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ONESIDED INVERSES FOR SEMIGROUPS

MARIO PETRICH

Abstract. In any semigroup S, we say that elements a and b are left inverses of each other if a = aba, b = bab and

a L b, in which case we write a γ b. Right inverses are defined dually with the notation δ. Set τ = δγ. We study the
classes of semigroups in which τ has some of the usual properties of a relation. We also consider properties of (maximal)

completely simple subsemigroups of S.
In terms of the above concepts, we characterize E–solid, central, (almost) L–unipotent and locally (almost)

L–unipotent semigroups in many ways. We define these notions for arbitrary semigroups by extending their defini-
tions from regular semigroups.

1. Introduction and summary

It is the existence of an inverse for each element which distinguishes a group from a monoid and the existence of
an identity which distinguishes a monoid from a semigroup. These differences are attenuated by the possibility
of defining an inverse of some elements of an arbitrary semigroup S by the following device. Elements a and b
are inverses of each other if a = aba and b = bab. The standard notation for the set of all inverses of a is V (a).
Not all elements of S may have an inverse, but those that do are called regular. Hence a semigroup is called
regular if all its elements are regular (this is equivalent to the usual definition). Two other important classes of
semigroups are distinguished by the properties of inverses of their elements. First, S is an inverse semigroup if
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every element of S has a unique inverse. Second, an element a of S is completely regular if it has an inverse with
which it commutes, and S is completely regular if all its elements are.

Hence some of the most important classes of semigroups can be defined (or characterized) by properties of
inverses of elements of their members. The purpose of this paper is to further ramify the above properties of
inverse and thereby characterize several of the most important classes of (regular) semigroups. The first task
thus consists in introducing some new properties an inverse an element may have while the second amounts to
identifying the classes of semigroups in which inverses of their elements have these properties.

The principal novelty here is the following set of concepts. For a semigroup S and a, b ∈ S, we say that a and
b are left (respectively, right) inverses of each other if b ∈ V (a) and a L b (respectively a R b); if both, we say
that they are twosided inverses of each other. It is easy to see that the existence of any kind of these inverses for
an element a of S is equivalent to a being a completely regular element, that is contained in a subgroup of S. We
are thus led to the notion of the group part of S which we denote by G(S). A further refinement of the concept
of an inverse is a bounded (onesided) inverse. We also consider completely simple subsemigroups of an arbitrary
semigroup.

We start in Section 2 with a brief list of needed notation and some well-known lemmas. In Section 3 we
establish a number of auxiliary results which will be used in the main body of the paper. In the next five
sections, we consider E–solid, central, completely regular, almost L–unipotent (every L–class contains at most
one idempotent) and locally almost L–unipotent semigroups, respectively.

2. Background

For all notation and terminology not defined in the paper, consult standard texts on semigroups. In addition to
the concepts defined in Section 1, we recall briefly the notation that will be used frequently.

Throughout the paper, S stands for an arbitrary semigroup unless stated otherwise. For any A ⊆ S, we
denote by E(A) the set of all idempotents in A. Green’s relations are denoted by L,R,H and D, and for any



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

a ∈ S,La, Ra,Ha and Da are their classes containing the element a. We emphasize that for a ∈ S,

V (a) = {b ∈ S|a = aba, b = bab},
is the set of all inverses of a. The set G(S) is the union of all subgroups of S; equivalently G(S) =

⋃
e∈E(S)He,

or it is the set of all completely regular elements of S. For e ∈ E(S) and a ∈ He, we denote by a−1 the inverse
of a in the group He and write a0 = e.

For any set X, εX denotes the equality relation on X.
The remainder of this section is well known. Since it plays a basic role in our deliberations and for the sake of

completeness, we supply (short) proofs.

Lemma 2.1. Let a, b ∈ S. Then Hb contains an inverse of a if and only if there exist e, f ∈ E(S) such that

a R e L b R f L a.

If this is the case, then the inverse of a in Hb is unique.

Proof. Necessity. If x ∈ V (a) ∩Hb, then e = ax and f = xa satisfy the requisite conditions.
Sufficiency. By hypothesis, we have

a = ea = af, b = be = fb, e = au, f = va

for some e, f ∈ E(S) and u, v ∈ S1. For x = fuave, we obtain
axa = afuavea = auava = eaf = a,

xax = fuaveafuave = fua(va)uave = fu(au)ave = fuave = x,

e = au = afuau = afuafu = afuavau = afuave ∈ Sx,
and similarly f ∈ xS which together with x ∈ fS ∩ Se implies that

x ∈ V (a) ∩ Le ∩Rf = V (a) ∩Hb.

For the final assertion, let x, y ∈ V (a) and x H y. Then x = yu = vy for some u, v ∈ S1 which implies that
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x = yu = yayu = yax
and similarly x = xay which yields

x = xax = (yax)a(xay) = yay = y,

as asserted. �

Lemma 2.2. Let a, b ∈ S. Then ab ∈ Ra ∩ Lb if and only if La ∩Rb is a group.

Proof. Necessity. By hypothesis, a = abx and b = yab for some x, y ∈ S1. Then letting e = bx, we get e = ya
and thus e ∈ La ∩Rb ∩ E(S), as required.

Sufficiency. Let a L e R b where e ∈ E(S). Then

a = ae, e = xa, b = eb, e = by

for some x, y ∈ S1. Hence
a = ae = aby, b = eb = xab

so that a R ab L b. �

Corollary 2.3. Let a, b, c ∈ G(S) be such that a R b L c. Then the following conditions are equivalent
(i) ac H b.
(ii) a L h R c for some h ∈ E(S).
(iii) ca ∈ G(S).

