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ONESIDED INVERSES FOR SEMIGROUPS

MARIO PETRICH

Abstract. In any semigroup S, we say that elements a and b are left inverses of
each other if a = aba, b = bab and a L b, in which case we write a γ b. Right
inverses are defined dually with the notation δ. Set τ = δγ. We study the classes
of semigroups in which τ has some of the usual properties of a relation. We also

consider properties of (maximal) completely simple subsemigroups of S.
In terms of the above concepts, we characterize E–solid, central, (almost)

L–unipotent and locally (almost) L–unipotent semigroups in many ways. We define
these notions for arbitrary semigroups by extending their definitions from regular
semigroups.

1. Introduction and summary

It is the existence of an inverse for each element which distinguishes a group from
a monoid and the existence of an identity which distinguishes a monoid from
a semigroup. These differences are attenuated by the possibility of defining an
inverse of some elements of an arbitrary semigroup S by the following device.
Elements a and b are inverses of each other if a = aba and b = bab. The standard
notation for the set of all inverses of a is V (a). Not all elements of S may have an
inverse, but those that do are called regular. Hence a semigroup is called regular
if all its elements are regular (this is equivalent to the usual definition). Two other
important classes of semigroups are distinguished by the properties of inverses of
their elements. First, S is an inverse semigroup if every element of S has a unique
inverse. Second, an element a of S is completely regular if it has an inverse with
which it commutes, and S is completely regular if all its elements are.

Hence some of the most important classes of semigroups can be defined (or
characterized) by properties of inverses of elements of their members. The purpose
of this paper is to further ramify the above properties of inverse and thereby
characterize several of the most important classes of (regular) semigroups. The
first task thus consists in introducing some new properties an inverse an element
may have while the second amounts to identifying the classes of semigroups in
which inverses of their elements have these properties.
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The principal novelty here is the following set of concepts. For a semigroup
S and a, b ∈ S, we say that a and b are left (respectively, right) inverses of each
other if b ∈ V (a) and a L b (respectively a R b); if both, we say that they are
twosided inverses of each other. It is easy to see that the existence of any kind of
these inverses for an element a of S is equivalent to a being a completely regular
element, that is contained in a subgroup of S. We are thus led to the notion of the
group part of S which we denote by G(S). A further refinement of the concept
of an inverse is a bounded (onesided) inverse. We also consider completely simple
subsemigroups of an arbitrary semigroup.

We start in Section 2 with a brief list of needed notation and some well-known
lemmas. In Section 3 we establish a number of auxiliary results which will be used
in the main body of the paper. In the next five sections, we consider E–solid,
central, completely regular, almost L–unipotent (every L–class contains at most
one idempotent) and locally almost L–unipotent semigroups, respectively.

2. Background

For all notation and terminology not defined in the paper, consult standard texts
on semigroups. In addition to the concepts defined in Section 1, we recall briefly
the notation that will be used frequently.

Throughout the paper, S stands for an arbitrary semigroup unless stated other-
wise. For any A ⊆ S, we denote by E(A) the set of all idempotents in A. Green’s
relations are denoted by L,R,H and D, and for any a ∈ S,La, Ra,Ha and Da are
their classes containing the element a. We emphasize that for a ∈ S,

V (a) = {b ∈ S|a = aba, b = bab},

is the set of all inverses of a. The set G(S) is the union of all subgroups of S;
equivalently G(S) =

⋃
e∈E(S)He, or it is the set of all completely regular elements

of S. For e ∈ E(S) and a ∈ He, we denote by a−1 the inverse of a in the group
He and write a0 = e.

For any set X, εX denotes the equality relation on X.
The remainder of this section is well known. Since it plays a basic role in our

deliberations and for the sake of completeness, we supply (short) proofs.

Lemma 2.1. Let a, b ∈ S. Then Hb contains an inverse of a if and only if
there exist e, f ∈ E(S) such that

a R e L b R f L a.

If this is the case, then the inverse of a in Hb is unique.

Proof. Necessity. If x ∈ V (a)∩Hb, then e = ax and f = xa satisfy the requisite
conditions.

Sufficiency. By hypothesis, we have

a = ea = af, b = be = fb, e = au, f = va
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for some e, f ∈ E(S) and u, v ∈ S1. For x = fuave, we obtain
axa = afuavea = auava = eaf = a,

xax = fuaveafuave = fua(va)uave = fu(au)ave = fuave = x,

e = au = afuau = afuafu = afuavau = afuave ∈ Sx,
and similarly f ∈ xS which together with x ∈ fS ∩ Se implies that

x ∈ V (a) ∩ Le ∩Rf = V (a) ∩Hb.

For the final assertion, let x, y ∈ V (a) and x H y. Then x = yu = vy for some
u, v ∈ S1 which implies that

x = yu = yayu = yax
and similarly x = xay which yields

x = xax = (yax)a(xay) = yay = y,

as asserted. �

Lemma 2.2. Let a, b ∈ S. Then ab ∈ Ra∩Lb if and only if La∩Rb is a group.

Proof. Necessity. By hypothesis, a = abx and b = yab for some x, y ∈ S1. Then
letting e = bx, we get e = ya and thus e ∈ La ∩Rb ∩ E(S), as required.

Sufficiency. Let a L e R b where e ∈ E(S). Then

a = ae, e = xa, b = eb, e = by

for some x, y ∈ S1. Hence

a = ae = aby, b = eb = xab

so that a R ab L b. �

Corollary 2.3. Let a, b, c ∈ G(S) be such that a R b L c. Then the following
conditions are equivalent

(i) ac H b.
(ii) a L h R c for some h ∈ E(S).
(iii) ca ∈ G(S).

Proof. The equivalence of parts (i) and (ii) follows directly from Lemma 2.2.
The same reference also implies that ca ∈ La ∩ Rc. This implies the equivalence
of parts (ii) and (iii). �

Lemma 2.4. Let e, f ∈ E(S), x ∈ V (ef), g = efxe and h = fxef . Then
g, h ∈ E(S) and

g R ef = gh L h.

