Obvious. �

Proposition 3.19. Let M =
⋃

H∈HH. Then M is a subgroup of G.

Proof. Let, a, b ∈ M . Then ∃ H1,H2 ∈ H such that a ∈ H1 and b ∈ H2. So
b−1 ∈ H−1

2 . Therefore, ab−1 ∈ H1H
−1
2 ∈ H [since H is a semigroup] ⇒ ab−1 ∈ M .

So, M is a subgroup of G. �

Proposition 3.20. S 6∈ H iff S ∩M = Φ.

Proof. Let S 6∈ H and if possible let, S ∩ M 6= Φ. Then ∃ a ∈ G such that
a ∈ S ∩ M ⇒ a ∈ H for some H ∈ H. Now H ∈ H ⇒ H−1 ∈ H. So,
e ∈ H−1S ∈ HS ⇒ {e} ∈ ↓(HS). Thus ↓(HS) = H [since {e} ∈ H] ⇒ S ∈ H
a contradiction.
Converse part is obvious. �

Proposition 3.21. Let E be an idempotent element of C(G) such that E ∈ DK.
Then E ∈ H.

Proof. E being idempotent we have E2 = E ⇒ E ⊆ E2E−1 = EE−1 ∈ H
[since E ∈ DK] ⇒ E ∈ ↓H = H.

Thus, if E be an idempotent element of C(G) such that E 6∈H then E 6∈DK. �

Proposition 3.22. If K1 ⊆ K2 then, DK1 ⊆ DK2 .
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Proof. K1 ⊆ K2 ⇒ H1 ⊆ H2. So S ∈ DK1 ⇒ SS−1 ∈ H1 ⇒ SS−1 ∈ H2 ⇒
S ∈ DK2 . �

Proposition 3.23. If H ⊆ G then DK = G, where H = ↓K.

Proof. From Corollary 3.15, we know G ⊆ DK. Now let S ∈ DK ⇒ SS−1 ∈
H ⊆ G ⇒ S must be a singleton set. Consequently, S ∈ G. Therefore DK = G. �

4. Topologization of C(G)

Here C(G) is topologized by Vietoris topology [3] which will be compatible with
its algebraic structure.

The Vietoris topology is defined as follows: for each subset S of G we define,
S+ = {A ∈ C(G) : A ⊆ S} and S− = {A ∈ C(G) : A ∩ S 6= Φ}. A subbase
for the Vietoris topology on C(G) is given by {W+ : W is open in G}

⋃
{W− :

W is open in G}. It is easy to see that, V +
1 ∩ · · · ∩ V +

n = (V1 ∩ · · · ∩ Vn)+ and
hence a basic open set in Vietoris topology is of the form V −

1 ∩· · ·∩V −
n ∩V +

0 , where
V0, V1, . . . , Vn are open in G; We may also choose each Vi ⊆ V0, i = 1, 2, . . . , n in
such a basic open set.

We note the following properties [3]:
(i) A = B ⇔ A+ = B+;

(ii) (Ā)+ = A+;
(iii) (A+)o = (Ao)+ [Ao being interior of A];

(iv) A−1 ∩ · · · ∩A−n ∩A+
0 = (A1)− ∩ · · · ∩ (An)− ∩ (A0)+

Now our first attempt is to show that C(G) with this Vietoris topology is a
topological semigroup [4]. For this, we require the following lemma.

Lemma 4.1. Let A,B be two compact subsets of G and AB ⊆ V , where V is
open in G. Then ∃ an open neighbourhood (nbd. in short) L of ‘e’ in G such that
LABL ⊆ V .

Proof. Let a ∈ A, b ∈ B. Then ∃ open nbds. W ′
ab,W

′′
ab of e such that W ′

ab · ab ·
W ′′

ab ⊆ V . Let Wab = W ′
ab ∩W ′′

ab. Then Wab · ab ·Wab ⊆ V . Let Lab be an open
nbd. of e such that L2

ab ⊆ Wab. Now {Lab ·ab ·Lab : a ∈ A, b ∈ B} is an open cover
of AB and hence has a finite subcover such that AB ⊆

⋃n
i=1 Laibi ·aibi ·Laibi . Put,⋂n

i=1 Laibi = L; Then L is an open nbd. of e. Now, LABL ⊆ L(
⋃n

i=1 Laibi · aibi ·
Laibi

)L ⊆
⋃n

i=1 L2
aibi

· aibi · L2
aibi

⊆
⋃n

i=1 Waibi
· aibi ·Waibi

⊆ V . This completes
the proof. �

Definition 4.2. [4] A semigroup (S, ·) having a topological structure is said to
be a topological semigroup or mob if the binary operation ‘· ’ is continuous in this
topology.