Proof. The equivalence of parts (i) and (ii) follows directly from Lemma 2.2. The same reference also implies
that ca ∈ La ∩Rc. This implies the equivalence of parts (ii) and (iii). �

Lemma 2.4. Let e, f ∈ E(S), x ∈ V (ef), g = efxe and h = fxef . Then g, h ∈ E(S) and

g R ef = gh L h.
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Proof. Indeed,

g2 = (efxe)(efxe) = ef(xefx)e = efxe = g,

and similarly h2 = h,

g ∈ efS, ef ∈ gS ∩ Sh, h ∈ Sef,
ef = ef(xefx)ef = (efxe)(fxef) = gh,

as required. �

3. Preliminaries

The following are our basic concepts and notation. For a, b ∈ S,

b is a left inverse of a if b ∈ Vl(a) = V (a) ∩ La,

b is a right inverse of a if b ∈ Vr(a) = V (a) ∩Ra,

b is a twosided inverse of a if b ∈ Vt(a) = V (a) ∩Ha.

We start by ellucidating the nature of these concepts. Hall [1, Theorem 2], proved that a regular semigroup S
is orthodox if and only if it has the property

V (a) ∩ V (b) 6= φ⇒ V (a) = V (b).

The next proposition shows that the sets Vl(a) have an analogous property.

Proposition 3.1. The following implication holds in S:

Vl(a) ∩ Vl(b) 6= φ⇒ Vl(a) = Vl(b).
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Proof. Let a, b, c, d ∈ S be such that c ∈ Vl(a) ∩ Vl(b), d ∈ Vl(a). Then
a L b L c L d,

c = cac, a = aca, c = cbc, b = bcb, d = dad, a = ada,

so that a = sb, d = tc, c = ud, b = va for some s, t, u, v ∈ S1. Hence
d = dad = dsbd = dsbcbd = dacbd = tcacbd = tcbd = dbd,

b = bcb = budb = budadb = bcadb = vacadb = vadb = bdb

and thus d ∈ Vl(b). Therefore Vl(a) ⊆ Vl(b) and by symmetry, the equality prevails. �

An element of S may have an inverse without having a left or a right inverse. The next lemma specifies exactly
which elements of S have onesided inverses. We shall generally use this lemma without express reference.

Lemma 3.2. The following conditions on an element a of S are equivalent.
(i) a ∈ G(S).
(ii) a has a twosided inverse.
(iii) a has a left inverse.
(iv) a has a right inverse.

Proof. That (i) implies (ii) implies (iii) is trivial.
(iii) implies (i): Let x ∈ Vl(a). Then

a = axa, x = xax, a = ux, x = va

for some u, v ∈ S1. We always have that ax ∈ E(S) ∩Ra. In this case also

a = ux = uxax ∈ Sax, ax = ava ∈ Sa
so that a L ax. Therefore ax ∈ E(S) ∩Ha which implies that Ha is a group so a ∈ G(S).
The equivalence of parts (i) and (iv) now follows by left–right duality. �
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As a consequence we have that an element a of S has an (onesided) inverse if and only if a is (completely)
regular. For an element of G(S), the next lemma provides the sets of all such inverses.

Lemma 3.3. Let a ∈ G(S).
(i) Vl(a) = {fa−1 | f ∈ E(La)}

= {x ∈ S | a = axa = a2x, x = xax = x2a}.
(ii) Vr(a) = {a−1f | f ∈ E(Ra)}

= {x ∈ S | a = axa = xa2, x = xax = ax2}.
(iii) Vt(a) = {a−1}

= {x ∈ S | a = axa, x = xax, ax = xa}.
Proof. We only prove part (i); part (ii) is its dual and part (iii) requires a straightforward argument. Let

e = a0 and denote the three sets by A,B and C, respectively.

Let x ∈ A. By Lemma 3.2, we have that x ∈ G(S), so let f = x0. By Lemma 2.1, fa−1 ∈ Rf ∩ La−1 if and
only if Lf ∩Ra−1 is a group. But Lf ∩Ra−1 = Ha is a group and thus fa−1 ∈ Hx. Further, since e L f , we get

(fa−1)a(fa−1) = (fe)fa−1 = fa−1,

a(fa−1)a = (af)e = ae = a

and thus fa−1 ∈ V (a). Hence x, fa−1 ∈ V (a) ∩Hx which by Lemma 2.1 yields that x = fa−1. Therefore x ∈ B
which proves that A ⊆ B.

Next let x ∈ B. Then x = fa−1 for some f ∈ E(La). We have seen above that then fa−1 ∈ V (a). Also

a2x = a2(fa−1) = (a2f)a−1 = a2a−1 = a,

x2a = (fa−1)(fa−1)a = f(a−1f)e = fa−1e = fa−1 = x.

Hence x ∈ C and thus B ⊆ C.
Finally, if x ∈ C, then x ∈ V (a) and x L a so that x ∈ A. Consequently C ⊆ A. �
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We deduce the following basic consequence of Lemma 3.3 which we shall use repeatedly.

Corollary 3.4. Let e, f ∈ E(S) and a ∈ He. If e L f (respectively e R f), then fa−1 (respectively a−1f)
is the unique left (respectively right) inverse of a in Hf . This exhausts all left (respectively right) inverses. In
particular, Vl(e) = E(Le) and Vr(e) = E(Re).

Proof. The first two assertions follow from Lemma 3.3, the third one follows easily from the first. �

We introduce the following relations on G(S):

a γ b if b ∈ Vl(a), a δ b if b ∈ Vr(a), τ = δγ.