Proof. Indeed,

g2 = (efxe)(efxe) = ef(xefx)e = efxe = g,

and similarly h2 = h,

g ∈ efS, ef ∈ gS ∩ Sh, h ∈ Sef,
ef = ef(xefx)ef = (efxe)(fxef) = gh,

as required. �
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3. Preliminaries

The following are our basic concepts and notation. For a, b ∈ S,

b is a left inverse of a if b ∈ Vl(a) = V (a) ∩ La,

b is a right inverse of a if b ∈ Vr(a) = V (a) ∩Ra,

b is a twosided inverse of a if b ∈ Vt(a) = V (a) ∩Ha.

We start by ellucidating the nature of these concepts. Hall [1, Theorem 2],
proved that a regular semigroup S is orthodox if and only if it has the property

V (a) ∩ V (b) 6= φ⇒ V (a) = V (b).

The next proposition shows that the sets Vl(a) have an analogous property.

Proposition 3.1. The following implication holds in S:

Vl(a) ∩ Vl(b) 6= φ⇒ Vl(a) = Vl(b).

Proof. Let a, b, c, d ∈ S be such that c ∈ Vl(a) ∩ Vl(b), d ∈ Vl(a). Then

a L b L c L d,

c = cac, a = aca, c = cbc, b = bcb, d = dad, a = ada,

so that a = sb, d = tc, c = ud, b = va for some s, t, u, v ∈ S1. Hence
d = dad = dsbd = dsbcbd = dacbd = tcacbd = tcbd = dbd,

b = bcb = budb = budadb = bcadb = vacadb = vadb = bdb

and thus d ∈ Vl(b). Therefore Vl(a) ⊆ Vl(b) and by symmetry, the equality
prevails. �

An element of S may have an inverse without having a left or a right inverse.
The next lemma specifies exactly which elements of S have onesided inverses. We
shall generally use this lemma without express reference.

Lemma 3.2. The following conditions on an element a of S are equivalent.
(i) a ∈ G(S).
(ii) a has a twosided inverse.
(iii) a has a left inverse.
(iv) a has a right inverse.

Proof. That (i) implies (ii) implies (iii) is trivial.
(iii) implies (i): Let x ∈ Vl(a). Then

a = axa, x = xax, a = ux, x = va

for some u, v ∈ S1. We always have that ax ∈ E(S) ∩Ra. In this case also

a = ux = uxax ∈ Sax, ax = ava ∈ Sa
so that a L ax. Therefore ax ∈ E(S) ∩ Ha which implies that Ha is a group so
a ∈ G(S).
The equivalence of parts (i) and (iv) now follows by left–right duality. �
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As a consequence we have that an element a of S has an (onesided) inverse if
and only if a is (completely) regular. For an element of G(S), the next lemma
provides the sets of all such inverses.

Lemma 3.3. Let a ∈ G(S).
(i) Vl(a) = {fa−1 | f ∈ E(La)}

= {x ∈ S | a = axa = a2x, x = xax = x2a}.
(ii) Vr(a) = {a−1f | f ∈ E(Ra)}

= {x ∈ S | a = axa = xa2, x = xax = ax2}.
(iii) Vt(a) = {a−1}

= {x ∈ S | a = axa, x = xax, ax = xa}.

Proof. We only prove part (i); part (ii) is its dual and part (iii) requires a
straightforward argument. Let e = a0 and denote the three sets by A,B and C,
respectively.

Let x ∈ A. By Lemma 3.2, we have that x ∈ G(S), so let f = x0. By
Lemma 2.1, fa−1 ∈ Rf ∩La−1 if and only if Lf ∩Ra−1 is a group. But Lf ∩Ra−1 =
Ha is a group and thus fa−1 ∈ Hx. Further, since e L f , we get

(fa−1)a(fa−1) = (fe)fa−1 = fa−1,

a(fa−1)a = (af)e = ae = a

and thus fa−1 ∈ V (a). Hence x, fa−1 ∈ V (a) ∩ Hx which by Lemma 2.1 yields
that x = fa−1. Therefore x ∈ B which proves that A ⊆ B.

Next let x ∈ B. Then x = fa−1 for some f ∈ E(La). We have seen above that
then fa−1 ∈ V (a). Also

a2x = a2(fa−1) = (a2f)a−1 = a2a−1 = a,

x2a = (fa−1)(fa−1)a = f(a−1f)e = fa−1e = fa−1 = x.

Hence x ∈ C and thus B ⊆ C.
Finally, if x ∈ C, then x ∈ V (a) and x L a so that x ∈ A. Consequently

C ⊆ A. �

We deduce the following basic consequence of Lemma 3.3 which we shall use
repeatedly.

Corollary 3.4. Let e, f ∈ E(S) and a ∈ He. If e L f (respectively e R f), then
fa−1 (respectively a−1f) is the unique left (respectively right) inverse of a in Hf .
This exhausts all left (respectively right) inverses. In particular, Vl(e) = E(Le)
and Vr(e) = E(Re).

Proof. The first two assertions follow from Lemma 3.3, the third one follows
easily from the first. �

We introduce the following relations on G(S):

a γ b if b ∈ Vl(a), a δ b if b ∈ Vr(a), τ = δγ.
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By Lemma 3.3, for e, f ∈ E(S) and a ∈ He, b ∈ Hf , we have

a γ b⇔ e L f, b = fa−1 ⇔ e L f, a = eb−1

and similarly for δ. For any relation θ on S, we write tr θ = θ|E(S) and call it the
trace of θ.

Clearly both γ and δ are symmetric, τ is reflexive (on G(S)), γ ⊆ L, tr γ = tr
L, δ ⊆ R, tr δ = tr R, and τ ⊆ D. We shall consider the question: for which
classes of semigroups do γ, δ or τ or their traces have some of the usual properties
of a relation? The following concept will prove useful.

If e, f, g, h ∈ E(S) are such that e R f L g R h L e, we say that they form an
idempotent square in S and write [e, f, g, h] in S.