Theorem 4.3. The semigroup C(G) together with theVietoris topology is amob.

Proof. We define a map f : C(G) × C(G) −→ C(G) by, f(A,B) = AB. To
show that C(G) is a mob we are only to prove that f is continuous. Let, A,B ∈
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C(G) and V0, V1, . . . , Vn be open in G such that Vi ⊆ V0, i = 1, 2, . . . , n and
f(A,B) = AB ∈ V −

1 ∩ . . . ∩ V −
n ∩ V +

0 . We have to find two open nbds. L,M
of A,B respectively in C(G) such that f(L × M) ⊆ V −

1 ∩ . . . ∩ V −
n ∩ V +

0 i.e.
L · M ⊆ V −

1 ∩ . . . ∩ V −
n ∩ V +

0 . AB ⊆ V0 ⇒ ∃ open nbd. V̂0 of e in G such
that V̂0 · AB · V̂0 ⊆ V0 [by Lemma 4.1(i)]. Now, AB ∩ Vi 6= Φ, i = 1, . . . , n. So
∃ ai ∈ A, bi ∈ B such that aibi ∈ Vi and this is true for all i = 1, . . . , n. Since G

is a topological group, ∃ an open nbd. V̂i of e in G such that ai · V̂iV̂i · bi ⊆ Vi i.e.
ai · V̂ 2

i · bi ⊆ Vi for i = 1, . . . , n [by(ii)]
We take,

L = (a1 · V̂1)− ∩ . . . ∩ (an.V̂n)− ∩ (V̂0 ·A)+

and M = (V̂1 · b1)− ∩ . . . ∩ (V̂n · bn)− ∩ (B · V̂0)+

Clearly, L,M are open sets in C(G). We claim that A ∈ L, B ∈ M. In fact:
A ⊆ V̂0 · A [since V̂0 contains e] and A ∩ ai · V̂i 6= Φ, i = 1, . . . , n [since e ∈ V̂i,
i = 1, . . . , n]. Similarly, B ∈M.
Now let, T1 ∈ L, T2 ∈M. So, T1 ⊆ V̂0 ·A and T2 ⊆ B ·V̂0. So, T1T2 ⊆ V̂0 ·AB ·V̂0 ⊆
V0 [by (i)].
Now, T1 ∩ ai · V̂i 6= Φ, i = 1, . . . , n ⇒ ∃ ti ∈ T1 and vi ∈ V̂i such that ti = ai · vi,
i = 1, . . . , n.
T2 ∩ V̂i · bi 6= Φ, i = 1, . . . , n ⇒ ∃ t′i ∈ T2 and wi ∈ V̂i such that t′i = wi · bi,
i = 1, . . . , n. So, ti · t′i = ai · vi · wi · bi ∈ ai · V̂ 2

i · bi ⊆ Vi for i = 1, . . . , n [by (ii)]
⇒ T1T2 ∩ Vi 6= Φ, i = 1, . . . , n.
Therefore T1T2 ∈ V −

1 ∩ . . . ∩ V −
n ∩ V +

0 . Thus, LM ⊆ V −
1 ∩ . . . ∩ V −

n ∩ V +
0 . This

completes the proof. �

Now we study the topological status of C(G); for this we require the following
definition and theorems:

Definition 4.4. [2] Let ‘≤’ be a preorder in a topological space X; the preorder
is said to be closed iff its graph {(x, y) ∈ X×X : x ≤ y} is closed in X×X (endowed
with the product topology).

Theorem 4.5. [2] The preorder ‘≤’ of X is closed iff for every two points
a, b ∈ X with a 6≤ b,∃ nbds. V,W of a, b respectively in X such that ↑V ∩ ↓W = Φ
[where ↑V and ↓W are defined with the help of the preorder ‘≤’ ].

Theorem 4.6. The inclusion order ‘⊆’ which is obviously a partial order in
C(G) is closed as well.