By Lemma 3.3, for e, f ∈ E(S) and a ∈ He, b ∈ Hf , we have

a γ b⇔ e L f, b = fa−1 ⇔ e L f, a = eb−1

and similarly for δ. For any relation θ on S, we write tr θ = θ|E(S) and call it the trace of θ.
Clearly both γ and δ are symmetric, τ is reflexive (on G(S)), γ ⊆ L, tr γ = tr L, δ ⊆ R, tr δ = tr R, and

τ ⊆ D. We shall consider the question: for which classes of semigroups do γ, δ or τ or their traces have some of
the usual properties of a relation? The following concept will prove useful.

If e, f, g, h ∈ E(S) are such that e R f L g R h L e, we say that they form an idempotent square in S and
write [e, f, g, h] in S.

4. E-solid semigroups

We now extend a well-known concept from regular to arbitrary semigroups. A semigroup S is E-solid if for any
e, f, g ∈ E(S) such that f R e L g, there exists h ∈ E(S) satisfying f L h R g. We may ”localize“ this concept
by introducing the following notion. If e ∈ E(S), then S is e-solid if for any f, g ∈ E(S) such that f R e L g,
there exists h ∈ E(S) such that f L h R g. Note that in both cases, the conclusion ”there exists h ∈ E(S) such
that f L h R g“ is equivalent to gf ∈ He, in view of Lemma 2.2.
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The following lemma, needed later, is of independent interest.

Lemma 4.1. Let e ∈ E(S). Then S is e-solid if and only if there exists a greatest completely simple subsemi-
group of S containing e.

Proof. Necessity. Let

Ce =
⋃
{Hg|g ∈ E(S) and there exist f, h ∈ E(S) such that [e, f, g, h] is an idempotent

square in S}.

To see that Ce is closed under multiplication, we let [e, f, g, h] and [e, f ′, g′, h′] be idempotent squares in S and
a ∈ Hg, a′ ∈ Hg′ . We have the following situation

e — f — f ′

| | |
h — g — u
| | |
h′ — v — g′

where the hypothesis guarantees the existence of u, v ∈ E(S) with the above location. Hence [e, f ′, u, h] is an
idempotent square and the existence of v by Lemma 2.2 implies that aa′ ∈ Hu. Therefore aa′ ∈ Ce, as required
and Ce is a semigroup.

Since Ce is saturated by H, it must be closed for taking of twosided inverses and thus Ce is completely
regular. Every element of Ce is D-related to e and hence Ce is bisimple. Consequently Ce is a completely simple
subsemigroup of S.

Let C be any completely simple subsemigroup of S which contains e and let a ∈ C. Then there exist f, g, h ∈
E(S) such that [e, f, g, h] is an idempotent square in C and a ∈ Hg whence clearly a ∈ Ce. Therefore C ⊆ Ce

which establishes the desired maximality of Ce.
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Sufficiency. Let f, g ∈ E(S) be such that f R e L g and denote by C the greatest completely simple
subsemigroup of S containing e. Both {e, f} and {e, g} are completely simple subsemigroups of S containing
e and thus {e, f}, {e, g} ⊆ C by hypothesis. Hence f, g ∈ E(C) and clearly f R e L g also in C. Since C is
completely simple, there exists h ∈ E(C) such that [e, f, g, h] is an idempotent square in C and thus also in S.
Therefore S is e-solid. �

We are now ready for a multiple characterization of E-solid semigroups. For regular semigroups, further
characterizations can be found in Hall [3, Theorem 3].

Theorem 4.2. The following conditions on S are equivalent.

(i) S is E-solid.
(ii) If a, b, c ∈ G(S) are such that a R b L c, then ca ∈ G(S).
(iii) If a τ c, then c τ x for some x ∈ Ha.
(iv) tr τ is symmetric.
(v) tr τ is transitive.
(vi) tr τ is an equivalence relation.
(vii) (tr γ)(tr δ) = (tr δ)(tr γ).
(viii) For every e ∈ E(S), S is e-solid.
(ix) For every e ∈ E(S), there exists a greatest completely simple subsemigroup Ce of S containing e.
(x) G(S) is a pairwise disjoint union of maximal completely simple subsemigroups of S saturated by L and R

within G(S).
(xi) G(S) is a pairwise disjoint union of maximal completely simple subsemigroups Mα of S and every com-

pletely simple subsemigroup of S is contained in some Mα.

Moreover, the collections in parts (ix), (x) and (xi) coincide and consist precisely of all maximal completely simple
subsemigroups of S.
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Proof. (i) implies (ii). Let a, b, c ∈ G(S) be such that a R b L c. Then a0 R b0 L c0 and by hypothesis there
exists h ∈ E(S) such that a0 L h R c0. By Lemma 2.2, we have that ca H e and hence ca ∈ G(S).

(ii) implies (iii). Let a δ b γ c. Then a, b, c ∈ G(S) and a R b L c. By hypothesis, we have ca ∈ G(S) and
by Lemma 2.2 that a L ca R c. Let h = (ca)0. By Lemma 3.3, c−1h δ c and a0(c−1h)−1γ c−1h so that for
x = a0(c−1h)−1, we get c τ x H a, as required.

(iii) implies (iv). Let e, f ∈ E(S) be such that e τ f . By hypothesis, we have f τ x for some x ∈ He. By
Corollary 3.4, we must have x ∈ E(S) and thus x = e.

(iv) implies (v). Let e, f, g ∈ E(S) be such that e τ f and f τ g. Then e δ x γ f and f δ y γ g for some
x, y ∈ E(S) by Corollary 3.4. It follows that y δ f γ x so that y τ x. The hypothesis implies that x τ y so, again
by the same reference, there exists z ∈ E(S) such that x δ z γ y. Hence e R x R z and z L y L g which evidently
implies that e δ z γ g and thus e τ g.