4. E-solid semigroups

We now extend a well-known concept from regular to arbitrary semigroups. A semi-
group S is E-solid if for any e, f, g ∈ E(S) such that f R e L g, there exists
h ∈ E(S) satisfying f L h R g. We may ”localize“ this concept by introducing
the following notion. If e ∈ E(S), then S is e-solid if for any f, g ∈ E(S) such
that f R e L g, there exists h ∈ E(S) such that f L h R g. Note that in both
cases, the conclusion ”there exists h ∈ E(S) such that f L h R g“ is equivalent to
gf ∈ He, in view of Lemma 2.2.

The following lemma, needed later, is of independent interest.

Lemma 4.1. Let e ∈ E(S). Then S is e-solid if and only if there exists
a greatest completely simple subsemigroup of S containing e.

Proof. Necessity. Let

Ce =
⋃
{Hg|g ∈ E(S) and there exist f, h ∈ E(S) such that [e, f, g, h] is an
idempotent square in S}.

To see that Ce is closed under multiplication, we let [e, f, g, h] and [e, f ′, g′, h′]
be idempotent squares in S and a ∈ Hg, a′ ∈ Hg′ . We have the following situation

e — f — f ′

| | |
h — g — u
| | |
h′ — v — g′

where the hypothesis guarantees the existence of u, v ∈ E(S) with the above
location. Hence [e, f ′, u, h] is an idempotent square and the existence of v by
Lemma 2.2 implies that aa′ ∈ Hu. Therefore aa′ ∈ Ce, as required and Ce is
a semigroup.

Since Ce is saturated by H, it must be closed for taking of twosided inverses
and thus Ce is completely regular. Every element of Ce is D-related to e and hence
Ce is bisimple. Consequently Ce is a completely simple subsemigroup of S.



ONESIDED INVERSES FOR SEMIGROUPS 7

Let C be any completely simple subsemigroup of S which contains e and let
a ∈ C. Then there exist f, g, h ∈ E(S) such that [e, f, g, h] is an idempotent square
in C and a ∈ Hg whence clearly a ∈ Ce. Therefore C ⊆ Ce which establishes the
desired maximality of Ce.

Sufficiency. Let f, g ∈ E(S) be such that f R e L g and denote by C the
greatest completely simple subsemigroup of S containing e. Both {e, f} and {e, g}
are completely simple subsemigroups of S containing e and thus {e, f}, {e, g} ⊆ C
by hypothesis. Hence f, g ∈ E(C) and clearly f R e L g also in C. Since C is
completely simple, there exists h ∈ E(C) such that [e, f, g, h] is an idempotent
square in C and thus also in S. Therefore S is e-solid. �

We are now ready for a multiple characterization of E-solid semigroups. For
regular semigroups, further characterizations can be found in Hall [3, Theorem 3].

Theorem 4.2. The following conditions on S are equivalent.

(i) S is E-solid.
(ii) If a, b, c ∈ G(S) are such that a R b L c, then ca ∈ G(S).
(iii) If a τ c, then c τ x for some x ∈ Ha.
(iv) tr τ is symmetric.
(v) tr τ is transitive.
(vi) tr τ is an equivalence relation.
(vii) (tr γ)(tr δ) = (tr δ)(tr γ).
(viii) For every e ∈ E(S), S is e-solid.
(ix) For every e ∈ E(S), there exists a greatest completely simple subsemigroup

Ce of S containing e.
(x) G(S) is a pairwise disjoint union of maximal completely simple subsemi-

groups of S saturated by L and R within G(S).
(xi) G(S) is a pairwise disjoint union of maximal completely simple subsemi-

groups Mα of S and every completely simple subsemigroup of S is contained
in some Mα.

Moreover, the collections in parts (ix), (x) and (xi) coincide and consist precisely
of all maximal completely simple subsemigroups of S.

Proof. (i) implies (ii). Let a, b, c ∈ G(S) be such that a R b L c. Then
a0 R b0 L c0 and by hypothesis there exists h ∈ E(S) such that a0 L h R c0. By
Lemma 2.2, we have that ca H e and hence ca ∈ G(S).

(ii) implies (iii). Let a δ b γ c. Then a, b, c ∈ G(S) and a R b L c. By
hypothesis, we have ca ∈ G(S) and by Lemma 2.2 that a L ca R c. Let h = (ca)0.
By Lemma 3.3, c−1h δ c and a0(c−1h)−1γ c−1h so that for x = a0(c−1h)−1, we
get c τ x H a, as required.

(iii) implies (iv). Let e, f ∈ E(S) be such that e τ f . By hypothesis, we have
f τ x for some x ∈ He. By Corollary 3.4, we must have x ∈ E(S) and thus x = e.

(iv) implies (v). Let e, f, g ∈ E(S) be such that e τ f and f τ g. Then e δ x γ f
and f δ y γ g for some x, y ∈ E(S) by Corollary 3.4. It follows that y δ f γ x
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so that y τ x. The hypothesis implies that x τ y so, again by the same reference,
there exists z ∈ E(S) such that x δ z γ y. Hence e R x R z and z L y L g which
evidently implies that e δ z γ g and thus e τ g.

(v) implies (viii). Let e, f, g ∈ E(S) be such that e R f L g. Then g δ g γ f
which yields that g τ f ; also f δ e τ e which implies that f τ e. Now the hypothesis
implies that g τ e. Again by Corollary 3.4, we deduce the existence of h ∈ E(S)
such that g δ h γ e and hence e L h R g. Therefore S is f -solid where f ∈ E(S)
is arbitrary.

(viii) implies (ix). This is a direct consequence of Lemma 4.1.

(ix) implies (x). Recall the definition of Ce in Lemma 4.1. We shall show that
the family C = {Ce|e ∈ E(S)} has the requisite properties. First let e, f ∈ E(S)
and assume that x ∈ Ce∩Cf . From the proof of Lemma 4.1, we know that both Ce

and Cf are saturated by H. Hence Hx ⊆ Ce ∩Cf . Since Ce is completely simple,
Hx must be a group, say with identity g. By maximality of Cg, we obtain Ce ⊆ Cg

whence e ∈ Cg. But then by maximality of Ce, we also have Cg ⊆ Ce. Therefore
Ce = Cg and analogously Cf = Cg so that Ce = Cf . Hence the collection C is
pairwise disjoint.