Proof. Let A 6⊆ B where A,B ∈ C(G). Then ∃ x ∈ A such that x 6∈ B. Since
G is T2 and {x}, B are two disjoint compact subsets of G, ∃ two open sets U, V
in G such that x ∈ U, B ⊆ V and U ∩ V = Φ ⇒ A ∈ U− and B ∈ V +. Now
U− ∩ V + = Φ since U ∩ V = Φ and ↑(U−)∩ ↓(V +) = U− ∩ V + = Φ [2]. Then by
Theorem 4.5, it follows that ‘⊆’ is a closed order. �

Theorem 4.7. C(G) is a T2-space.
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Proof. Let A,B ∈ C(G) with A 6= B. Then either A 6⊆ B or B 6⊆ A. We
assume A 6⊆ B. Since ‘⊆’ is a closed order by Theorem 4.6, ∃ two open sets U, V
in G such that A ∈ U−, B ∈ V + and U− ∩ V + = Φ. This shows that C(G) is a
T2-space. �

Theorem 4.8. The family of all finite subsets of G is dense in C(G).

Proof. Let F = V −
1 ∩ . . . ∩ V −

n ∩ V +
0 be any nonempty basic open set in C(G)

where Vi ⊆ V0, i = 1, . . . , n. Since F is nonempty, ∃ F ∈ F . So ∃ pi ∈ F ∩ Vi,
i = 1, . . . , n and p0 ∈ F ⊆ V0. We take K = {p0, p1, . . . , pn}. Clearly K ∈ F and
K is in the aforesaid family. This completes the proof. �

We have seen in the first article that although C(G) itself cannot be a group, it
contains a unique maximal subgroup G. This G inherits a subspace topology from
C(G). It is now a pertinent question to ask whether G is a topological group. The
answer is in the affirmative. This follows from the following theorem.

Theorem 4.9. The mapping

F : C(G) −→ C(G)
A 7−→ A−1

}
is continuous.

Proof. Let A ∈ C(G) and V0, V1, . . . , Vn be open in G such that Vi ⊆ V0,
i = 1, . . . , n and F (A) = A−1 ∈ V −

1 ∩ . . . ∩ V −
n ∩ V +

0 = H. Then, A−1 ⊆ V0 ⇒
A ⊆ V −1

0 and A−1 ∩ Vi 6= Φ, i = 1, . . . , n ⇒ A ∩ V −1
i 6= Φ, i = 1, . . . , n. Since

G is a topological group and inversion of an element in G is a homeomorphism,
it follows that V −1

i , i = 0, 1, . . . , n are open in G. Clearly, A ∈ (V −1
1 )− ∩ . . . ∩

(V −1
n )− ∩ (V −1

0 )+ = L.
Now, L is open in C(G). Also, F (L) = L−1 ⊆ H, where L−1 = {B−1 : B ∈ L}.
This shows that F is continuous. �

Corollary 4.10. G is a topological group.

Proof. Since C(G) is a topological semigroup [by Theorem 4.3] and restriction
of a continuous function is again continuous, it follows that the group operation
on G is continuous. Also by above Theorem 4.9, the mapping {x} −→ {x−1} is
continuous. Consequently, G is a topological group. �

We have seen in first article that G and G are group isomorphic. Now it is very
natural to ask whether they are topologically same or not. Answer to this question
follows from the next theorem.

Theorem 4.11. The map

f : G −→ C(G)
x 7−→ {x}

}
is a homeomorphism.
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Proof. Obviously, f is a bijective function between G and G. Let U be open
in G. Now f(U) = {{x} : x ∈ U} = U− ∩ G. Thus f(U) is open in G (with the
relative topology). Consequently, f is an open map.
Again let, V −

1 ∩ . . . ∩ V −
n ∩ V +

0 ∩ G be any open set in G containing {x}. Since G
consists of singletons only, {y} ∈ V +

0 ∩ G ⇐⇒ {y} ∈ V −
0 ∩ G and thus, V −

1 ∩ . . . ∩
V −

n ∩ V +
0 ∩ G = V +

1 ∩ . . . ∩ V +
n ∩ V +

0 ∩ G = (V1 ∩ . . . ∩ Vn ∩ V0)+ ∩ G. Obviously,
V1 ∩ . . . ∩ Vn ∩ V0 is an open nbd. of x in G such that, f(V1 ∩ . . . ∩ Vn ∩ V0) =
(V1 ∩ . . .∩ Vn ∩ V0)+ ∩G = V −

1 ∩ . . .∩ V −
n ∩ V +

0 ∩G. Thus f is continuous. Hence
f is a homeomorphism and f(G) = G.