(v) implies (viii). Let e, f, g ∈ E(S) be such that e R f L g. Then g δ g γ f which yields that g τ f ; also
f δ e τ e which implies that f τ e. Now the hypothesis implies that g τ e. Again by Corollary 3.4, we deduce
the existence of h ∈ E(S) such that g δ h γ e and hence e L h R g. Therefore S is f -solid where f ∈ E(S) is
arbitrary.

(viii) implies (ix). This is a direct consequence of Lemma 4.1.

(ix) implies (x). Recall the definition of Ce in Lemma 4.1. We shall show that the family C = {Ce|e ∈ E(S)}
has the requisite properties. First let e, f ∈ E(S) and assume that x ∈ Ce ∩ Cf . From the proof of Lemma 4.1,
we know that both Ce and Cf are saturated by H. Hence Hx ⊆ Ce ∩ Cf . Since Ce is completely simple, Hx

must be a group, say with identity g. By maximality of Cg, we obtain Ce ⊆ Cg whence e ∈ Cg. But then by
maximality of Ce, we also have Cg ⊆ Ce. Therefore Ce = Cg and analogously Cf = Cg so that Ce = Cf . Hence
the collection C is pairwise disjoint.
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Let C be a completely simple subsemigroup of S containing Ce. Then e ∈ C which implies that C ⊆ Ce. Thus
Ce = C and Ce is a maximal completely simple subsemigroup of S.

Let e, f ∈ E(S) be such that e L f . Then {e, f} is a completely simple subsemigroup of S containing e and
thus {e, f} ⊆ Ce whence f ∈ Ce. We have observed above that Ce is saturated by H. Hence Ce is saturated by
L within G(S) and the same argument is valid for R.

(x) implies (xi). Let C be a completely simple subsemigroup of S and x ∈ C. Then x ∈ G(S) and hence
x ∈ Mα for some α. Now let y ∈ C. Then x R z L y in C for some z ∈ C. The hypothesis implies that first
z ∈Mα and then y ∈Mα. This shows that C ⊆Mα, as required.

(xi) implies (i). Let e, f, g ∈ E(S) be such that e R f L g. Denote by Mα, Mβ and Mγ the maximal completely
simple subsemigroups of S containing e, f and g, respectively, from the collection in the hypothesis. Since {e, f}
is a completely simple subsemigroup of S, it must be contained in some Mδ. By pairwise disjointness of the
collection, we get that Mα = Mδ = Mβ . Similarly Mβ = Mγ . But then e, f, g ∈Mδ where e R f L g. Since Mδ

is completely simple, there exists h ∈ E(Mα) such that e L h R g. It follows that S is E-solid.

(i) is equivalent to (vi). We have proved above that parts (i), (iv) and (v) are equivalent. This together with
the fact that τ is always reflexive on G(S) proves the contention.

(iv) is equivalent to (vii). By Corollary 3.4, tr τ = (tr δ)(tr γ) whence follows the assertion.
The above arguments contain the proof of the remaining assertions of the theorem. �

In Theorem 4.2(x), one cannot omit the condition that Mα be saturated by L and R within G(S) or the
corresponding condition in Theorem 4.2(xi). Indeed, let

S = M0(3, {1}, 2;P )
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with P =
[
1 1 0
0 1 1

]
. Then G(S) is a pairwise disjoint union of maximal completely simple subsemigroups of S,

namely
{(1, 1, 1), (2, 1, 1)}, {(2, 1, 2), (3, 1, 2)}, {0}.

Neither of the first two semigroups is saturated by R within G(S) since (2, 1, 1) R (2, 1, 2). Also the completely
simple subsemigroup {(2, 1, 1), (2, 1, 2)} is not contained in any of the above semigroups. Of course, the semigroup
S is not E-solid.

The situation with subsemigroups of an arbitrary semigroup S which are left or right groups is much simpler.
Indeed, for any e ∈ E(S), Le ∩ G(S) (respectively Re ∩ G(S)) is the greatest subsemigroup of S which is a
left (respectively right) group and contains e. It follows that G(S) is a pairwise disjoint union of maximal
subsemigroups of S which are left (respectively right) groups.

5. Central semigroups

We start by defining certain functions among some group H-classes of an arbitrary semigroup which will turn out
to be antiisomorphisms. Indeed, Corollary 3.4 makes it possible to define the following mappings.

Lemma 5.1. Let e, f ∈ E(S).

(i) Let e L f . Then the mapping
γef : a→ fa−1 (a ∈ He)

is an antiisomorphism between He and Hf . Moreover, γ−1
ef = γfe and for any a ∈ He, fa−1 = (fa)−1.

(ii) Let e R f . Then the mapping
δef : a→ a−1f (a ∈ He)

is an antiisomorphism between He and Hf . Moreover, δ−1
ef = δfe and for any a ∈ He, a−1f = (af)−1.
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Proof. (i) For a ∈ He, we get

(fa−1)(fa) = f(a−1f)a = fa−1a = fe = f

and thus fa−1 = (fa)−1. If also b ∈ He, then with ϕ = γef , we get

(aϕ)(bϕ) = (fa−1)(fb−1) = f(a−1f)b−1 = fa−1b−1 = f(ba)−1 = (ba)ϕ

and ϕ is an antihomomorphism. Now letting ψ = γfe, we obtain

aϕψ = e(fa−1)−1 = e(fa) = (ef)a = ea = a

and similarly cψϕ = c for any c ∈ Hf . Therefore ϕ is a bijection between He and Hf and so an antiisomorphism
and ϕ−1 = ψ.

(ii) This is the dual of part (i). �

Corollary 5.2. Let e, f, g ∈ E(S).