Let C be a completely simple subsemigroup of S containing Ce. Then e ∈ C
which implies that C ⊆ Ce. Thus Ce = C and Ce is a maximal completely simple
subsemigroup of S.

Let e, f ∈ E(S) be such that e L f . Then {e, f} is a completely simple subsemi-
group of S containing e and thus {e, f} ⊆ Ce whence f ∈ Ce. We have observed
above that Ce is saturated by H. Hence Ce is saturated by L within G(S) and
the same argument is valid for R.

(x) implies (xi). Let C be a completely simple subsemigroup of S and x ∈ C.
Then x ∈ G(S) and hence x ∈ Mα for some α. Now let y ∈ C. Then x R z L y
in C for some z ∈ C. The hypothesis implies that first z ∈Mα and then y ∈Mα.
This shows that C ⊆Mα, as required.

(xi) implies (i). Let e, f, g ∈ E(S) be such that e R f L g. Denote by Mα, Mβ

and Mγ the maximal completely simple subsemigroups of S containing e, f and
g, respectively, from the collection in the hypothesis. Since {e, f} is a completely
simple subsemigroup of S, it must be contained in some Mδ. By pairwise disjoint-
ness of the collection, we get that Mα = Mδ = Mβ . Similarly Mβ = Mγ . But
then e, f, g ∈ Mδ where e R f L g. Since Mδ is completely simple, there exists
h ∈ E(Mα) such that e L h R g. It follows that S is E-solid.

(i) is equivalent to (vi). We have proved above that parts (i), (iv) and (v) are
equivalent. This together with the fact that τ is always reflexive on G(S) proves
the contention.

(iv) is equivalent to (vii). By Corollary 3.4, tr τ = (tr δ)(tr γ) whence follows
the assertion.
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The above arguments contain the proof of the remaining assertions of the the-
orem. �

In Theorem 4.2(x), one cannot omit the condition that Mα be saturated by L
and R within G(S) or the corresponding condition in Theorem 4.2(xi). Indeed,
let

S = M0(3, {1}, 2;P )

with P =
[
1 1 0
0 1 1

]
. Then G(S) is a pairwise disjoint union of maximal com-

pletely simple subsemigroups of S, namely

{(1, 1, 1), (2, 1, 1)}, {(2, 1, 2), (3, 1, 2)}, {0}.
Neither of the first two semigroups is saturated by R within G(S) since (2, 1, 1) R
(2, 1, 2). Also the completely simple subsemigroup {(2, 1, 1), (2, 1, 2)} is not con-
tained in any of the above semigroups. Of course, the semigroup S is not E-solid.

The situation with subsemigroups of an arbitrary semigroup S which are left or
right groups is much simpler. Indeed, for any e ∈ E(S), Le ∩ G(S) (respectively
Re ∩ G(S)) is the greatest subsemigroup of S which is a left (respectively right)
group and contains e. It follows that G(S) is a pairwise disjoint union of maximal
subsemigroups of S which are left (respectively right) groups.

5. Central semigroups

We start by defining certain functions among some group H-classes of an arbitrary
semigroup which will turn out to be antiisomorphisms. Indeed, Corollary 3.4 makes
it possible to define the following mappings.

Lemma 5.1. Let e, f ∈ E(S).
(i) Let e L f . Then the mapping

γef : a→ fa−1 (a ∈ He)

is an antiisomorphism between He and Hf . Moreover, γ−1
ef = γfe and for

any a ∈ He, fa−1 = (fa)−1.
(ii) Let e R f . Then the mapping

δef : a→ a−1f (a ∈ He)

is an antiisomorphism between He and Hf . Moreover, δ−1
ef = δfe and for

any a ∈ He, a−1f = (af)−1.

Proof. (i) For a ∈ He, we get

(fa−1)(fa) = f(a−1f)a = fa−1a = fe = f

and thus fa−1 = (fa)−1. If also b ∈ He, then with ϕ = γef , we get

(aϕ)(bϕ) = (fa−1)(fb−1) = f(a−1f)b−1 = fa−1b−1 = f(ba)−1 = (ba)ϕ

and ϕ is an antihomomorphism. Now letting ψ = γfe, we obtain

aϕψ = e(fa−1)−1 = e(fa) = (ef)a = ea = a
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and similarly cψϕ = c for any c ∈ Hf . Therefore ϕ is a bijection between He and
Hf and so an antiisomorphism and ϕ−1 = ψ.

(ii) This is the dual of part (i). �

Corollary 5.2. Let e, f, g ∈ E(S).

If e L f R g, then γefδfg : a→ fag,

if e R f L g, then δefγfg : a→ gaf,

are isomorphisms between He and Hg.

Proof. This follows directly from Lemma 5.1. �

For G a group and g ∈ G, we define εg by

εg : x→ g−1xg (x ∈ G).

We now summarize the most salient features of the compositions of the above
functions for a given idempotent square [e, f, g, h] (for the definition, see the end
of Section 3).

Theorem 5.3. Let [e, f, g, h] in S and a ∈ He.
(i) hf(aδefγfg) = haf = (aγehδhg)hf ∈ V (a−1).
(ii) δefγfg = γehδhgεhf .
(iii) δghγheδefγfg = εhf .

Proof. (i) Indeed, by Corollary 5.2, we have

hf(aδefγfg) = hfgaf = hf(af) = haf,

(aγehδhg)hf = haghf = (ha)hf = haf,

(haf)a−1(haf) = ha(fa−1h)af = haa−1af = haf,

a−1(haf)a−1 = (a−1h)a(fa−1) = a−1aa−1 = a−1,

as required.
(ii) This follows directly from part (i).
(iii) This is an immediate consequence of part (i) in view of Lemma 5.1. �

We now extend a well-known concept from completely regular to arbitrary semi-
groups as follows. A semigroup S is central if for any e, f ∈ E(S) such that
ef ∈ G(S), ef is in the center of the group Hef .