Also f is a group isomorphism. Thus, G and G are isomorphic and homeomor-
phic. �

Note 4.12. It is very easy to check that, if G1 and G2 be two isomorphic
and homeomorphic topological groups then so are the corresponding semigroups
C(G1) and C(G2). Our question is: “is the converse true?”. The answer is in the
affirmative.

Theorem 4.13. If G1 and G2 are topological groups such that C(G1) and
C(G2) are homeomorphic and isomorphic then G1 and G2 are also homeomorphic
and isomorphic.

Proof. Let F : C(G1) −→ C(G2) be the homeomorphism and isomorphism.
G1 is a unique maximal subgroup of C(G1). So F (G1) is also a subgroup of C(G2).
We claim that F (G1) is also a maximal subgroup of C(G2). If not, ∃ a subgroup
H of C(G2) such that F (G1) ⊂ H ⇒ G1 ⊂ F−1(H). F being an isomorphism,
F−1(H) is also a subgroup of C(G1). Since G1 is a maximal subgroup, G1 =
F−1(H) ⇒ F (G1) = H. Again, since G2 is the unique maximal subgroup of C(G2)
it follows that F (G1) = G2. Thus G1 and G2 are homeomorphic [restriction of a
homeomorphism being an homeomorphism] and isomorphic. The rest follows from
Theorem 4.11. �

5. Uniform Structure on C(G)

Michael [3] proved that C(G) is completely regular iff G is so. G being a topo-
logical group it is completely regular. Also we know that, a topological space is
uniformizable iff it is completely regular. Thus we find that, C(G) is uniformizable.
Here we construct an uniformity on C(G) giving its topology. Let,

Vs =
{
(M,N) ∈ C(G)× C(G) : for each m ∈ M,∃ n ∈ N such that n−1m ∈ V

& for each n ∈ N,∃ m ∈ M such that m−1n ∈ V
}

where, V ∈ ηe, ηe being the nbd. system of e in G.
We claim that B = {Vs : V ∈ ηe} forms a base for some uniformity on C(G).

(i) {(M,M) : M ∈ C(G)} ⊆ Vs for each V ∈ ηe. In fact: for each m ∈ M
∃ m ∈ M such that m−1m = e ∈ V .

(ii) Obviously, V −1
s = Vs,∀ V ∈ ηe where, V −1

s = {(M,N) : (N,M) ∈ Vs}.
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(iii) Let Vs ∈ B. Then V ∈ ηe. So ∃ W ∈ ηe such that W 2 ⊆ V . We claim that
Ws ◦Ws ⊆ Vs where, Ws ◦Ws = {(M,N) ∈ C(G)×C(G) : (M,P ), (P,N) ∈
Ws, for some P ∈ C(G)}. In fact: (M,N) ∈ Ws ◦Ws ⇒ ∃ P ∈ C(G) such
that (M,P ), (P,N) ∈ Ws ⇒ for each m ∈ M,∃ p ∈ P such that p−1m ∈ W
and for p ∈ P∃ n ∈ N such that n−1p ∈ W . So, n−1m = n−1p · p−1m ∈
W 2 ⊆ V . Similarly, for each n ∈ N∃ q ∈ P such that q−1n ∈ W and for
q ∈ P,∃ m ∈ M such that m−1q ∈ W ⇒ m−1n = m−1q · q−1n ∈ W 2 ⊆ V .
This shows that (M,N) ∈ Vs. i.e. Ws ◦Ws ⊆ Vs.

(iv) Let, (V1)s, (V2)s ∈ B. Then clearly, (V1 ∩ V2)s ⊆ (V1)s ∩ (V2)s.
Thus our assertion is proved.
Let the topology that this uniformity generates be τ(B). Obviously {Vs[M ] :

V ∈ ηe} forms the nbd. system of M ∈ C(G) in τ(B) where, Vs[M ] = {N ∈
C(G) : (M,N) ∈ Vs}. We now show that this uniformity actually gives the
Vietoris topology on C(G).

Theorem 5.1. τ(B) is the Vietoris topology on C(G).