If e L f R g, then γefδfg : a→ fag,

if e R f L g, then δefγfg : a→ gaf,

are isomorphisms between He and Hg.

Proof. This follows directly from Lemma 5.1. �

For G a group and g ∈ G, we define εg by

εg : x→ g−1xg (x ∈ G).

We now summarize the most salient features of the compositions of the above functions for a given idempotent
square [e, f, g, h] (for the definition, see the end of Section 3).

Theorem 5.3. Let [e, f, g, h] in S and a ∈ He.
(i) hf(aδefγfg) = haf = (aγehδhg)hf ∈ V (a−1).
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(ii) δefγfg = γehδhgεhf .
(iii) δghγheδefγfg = εhf .

Proof. (i) Indeed, by Corollary 5.2, we have

hf(aδefγfg) = hfgaf = hf(af) = haf,

(aγehδhg)hf = haghf = (ha)hf = haf,

(haf)a−1(haf) = ha(fa−1h)af = haa−1af = haf,

a−1(haf)a−1 = (a−1h)a(fa−1) = a−1aa−1 = a−1,

as required.
(ii) This follows directly from part (i).
(iii) This is an immediate consequence of part (i) in view of Lemma 5.1. �

We now extend a well-known concept from completely regular to arbitrary semigroups as follows. A semigroup
S is central if for any e, f ∈ E(S) such that ef ∈ G(S), ef is in the center of the group Hef .

Theorem 5.4. The following conditions on S are equivalent.
(i) S is central.
(ii) If [e, f, g, h] in S, then δefγfg = γehδhg.
(iii) If [e, f, g, h] in S and a ∈ He, then gaf = hag.
(iv) Every completely simple subsemigroup of S is central.

Proof. (i) implies (ii). If [e, f, g, h] is in S, then hf ∈ Hg by Lemma 2.2 and the hypothesis implies that εhf is
the identity mapping on Hg; the desired conclusion now follows by Theorem 5.3(ii).

(ii) implies (iii). This follows directly from Corollary 5.2.
(iii) implies (i). First let e, f, h ∈ E(S) be such that f R e L h and fh ∈ He. By Lemma 2.2, there exists

g ∈ E(S) such that f L g R h. Hence [e, f, g, h] is an idempotent square in S and the hypothesis implies that for
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a ∈ He, we have gaf = hag. Hence

fha = fh(ae) = fha(eh) = fhae(gh) = f(hag)h

= f(gaf)h = (fg)afh = fafh = f(ea)fh

= (fe)afh = eafh = afh

and fh is in the center of He.
We now consider the general case. Hence let e, f, h ∈ E(S) be such that fh ∈ He. By Lemma 2.4, there exist

f ′, h′ ∈ E(S) such that fh = f ′h′ and f ′ R f ′h′ L h′. Hence f ′ R e L h′ and f ′h′ ∈ He. The case above yields
that f ′h′ is in the center of He and hence so is fh. Therefore S is central.

(i) implies (iv). This is trivial.
(iv) implies (i). Let e, f, g ∈ E(S) be such that eg ∈ Hf . Letting x = (ef)−1 ∈ V (ef) and applying Lemma 2.4,

we deduce that we may assume that e, f, g ∈ E(S) are such that e R f L g and eg ∈ Hf . Thus eg ∈ Re ∩ Lg

which by Lemma 2.2 implies that Le∩Rg is a group. Denoting by h the identity element of this group, we obtain
the idempotent square [e, f, g, h].

Now let a ∈ Hf . Since [e, f, g, h] is an idempotent square, all the products and inverses obtained from the set
{e, f, g, h, a} are contained in the set He ∪ Hf ∪ Hg ∪ Hh. Hence the set of all such products and inverses is a
completely simple subsemigroup C of S. By hypothesis C is central and thus aeg = ega, as required. �

6. Completely regular semigroups

In view of Lemma 2.2, the conclusion in Theorem 4.2(ii) is equivalent to ac H b. What happens if we take a, b, c
in S rather than in G(S)? The answer is very simple.

Proposition 6.1. The following conditions on S are equivalent.
(i) S is completely regular.
(ii) Every element of S has a left (respectively right, twosided) inverse.
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(iii) If a R b L c, then ac H b.
(iv) τ is a reflexive relation on S.

Proof. The equivalence of parts (i) and (ii) and of (i) and (iv) follows directly from Lemma 3.2.
(i) implies (iii). Let a R b L c. The existence of h ∈ E(S) such that a0 L h R c0 by Lemma 2.2 implies that

ac H b.
(iii) implies (i). For any a ∈ S, we have a R a L a and thus a2 H a. Hence a is a completely regular element

of S which yields the assertion. �

In order to treat central completely regular semigroups we first consider completely simple semigroups.

Lemma 6.2. On a central completely simple semigroup τ is an equivalence relation.

Proof. In view of the Rees theorem and [8, Proposition III.6.2],we may set S = M(I,G,Λ;P ) where P is
normalized and all its entries lie in the center of G. Reflexivity of τ follows from Proposition 6.1. We will freely
use Lemma 3.3. If

(1)

(i, g, λ) δ (i, g, λ)−1(i, p−1
µi , µ)

= (i, p−1
λi g

−1p−1
µi , µ) γ (j, p−1

µj , µ)(i, p−1
λi g

−1p−1
µi , µ)

= (j, p−1
µj pµigpλip

−1
µi , µ) = (j, p−1

µj gpλi, µ)

since pµi lies in the center of G, then

(2)

(i, g, λ) γ (j, p−1
λj , λ)(i, g, λ)−1

= (j, p−1
λj g

−1p−1
λi , λ) δ (j, p−1

λj g
−1p−1

λi , λ)−1(j, p−1
µj , µ)

= (j, p−1
λj pλigpλjp

−1
µj , µ) = (j, pλigp

−1
µj , µ)
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since pλj lies in the center of G. The hypothesis also implies that the middle entries of (1) and (2) are equal.
Hence τ is symmetric.