Theorem 5.4. The following conditions on S are equivalent.
(i) S is central.
(ii) If [e, f, g, h] in S, then δefγfg = γehδhg.
(iii) If [e, f, g, h] in S and a ∈ He, then gaf = hag.
(iv) Every completely simple subsemigroup of S is central.

Proof. (i) implies (ii). If [e, f, g, h] is in S, then hf ∈ Hg by Lemma 2.2 and the
hypothesis implies that εhf is the identity mapping on Hg; the desired conclusion
now follows by Theorem 5.3(ii).

(ii) implies (iii). This follows directly from Corollary 5.2.
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(iii) implies (i). First let e, f, h ∈ E(S) be such that f R e L h and fh ∈ He.
By Lemma 2.2, there exists g ∈ E(S) such that f L g R h. Hence [e, f, g, h] is
an idempotent square in S and the hypothesis implies that for a ∈ He, we have
gaf = hag. Hence

fha = fh(ae) = fha(eh) = fhae(gh) = f(hag)h

= f(gaf)h = (fg)afh = fafh = f(ea)fh

= (fe)afh = eafh = afh

and fh is in the center of He.
We now consider the general case. Hence let e, f, h ∈ E(S) be such that

fh ∈ He. By Lemma 2.4, there exist f ′, h′ ∈ E(S) such that fh = f ′h′ and
f ′ R f ′h′ L h′. Hence f ′ R e L h′ and f ′h′ ∈ He. The case above yields that f ′h′

is in the center of He and hence so is fh. Therefore S is central.
(i) implies (iv). This is trivial.
(iv) implies (i). Let e, f, g ∈ E(S) be such that eg ∈ Hf . Letting x = (ef)−1 ∈

V (ef) and applying Lemma 2.4, we deduce that we may assume that e, f, g ∈ E(S)
are such that e R f L g and eg ∈ Hf . Thus eg ∈ Re ∩ Lg which by Lemma 2.2
implies that Le ∩Rg is a group. Denoting by h the identity element of this group,
we obtain the idempotent square [e, f, g, h].

Now let a ∈ Hf . Since [e, f, g, h] is an idempotent square, all the products
and inverses obtained from the set {e, f, g, h, a} are contained in the set He ∪
Hf ∪ Hg ∪ Hh. Hence the set of all such products and inverses is a completely
simple subsemigroup C of S. By hypothesis C is central and thus aeg = ega, as
required. �

6. Completely regular semigroups

In view of Lemma 2.2, the conclusion in Theorem 4.2(ii) is equivalent to ac H b.
What happens if we take a, b, c in S rather than in G(S)? The answer is very
simple.

Proposition 6.1. The following conditions on S are equivalent.
(i) S is completely regular.
(ii) Every element of S has a left (respectively right, twosided) inverse.
(iii) If a R b L c, then ac H b.
(iv) τ is a reflexive relation on S.

Proof. The equivalence of parts (i) and (ii) and of (i) and (iv) follows directly
from Lemma 3.2.

(i) implies (iii). Let a R b L c. The existence of h ∈ E(S) such that a0 L h R c0

by Lemma 2.2 implies that ac H b.
(iii) implies (i). For any a ∈ S, we have a R a L a and thus a2 H a. Hence a

is a completely regular element of S which yields the assertion. �

In order to treat central completely regular semigroups we first consider com-
pletely simple semigroups.
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Lemma 6.2. On a central completely simple semigroup τ is an equivalence
relation.

Proof. In view of the Rees theorem and [8, Proposition III.6.2],we may set
S = M(I,G,Λ;P ) where P is normalized and all its entries lie in the center of G.
Reflexivity of τ follows from Proposition 6.1. We will freely use Lemma 3.3. If

(1)

(i, g, λ) δ (i, g, λ)−1(i, p−1
µi , µ)

= (i, p−1
λi g

−1p−1
µi , µ) γ (j, p−1

µj , µ)(i, p−1
λi g

−1p−1
µi , µ)

= (j, p−1
µj pµigpλip

−1
µi , µ) = (j, p−1

µj gpλi, µ)

since pµi lies in the center of G, then

(2)

(i, g, λ) γ (j, p−1
λj , λ)(i, g, λ)−1

= (j, p−1
λj g

−1p−1
λi , λ) δ (j, p−1

λj g
−1p−1

λi , λ)−1(j, p−1
µj , µ)

= (j, p−1
λj pλigpλjp

−1
µj , µ) = (j, pλigp

−1
µj , µ)

since pλj lies in the center of G. The hypothesis also implies that the middle
entries of (1) and (2) are equal. Hence τ is symmetric.

We now turn to transitivity. On the one hand

(3)

(i, g, λ) δ (i, g, λ)−1(i, p−1
µi , µ)

= (i, p−1
λi g

−1p−1
µi , µ) γ (j, p−1

µj , µ)(i, p−1
λi g

−1p−1
µi , µ)−1

= (j, p−1
µj pµigpλip

−1
µi , µ) δ (j, p−1

µj pµigpλip
−1
µi , µ)−1(j, p−1

νj , ν)

= (j, p−1
µj pµip

−1
λi g

−1p−1
µi pµjp

−1
νj , ν)

γ (k, p−1
νk , ν)(j, p

−1
µj pµip

−1
λi g

−1p−1
µi pµjp

−1
νj , ν)

−1

= (k, p−1
νk pνjp

−1
µj pµigpλip

−1
µi pµjp

−1
νj , ν)

and on the other hand,

(4)

(i, g, λ) δ (i, g, λ)−1(i, p−1
νi , ν)

= (i, p−1
λi g

−1p−1
νi , ν) γ (k, p−1

νk , ν)(i, p
−1
λi g

−1p−1
νi , ν)

−1

= (k, p−1
νk pνigpλip

−1
νi , ν).

Taking into account that all sandwich matrix entries lie in the center of G, we
obtain that the elements in (3) and (4) are equal. It follows that τ is transitive
and thus is an equivalence relation on S. �

We also need a kind of converse of the above lemma.