Proof. Let H be open in τ(B) and M ∈ H. Then ∃ an open set V ∈ ηe such
that M ∈ Vs[M ] ⊆ H. Let V̂ be a symmetric open nbd. of ‘e’ in G such that
V̂ 2 ⊆ V . Since M is compact and {mV̂ : m ∈ M} is an open cover of M , it
has a finite subcover {miV̂ : i = 1, . . . , t} (say). Also MV is open in G. Let,
L = (m1V̂ )− ∩ . . . ∩ (mtV̂ )− ∩ (MV )+. Then L is an open set in C(G) in the
Vietoris topology and clearly M ∈ L. We claim that, L ⊆ Vs[M ].
Let, N ∈ L. Then N ∩miV̂ 6= Φ, i = 1, . . . , t. Let m ∈ M . Then m ∈ miV̂ , for
some i ⇒ m = miv, for some v ∈ V̂ . Now, miV̂ ∩ N 6= Φ ⇒ ∃ n ∈ N such that
n = miv1 for some v1 ∈ V̂ . Therefore, n−1m = v−1

1 m−1
i miv = v−1

1 v ∈ V̂ 2 ⊆ V

[since V̂ is symmetric]. Again, N ⊆ MV ⇒ for each n ∈ N,∃ m ∈ M and
v ∈ V such that n = mv ⇒ m−1n = v ∈ V . Thus, (M,N) ∈ Vs. Consequently,
N ∈ Vs[M ]. Hence M ∈ L ⊆ Vs[M ] ⊆ H.

Conversely, let M ∈ V −
1 ∩ . . . ∩ V −

t ∩ V +
0 = L where, Vi, i = 0, 1, . . . , t are

open in G with Vi ⊆ V0, i = 1, . . . , t. Now, M ⊆ V0 ⇒ for m ∈ M,∃ an open set
V m

0 ∈ ηe such that m ∈ mV m
0 ⊆ V0. Let Wm

0 be an open symmetric nbd. of ‘e’ in
G such that (Wm

0 )2 ⊆ V m
0 .

Now {mWm
0 : m ∈ M} is an open cover of M and M is compact. So it has a

finite subcover {mjW
mj

0 : j = 1, . . . , p}. We put, W0 =
⋂p

j=1 W
mj

0 . Then W0 is
an open symmetric nbd. of ‘e’ in G.
Again, M ∩ Vi 6= Φ, i = 1, . . . , t ⇒ ∃ m′

i ∈ M ∩ Vi, i = 1, . . . , t. Let Wi be
an open symmetric nbd. of ‘e’ in G such that m′

i ∈ m′
iWi ⊆ Vi, i = 1, . . . , t.

We put Ŵ =
⋂t

i=1 Wi. Then Ŵ is an open symmetric nbd. of ‘e’ in G. Let,
W = W0 ∩ Ŵ . Then W is an open symmetric nbd. of ‘e’ in G. We claim that,
M ∈ Ws[M ] ⊆ V −

1 ∩ . . . ∩ V −
t ∩ V +

0 = L.
Let, N ∈ Ws[M ]. Then (M,N) ∈ Ws. Let, n ∈ N . Then ∃ m ∈ M such
that m−1n ∈ W ⇒ n ∈ mW . Now, m ∈ mjW

mj

0 for some j ∈ {1, . . . , p}. So
n ∈ mW ⊆ mjW

mj

0 W
mj

0 = mj(W
mj

0 )2 ⊆ mjV
mj

0 ⊆ V0 [since W ⊆ W
mj

0 ,∀ j].
Thus, N ⊆ V0.
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Now, for m′
i ∈ M,∃ ni ∈ N such that n−1

i m′
i ∈ W ⇒ n−1

i ∈ W (m′
i)
−1 ⇒ ni ∈

m′
iW

−1 = m′
iW [since W is symmetric]

⇒ ni ∈ m′
iW ⊆ m′

iWi ⊆ Vi, i = 1, . . . , t [since W ⊆ Wi,∀ i]
⇒ N ∩ Vi 6= Φ, i = 1, . . . , t. Consequently, N ∈ V −

1 ∩ . . . ∩ V −
t ∩ V +

0 = L. Hence,
M ∈ Ws[M ] ⊆ L.
This shows that, τ(B) is actually the Vietoris topology on C(G). �
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