We now turn to transitivity. On the one hand

(3)

(i, g, λ) δ (i, g, λ)−1(i, p−1
µi , µ)

= (i, p−1
λi g

−1p−1
µi , µ) γ (j, p−1

µj , µ)(i, p−1
λi g

−1p−1
µi , µ)−1

= (j, p−1
µj pµigpλip

−1
µi , µ) δ (j, p−1

µj pµigpλip
−1
µi , µ)−1(j, p−1

νj , ν)

= (j, p−1
µj pµip

−1
λi g

−1p−1
µi pµjp

−1
νj , ν)

γ (k, p−1
νk , ν)(j, p

−1
µj pµip

−1
λi g

−1p−1
µi pµjp

−1
νj , ν)

−1

= (k, p−1
νk pνjp

−1
µj pµigpλip

−1
µi pµjp

−1
νj , ν)

and on the other hand,

(4)

(i, g, λ) δ (i, g, λ)−1(i, p−1
νi , ν)

= (i, p−1
λi g

−1p−1
νi , ν) γ (k, p−1

νk , ν)(i, p
−1
λi g

−1p−1
νi , ν)

−1

= (k, p−1
νk pνigpλip

−1
νi , ν).

Taking into account that all sandwich matrix entries lie in the center of G, we obtain that the elements in (3)
and (4) are equal. It follows that τ is transitive and thus is an equivalence relation on S. �

We also need a kind of converse of the above lemma.

Lemma 6.3. A completely simple semigroup on which τ is symmetric is central.
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Proof. By the Rees theorem, we may set S = M(I,G,Λ;P ) where P is normalized. We will freely use
Lemma 3.3. First

(5)

(i, g, λ) δ (i, g, λ)−1(i, 1, 1)

= (i, p−1
λi g

−1, 1)γ (1, 1, 1)(i, p−1
λi g

−1, 1)−1

= (1, gpλi, 1).

By hypothesis, there exists j ∈ I such that

(6)

(i, g, λ) γ (j, p−1
λj , λ)(i, g, λ)−1

= (j, p−1
λj g

−1p−1
λi , λ) δ (j, p−1

λj g
−1p−1

λi , λ)−1(j, 1, 1)

= (j, p−1
λj pλigpλj , 1).

Since (5) and (6) must be equal, we get j = 1 which implies that pλj = 1 and thus gpλi = pλig. It follows that
each pλi belongs to the center of G. Now [8, Proposition III.6.2], implies that S is central. �

We are now able to prove the desired result.

Theorem 6.4. The following conditions on S are equivalent.
(i) S is completely regular and central.
(ii) τ is an equivalence relation on S.
(iii) τ is reflexive on S and symmetric.

Proof. (i) implies (ii). This follows directly from Lemma 6.2 since clearly τ ⊆ D.
(ii) implies (iii). This is trivial.
(iii) implies (i). Since τ is reflexive on S, Proposition 6.1 yields that S is completely regular. Hence S is a

semilattice Y of completely simple semigroups Sα. For each α ∈ Y , τ |Sα
is the τ -relation on Sα and is symmetric,

so by Lemma 6.3, Sα is central. Now [8, Theorem II.6.4], implies that S is central. �
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In the next theorem we encounter orthogroups, that is completely regular semigroups whose idempotents form
a subsemigroup.

Theorem 6.5. The semigroup S is an orthogroup if and only if τ is a congruence on S.

Proof. Necessity. The semigroup S is a semilattice Y of rectangular groups Sα. For each α ∈ Y , we may
take Sα = Lα × Gα × Rα where Lα, Gα and Rα are a left zero semigroup, a group and a right zero semigroup,
respectively. Let i, j ∈ Lα, g ∈ Gα, 1 be the identity of Gα and λ, µ ∈ Rα. By Lemma 3.3, we get

(i, g, λ) δ (i, g−1, λ)(i, 1, µ) = (i, g−1, µ) γ (j, 1, µ)(i, g, µ) = (j, g, µ).

It follows that for a = (i, g, λ) ∈ Sα, b = (j, h, µ) ∈ Sβ , we have

a τ b⇔ α = β, g = h,

Thus τ |Sα
= σSα

, the least group congruence on Sα and τ is an equivalence relation contained in D. Hence
τ =

⋃
α∈Y τ |Sα

=
⋃

α∈Y σSα
; but

⋃
α∈Y σSα

= νS , the least Clifford congruence on S, by [4, Theorem (ii)].
Therefore τ = νS and thus τ is a congruence on S.

Sufficiency. Proposition 6.1 implies that S is completely regular. Let e, f ∈ E(S); we wish to show that
ef ∈ E(S). In view of Lemma 2.4 we may suppose that e R ef L f . Hence e δ (ef)0 γ f so that e τ f . The
hypothesis implies that ef τ f which by Corollary 3.4 yields that ef ∈ E(S). Therefore S is an orthogroup. �

Proposition 6.6. The following conditions on S are equivalent:
(i) S is a band.
(ii) γ = L.
(iii) δ = R.
(iv) τ = D.

Proof. That part (i) implies the remaining parts is obvious.
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(ii) implies (i). First by Lemma 3.2, S is completely regular. Let a ∈ S and x ∈ V (a). Then a L xa and hence
a γ xa. But then a = a(xa)a = a2.