Lemma 6.3. A completely simple semigroup on which τ is symmetric is central.
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Proof. By the Rees theorem, we may set S = M(I,G,Λ;P ) where P is nor-
malized. We will freely use Lemma 3.3. First

(5)

(i, g, λ) δ (i, g, λ)−1(i, 1, 1)

= (i, p−1
λi g

−1, 1)γ (1, 1, 1)(i, p−1
λi g

−1, 1)−1

= (1, gpλi, 1).

By hypothesis, there exists j ∈ I such that

(6)

(i, g, λ) γ (j, p−1
λj , λ)(i, g, λ)−1

= (j, p−1
λj g

−1p−1
λi , λ) δ (j, p−1

λj g
−1p−1

λi , λ)−1(j, 1, 1)

= (j, p−1
λj pλigpλj , 1).

Since (5) and (6) must be equal, we get j = 1 which implies that pλj = 1 and
thus gpλi = pλig. It follows that each pλi belongs to the center of G. Now [8,
Proposition III.6.2], implies that S is central. �

We are now able to prove the desired result.

Theorem 6.4. The following conditions on S are equivalent.
(i) S is completely regular and central.
(ii) τ is an equivalence relation on S.
(iii) τ is reflexive on S and symmetric.

Proof. (i) implies (ii). This follows directly from Lemma 6.2 since clearly τ ⊆ D.
(ii) implies (iii). This is trivial.
(iii) implies (i). Since τ is reflexive on S, Proposition 6.1 yields that S is

completely regular. Hence S is a semilattice Y of completely simple semigroups Sα.
For each α ∈ Y , τ |Sα

is the τ -relation on Sα and is symmetric, so by Lemma 6.3,
Sα is central. Now [8, Theorem II.6.4], implies that S is central. �

In the next theorem we encounter orthogroups, that is completely regular semi-
groups whose idempotents form a subsemigroup.

Theorem 6.5. The semigroup S is an orthogroup if and only if τ is a congru-
ence on S.

Proof. Necessity. The semigroup S is a semilattice Y of rectangular groups Sα.
For each α ∈ Y , we may take Sα = Lα×Gα×Rα where Lα, Gα and Rα are a left
zero semigroup, a group and a right zero semigroup, respectively. Let i, j ∈ Lα,
g ∈ Gα, 1 be the identity of Gα and λ, µ ∈ Rα. By Lemma 3.3, we get

(i, g, λ) δ (i, g−1, λ)(i, 1, µ) = (i, g−1, µ) γ (j, 1, µ)(i, g, µ) = (j, g, µ).

It follows that for a = (i, g, λ) ∈ Sα, b = (j, h, µ) ∈ Sβ , we have

a τ b⇔ α = β, g = h,

Thus τ |Sα
= σSα

, the least group congruence on Sα and τ is an equivalence relation
contained in D. Hence τ =

⋃
α∈Y τ |Sα =

⋃
α∈Y σSα ; but

⋃
α∈Y σSα = νS , the least
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Clifford congruence on S, by [4, Theorem (ii)]. Therefore τ = νS and thus τ is a
congruence on S.

Sufficiency. Proposition 6.1 implies that S is completely regular. Let e, f ∈
E(S); we wish to show that ef ∈ E(S). In view of Lemma 2.4 we may suppose
that e R ef L f . Hence e δ (ef)0 γ f so that e τ f . The hypothesis implies
that ef τ f which by Corollary 3.4 yields that ef ∈ E(S). Therefore S is an
orthogroup. �

Proposition 6.6. The following conditions on S are equivalent:

(i) S is a band.
(ii) γ = L.
(iii) δ = R.
(iv) τ = D.

Proof. That part (i) implies the remaining parts is obvious.
(ii) implies (i). First by Lemma 3.2, S is completely regular. Let a ∈ S and

x ∈ V (a). Then a L xa and hence a γ xa. But then a = a(xa)a = a2.
(iii) implies (i). This is the dual of the preceding case.
(iv) implies (i). By Lemma 3.2, S is completely regular. Let a ∈ S and x ∈ V (a).

Then a D xa and by hypothesis, there exists b ∈ S such that a δ b γ xa. Hence
b = sxa for some s ∈ S and thus

a = aba = a(bxab)a = abxa = a(sxa)xa = asxa = ab ∈ E(S)

and S is a band. �

7. Almost L-unipotent semigroups

Let θ be an equivalence relation on S. Then S is called θ-unipotent if every θ-class
contains exactly one idempotent. We modify this concept by saying that S is
almost θ-unipotent if every θ-class contains at most one idempotent.

Theorem 7.1. The following conditions on S are equivalent.

(i) For any a ∈ S and a′, a′′ ∈ V (a), we have a′a = a′′a.
(ii) For any a ∈ S and a′, a′′ ∈ V (a), we have a′ R a′′.
(iii) S is almost L-unipotent.
(iv) Every element of S has at most one left inverse.
(v) Every left inverse of any element of S is twosided.
(vi) Every completely simple subsemigroup of S is a right group.

Proof. (i) implies (ii). Let a ∈ S and a′, a′′ ∈ V (a). By hypothesis, we have
a′a = a′′a whence a′ R a′a = a′′a R a′′.

(ii) implies (iii). Let e, f ∈ E(S) be such that e L f . Then e, f ∈ V (e) and the
hypothesis implies that e R f . But then e = f .

(iii) implies (iv). Let a ∈ S and b, c ∈ Vl(a). In view of Lemma 3.2, we have
b, c ∈ G(S) and thus b0 L c0. But then the hypothesis implies that b0 = c0 which
by Lemma 2.1 yields b = c.
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(iv) implies (v). Let a ∈ S and b ∈ Vl(a). By hypothesis, b is the unique left
inverse of a and hence b = a−1. Thus b is a twosided inverse of a.

(v) implies (i). Let a′, a′′ ∈ V (a). Then a′a L a0 L a′′a and thus a′a, a′′a ∈
Vl(a0) and the hypothesis implies that a′a = a′′a = a0.

(iii) implies (vi). If C is a completely simple subsemigroup of S, then C is
L-unipotent and is thus a right group.

(vi) implies (iii). Let e, f ∈ E(S) be such that e L f . Then {e, f} is a completely
simple subsemigroup of S so is a right group whence e = f . �

Corollary 7.2. The following conditions on S are equivalent.
(i) S is almost L- and R-unipotent.
(ii) Every element of S has at most one inverse.
(iii) τ = εG(S).
(iv) tr τ = εE(S).
(v) Every completely simple subsemigroup of S is a group.

Proof. (i) implies (ii). Let a ∈ S and a′, a′′ ∈ V (a). By Theorem 7.1 and its
dual, we get a′a = a′′a and aa′ = aa′′ whence a′ = a′aa′ = a′′aa′′ = a′′.

(ii) implies (iii). Let a, b ∈ G(S) be such that a τ b. Then a δ c γ b for some
c ∈ G(S) which implies that a, b ∈ V (c). The hypothesis then yields that a = b.

(iii) implies (iv). This is trivial.
(iv) implies (i). Let e, f ∈ E(S). If e L f , then e δ e γ f and if e R f , then

e δ f γ f so that in either case e = f .
(i) is equivalent to (v). This follows directly from Theorem 7.1 and its dual. �

We are somewhat more explicit in the following result. Recall that a band
satisfying the identity xa = axa is right regular.

Proposition 7.3. The semigroup S satisfies any of the conditions in Theo-
rem 7.1 and the product of any two idempotents of S is a regular element if and
only if E(S) is either empty or is a right regular band. In the latter case, the set
R of regular elements of S is a subsemigroup of S.

Proof. Necessity. Let e, f ∈ E(S). We show first that ef ∈ E(S). To this end,
let x ∈ V (ef). Then xef, fxef ∈ E(S) and xef L fxef . The hypothesis that S
is almost L-unipotent implies that xef = fxef . Multiplying on the right by x,
we get x = fx. But then x = xefx = xex which implies that xe ∈ E(S). Since
also efxe ∈ E(S) and xe L efxe, the hypothesis implies that xe = efxe. This
gives xef = efxef = ef so that ef ∈ E(S). In particular ef, fef ∈ E(S) and also
ef L fef which by hypothesis yields that ef = fef . Therefore E(S) is a right
regular band.

Sufficiency. This is obvious since a right regular band is trivially L-unipotent.
For the last assertion of the proposition, let a, b ∈ R, x ∈ V (a), y ∈ V (b). Then

xa, by ∈ E(S) and the hypothesis implies that xaby = byxaby and thus

ab = a(xaby)b = a(byxaby)b = abyxa(byb) = abyxab.

�
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Proposition 7.3 was proved by Venkatesan ([9, Theorem 1] under the covering
hypothesis that S be a regular semigroup. For these semigroups, we adopt the
label right inverse semigroups. This terminology may be justified in view of parts
(i) and (ii) of Theorem 7.1. Because of part (iii) of the same theorem, they are also
referred to as L-unipotent. In view of Proposition 7.3, they are also known as right
regular orthodox semigroups. In particular, the semigroup R in Proposition 7.3 is
a right inverse semigroup.

We also have the dual concept of a left inverse semigroup. Clearly S is both a
left and a right inverse semigroup if and only if S is an inverse semigroup. The
structure of left inverse semigroups was elucidated by Yamada [10].

Corollary 7.4. The semigroup S satisfies any of the conditions in Corollary 7.2
and the product of any two idempotents of S is a regular element if and only if
E(S) is either empty or is a semilattice. In the latter case, the set R of all regular
elements of S is an inverse subsemigroup of S.

Proof. This follows easily from Proposition 7.3 and its dual. �

We are now able to characterize the congruences on a regular semigroup gener-
ated by tr γ, tr δ, tr τ and τ . If θ is a relation on S, θ∗ denotes the congruence on
S generated by θ. A regular semigroup whose idempotents form a regular band
(that is satisfies the identity axya = axaya) is called a regular orthodox semigroup.

Theorem 7.5. In any regular semigroup S,
(i) (tr γ)∗ is the least right inverse congruence,
(ii) (tr δ)∗ is the least left inverse congruence,
(iii) (tr γ)∗∩ (tr δ)∗ is the least regular orthodox semigroup congruence,
(iv) τ∗ = (tr τ)∗ = (tr γ)∗(tr δ)∗ = (tr δ)∗(tr γ)∗ = (tr γ)∗ ∨ (tr δ)∗ is the

least inverse congruence.

Proof. (i) Obviously tr γ = tr L. By [7, Theorem 1(ii)], (tr L)∗ is the least
right inverse congruence on S.

(ii) This is the dual of part (i).
(iii) We note first that by [7, Theorem 1(ix)] in view of parts (i) and (ii), the

relation (tr γ)∗ ∩ (tr δ)∗ is the least regular orthodox semigroup congruence on S.
(iv) Let λ = τ∗ and ρ = (tr τ)∗.
Let e, f ∈ E(S/ρ) be such that e L f . By [2, Theorem 5], there exist e′, f ′ ∈

E(S) such that e′ρ = e, f ′ρ = f and e′ L f ′. But then e′ δ e′ γ f ′ and thus e′ τ f ′

and e = e′ρ = f ′ρ = f . Hence S/ρ is L-unipotent. By duality, we conclude that
S/ρ is also R-unipotent and is thus an inverse semigroup. It follows that ρ is an
inverse congruence and since λ ⊇ ρ, also λ is an inverse congruence.

Let θ be an inverse congruence on S and let a δ b γ c. By Lemma 3.3, we have

a0 R b0 L c0, b = a−1b0, c = c0b−1

so that

(aθ)0 R (bθ)0 L (cθ)0, bθ = (aθ)−1(bθ)0, cθ = (cθ)0(bθ)−1.
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But then
a0 θ b0 θ c0, b θ a−1, c θ b−1.

Hence a θ b−1 θ c whence a θ c. It follows that τ ⊆ θ and thus λ ⊆ θ, proving
the minimality of λ. For θ = ρ, we obtain λ ⊆ ρ and equality prevails. Therefore
λ = ρ is the least inverse congruence on S.

The remaining equalities follow from [7, Corollary (ii) to Theorem 1] in view of
parts (i) and (ii). �

In particular, the relation τ in Theorem 6.4 is the least Clifford congruence onS.