(iii) implies (i). This is the dual of the preceding case.
(iv) implies (i). By Lemma 3.2, S is completely regular. Let a ∈ S and x ∈ V (a). Then a D xa and by

hypothesis, there exists b ∈ S such that a δ b γ xa. Hence b = sxa for some s ∈ S and thus

a = aba = a(bxab)a = abxa = a(sxa)xa = asxa = ab ∈ E(S)

and S is a band. �

7. Almost L-unipotent semigroups

Let θ be an equivalence relation on S. Then S is called θ-unipotent if every θ-class contains exactly one idempotent.
We modify this concept by saying that S is almost θ-unipotent if every θ-class contains at most one idempotent.

Theorem 7.1. The following conditions on S are equivalent.

(i) For any a ∈ S and a′, a′′ ∈ V (a), we have a′a = a′′a.
(ii) For any a ∈ S and a′, a′′ ∈ V (a), we have a′ R a′′.
(iii) S is almost L-unipotent.
(iv) Every element of S has at most one left inverse.
(v) Every left inverse of any element of S is twosided.
(vi) Every completely simple subsemigroup of S is a right group.

Proof. (i) implies (ii). Let a ∈ S and a′, a′′ ∈ V (a). By hypothesis, we have a′a = a′′a whence a′ R a′a =
a′′a R a′′.

(ii) implies (iii). Let e, f ∈ E(S) be such that e L f . Then e, f ∈ V (e) and the hypothesis implies that e R f .
But then e = f .
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(iii) implies (iv). Let a ∈ S and b, c ∈ Vl(a). In view of Lemma 3.2, we have b, c ∈ G(S) and thus b0 L c0. But
then the hypothesis implies that b0 = c0 which by Lemma 2.1 yields b = c.

(iv) implies (v). Let a ∈ S and b ∈ Vl(a). By hypothesis, b is the unique left inverse of a and hence b = a−1.
Thus b is a twosided inverse of a.

(v) implies (i). Let a′, a′′ ∈ V (a). Then a′a L a0 L a′′a and thus a′a, a′′a ∈ Vl(a0) and the hypothesis implies
that a′a = a′′a = a0.

(iii) implies (vi). If C is a completely simple subsemigroup of S, then C is L-unipotent and is thus a right
group.

(vi) implies (iii). Let e, f ∈ E(S) be such that e L f . Then {e, f} is a completely simple subsemigroup of S
so is a right group whence e = f . �

Corollary 7.2. The following conditions on S are equivalent.

(i) S is almost L- and R-unipotent.
(ii) Every element of S has at most one inverse.
(iii) τ = εG(S).
(iv) tr τ = εE(S).
(v) Every completely simple subsemigroup of S is a group.

Proof. (i) implies (ii). Let a ∈ S and a′, a′′ ∈ V (a). By Theorem 7.1 and its dual, we get a′a = a′′a and
aa′ = aa′′ whence a′ = a′aa′ = a′′aa′′ = a′′.

(ii) implies (iii). Let a, b ∈ G(S) be such that a τ b. Then a δ c γ b for some c ∈ G(S) which implies that
a, b ∈ V (c). The hypothesis then yields that a = b.

(iii) implies (iv). This is trivial.
(iv) implies (i). Let e, f ∈ E(S). If e L f , then e δ e γ f and if e R f , then e δ f γ f so that in either case

e = f .
(i) is equivalent to (v). This follows directly from Theorem 7.1 and its dual. �
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We are somewhat more explicit in the following result. Recall that a band satisfying the identity xa = axa is
right regular.

Proposition 7.3. The semigroup S satisfies any of the conditions in Theorem 7.1 and the product of any two
idempotents of S is a regular element if and only if E(S) is either empty or is a right regular band. In the latter
case, the set R of regular elements of S is a subsemigroup of S.

Proof. Necessity. Let e, f ∈ E(S). We show first that ef ∈ E(S). To this end, let x ∈ V (ef). Then
xef, fxef ∈ E(S) and xef L fxef . The hypothesis that S is almost L-unipotent implies that xef = fxef .
Multiplying on the right by x, we get x = fx. But then x = xefx = xex which implies that xe ∈ E(S). Since
also efxe ∈ E(S) and xe L efxe, the hypothesis implies that xe = efxe. This gives xef = efxef = ef so that
ef ∈ E(S). In particular ef, fef ∈ E(S) and also ef L fef which by hypothesis yields that ef = fef . Therefore
E(S) is a right regular band.

Sufficiency. This is obvious since a right regular band is trivially L-unipotent.
For the last assertion of the proposition, let a, b ∈ R, x ∈ V (a), y ∈ V (b). Then xa, by ∈ E(S) and the

hypothesis implies that xaby = byxaby and thus

ab = a(xaby)b = a(byxaby)b = abyxa(byb) = abyxab.

�

Proposition 7.3 was proved by Venkatesan ([9, Theorem 1] under the covering hypothesis that S be a regular
semigroup. For these semigroups, we adopt the label right inverse semigroups. This terminology may be justified
in view of parts (i) and (ii) of Theorem 7.1. Because of part (iii) of the same theorem, they are also referred to as
L-unipotent. In view of Proposition 7.3, they are also known as right regular orthodox semigroups. In particular,
the semigroup R in Proposition 7.3 is a right inverse semigroup.

We also have the dual concept of a left inverse semigroup. Clearly S is both a left and a right inverse semigroup
if and only if S is an inverse semigroup. The structure of left inverse semigroups was elucidated by Yamada [10].
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Corollary 7.4. The semigroup S satisfies any of the conditions in Corollary 7.2 and the product of any two
idempotents of S is a regular element if and only if E(S) is either empty or is a semilattice. In the latter case,
the set R of all regular elements of S is an inverse subsemigroup of S.