8. Locally almost L-unipotent semigroups

In order to treat this case, we introduce the following concept. Elements a and b
of a semigroup S are bounded inverses of each other if a, b ∈ G(S), b ∈ V (a) and
there exists e ∈ E(S) such that e ≥ a0 and e ≥ b0. Obviously the twosided inverse
of an element a is bounded. We shall use onesided bounded inverses, so we let
B(a) be the set of all bounded inverses of a and

Bl(a) = Vl(a) ∩B(a), Br(a) = Vr(a) ∩B(a).

Let θ be an equivalence relation on S. Then S satisfies θ-majorization if for any
e, f, g ∈ E(S), e ≥ f , e ≥ g and f θ g imply that f = g. For a property P of
semigroups, S is locally P if for any e ∈ E(S), the semigroup eSe has property P.

Theorem 8.1. The following conditions on S are equivalent.
(i) S is locally an almost L- unipotent semigroup.
(ii) S satisfies L-majorization.
(iii) Every element of S has at most one bounded left inverse.
(iv) Every bounded left inverse of any element of S is twosided.
(v) Every subsemigroup of S which is a completely simple semigroup with an

identity adjoined is a right group with an identity adjoined.

Proof. (i) implies (ii). Let e, f, g ∈ E(S) be such that e ≥ f , e ≥ g and f L g.
Then f, g ∈ E(eSe) and f L g in eSe which by hypothesis implies that f = g.

(ii) implies (iii). Let a ∈ S and b ∈ Bl(a). Then there exists e ∈ E(S) such
that e ≥ a0 and e ≥ b0. Since a L b, we have a0 L b0 and hence the hypothesis
implies that a0 = b0. But then b = a−1 which proves its uniqueness.

(iii) implies (iv). Let a ∈ S and b ∈ Bl(a). Then a−1 ∈ Bl(a) by hypothesis
implies that b = a−1. Hence b is a twosided inverse of a.

(iv) implies (v). Let C ∪ {e} be a subsemigroup of S where C is a completely
simple semigroup with e adjoined to it as an identity. If f, g ∈ E(S) are such that
f L g, then both f and g are bounded left inverses of f and the hypothesis implies
that f = g. Thus C is a right group.

(v) implies (i). Let e ∈ E(S) and C be a completely simple subsemigroup of
eSe. If e ∈ C, then C is a (right) group. Otherwise C ∪ {e} is a completely
simple semigroup with an identity adjoined so by hypothesis C is a right group.
By Theorem 7.1, eSe is almost L-unipotent. �
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Corollary 8.2. The following conditions on S are equivalent.

(i) S is locally an almost L- and R-unipotent semigroup.
(ii) S satisfies L- and R-majorization.
(iii) Every element of S has at most one bounded inverse.
(iv) Every bounded inverse of any element of S is twosided.
(v) Every subsemigroup of S which is a completely simple semigroup with an

identity adjoined is a group with an identity adjoined.

Proof. (i), (ii) and (v) are equivalent. This follows directly from Theorem 8.1
and its dual.

(i) implies (iii). Let a ∈ S and b ∈ B(a). Then there exists e ∈ E(S) such
that e ≥ a0 and e ≥ b0. By hypothesis, eSe is an almost L- and R-unipotent
semigroup; also a, b ∈ eSe and b ∈ V (a) in eSe. Now Corollary 7.2 implies that
b = a−1. Therefore a−1 is the only bounded inverse of a.

(iii) implies (iv). This is obvious.
(iv) implies (ii). Let e, f, g ∈ E(S) be such that e ≥ f , e ≥ g and f L g. Then g

is a bounded inverse of f and by hypothesis, must be twosided. It follows that f =
g. Hence S satisfies L-majorization; analogously it also satisfies R-majorization.

�

Recall first that a band satisfying the identity xya = yxa is right normal.
Compare the next result with Proposition 7.3.

Proposition 8.3. The semigroup S satisfies any of the conditions in Theo-
rem 7.1, any of the conditions in the dual of Theorem 8.1 and the product of any
two idempotents of S is a regular element if and only if E(S) is either empty or
is a right normal band. In the latter case, the set R of all regular elements of S is
a right inverse locally inverse semigroup.

Proof. Necessity. Assume that E(S) is not empty. By Proposition 7.3, E(S) is
a right regular band and by the dual of Theorem 8.1, S satisfies R-majorization.
Hence E(S) is a right regular band which satisfies R-majorization and it is well
known that then E(S) must be a right normal band.

Sufficiency. By Proposition 7.3, S satisfies the conditions in Theorem 7.1. It
is well known that a right normal band satisfies R-majorization. It follows that
also S satisfies R-majorization. Hence S satisfies the dual of the conditions in
Theorem 8.1. The product of any two idempotents is not only a regular element
but it is an idempotent.

Assume that E(S) is a right normal band. By Proposition 7.3, the set R is a
right inverse subsemigroup of S. Since E(S) = E(R) is a right normal band, it is
locally a semilattice and thus R is locally inverse. �

Regular semigroups in Proposition 8.3 are called right normal right inverse semi-
groups by Madhavan [5]. In that paper he constructed for them a representation
by means of partial transformations on a set which generalizes that of Wagner for
inverse semigroups. They are also called right normal orthodox semigroups.
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9. Remarks

When S is regular and e, f ∈ E(S), Nambooripad [6] introduced the sandwich set
S(e, f) of e and f , one of whose formulations is

S(e, f) = fV (ef)e.

It is easy to see that S(e, f) = V (ef)∩fSe so that S(e, f) is the set of all inverses
of ef in fSe. In fact, S(e, f) is always a rectangular band. Here we encounter
special kinds of inverses of elements of S of the form ef for e, f ∈ E(S). Of
course, one can consider S(e, f) in an arbitrary semigroup. Under the hypothesis
that the product of any two idempotents is a regular element, which we used in
Proposition 7.3, Corollary 7.4 and Proposition 8.3, all sandwich sets S(e, f) are
nonempty and are thus rectangular bands.
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