Proof. This follows easily from Proposition 7.3 and its dual. �

We are now able to characterize the congruences on a regular semigroup generated by tr γ, tr δ, tr τ and τ .
If θ is a relation on S, θ∗ denotes the congruence on S generated by θ. A regular semigroup whose idempotents
form a regular band (that is satisfies the identity axya = axaya) is called a regular orthodox semigroup.

Theorem 7.5. In any regular semigroup S,

(i) (tr γ)∗ is the least right inverse congruence,
(ii) (tr δ)∗ is the least left inverse congruence,
(iii) (tr γ)∗∩ (tr δ)∗ is the least regular orthodox semigroup congruence,
(iv) τ∗ = (tr τ)∗ = (tr γ)∗(tr δ)∗ = (tr δ)∗(tr γ)∗ = (tr γ)∗ ∨ (tr δ)∗ is the

least inverse congruence.

Proof. (i) Obviously tr γ = tr L. By [7, Theorem 1(ii)], (tr L)∗ is the least right inverse congruence on S.
(ii) This is the dual of part (i).
(iii) We note first that by [7, Theorem 1(ix)] in view of parts (i) and (ii), the relation (tr γ)∗ ∩ (tr δ)∗ is the

least regular orthodox semigroup congruence on S.
(iv) Let λ = τ∗ and ρ = (tr τ)∗.
Let e, f ∈ E(S/ρ) be such that e L f . By [2, Theorem 5], there exist e′, f ′ ∈ E(S) such that e′ρ = e, f ′ρ = f

and e′ L f ′. But then e′ δ e′ γ f ′ and thus e′ τ f ′ and e = e′ρ = f ′ρ = f . Hence S/ρ is L-unipotent. By
duality, we conclude that S/ρ is also R-unipotent and is thus an inverse semigroup. It follows that ρ is an inverse
congruence and since λ ⊇ ρ, also λ is an inverse congruence.
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Let θ be an inverse congruence on S and let a δ b γ c. By Lemma 3.3, we have

a0 R b0 L c0, b = a−1b0, c = c0b−1

so that
(aθ)0 R (bθ)0 L (cθ)0, bθ = (aθ)−1(bθ)0, cθ = (cθ)0(bθ)−1.

But then
a0 θ b0 θ c0, b θ a−1, c θ b−1.

Hence a θ b−1 θ c whence a θ c. It follows that τ ⊆ θ and thus λ ⊆ θ, proving the minimality of λ. For θ = ρ,
we obtain λ ⊆ ρ and equality prevails. Therefore λ = ρ is the least inverse congruence on S.

The remaining equalities follow from [7, Corollary (ii) to Theorem 1] in view of parts (i) and (ii). �

In particular, the relation τ in Theorem 6.4 is the least Clifford congruence onS.

8. Locally almost L-unipotent semigroups

In order to treat this case, we introduce the following concept. Elements a and b of a semigroup S are bounded
inverses of each other if a, b ∈ G(S), b ∈ V (a) and there exists e ∈ E(S) such that e ≥ a0 and e ≥ b0. Obviously
the twosided inverse of an element a is bounded. We shall use onesided bounded inverses, so we let B(a) be the
set of all bounded inverses of a and

Bl(a) = Vl(a) ∩B(a), Br(a) = Vr(a) ∩B(a).

Let θ be an equivalence relation on S. Then S satisfies θ-majorization if for any e, f, g ∈ E(S), e ≥ f , e ≥ g and
f θ g imply that f = g. For a property P of semigroups, S is locally P if for any e ∈ E(S), the semigroup eSe
has property P.

Theorem 8.1. The following conditions on S are equivalent.
(i) S is locally an almost L- unipotent semigroup.
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(ii) S satisfies L-majorization.
(iii) Every element of S has at most one bounded left inverse.
(iv) Every bounded left inverse of any element of S is twosided.
(v) Every subsemigroup of S which is a completely simple semigroup with an identity adjoined is a right group

with an identity adjoined.

Proof. (i) implies (ii). Let e, f, g ∈ E(S) be such that e ≥ f , e ≥ g and f L g. Then f, g ∈ E(eSe) and f L g
in eSe which by hypothesis implies that f = g.

(ii) implies (iii). Let a ∈ S and b ∈ Bl(a). Then there exists e ∈ E(S) such that e ≥ a0 and e ≥ b0. Since a L b,
we have a0 L b0 and hence the hypothesis implies that a0 = b0. But then b = a−1 which proves its uniqueness.

(iii) implies (iv). Let a ∈ S and b ∈ Bl(a). Then a−1 ∈ Bl(a) by hypothesis implies that b = a−1. Hence b is
a twosided inverse of a.

(iv) implies (v). Let C∪{e} be a subsemigroup of S where C is a completely simple semigroup with e adjoined
to it as an identity. If f, g ∈ E(S) are such that f L g, then both f and g are bounded left inverses of f and the
hypothesis implies that f = g. Thus C is a right group.

(v) implies (i). Let e ∈ E(S) and C be a completely simple subsemigroup of eSe. If e ∈ C, then C is a (right)
group. Otherwise C ∪ {e} is a completely simple semigroup with an identity adjoined so by hypothesis C is a
right group. By Theorem 7.1, eSe is almost L-unipotent. �

Corollary 8.2. The following conditions on S are equivalent.

(i) S is locally an almost L- and R-unipotent semigroup.
(ii) S satisfies L- and R-majorization.
(iii) Every element of S has at most one bounded inverse.
(iv) Every bounded inverse of any element of S is twosided.
(v) Every subsemigroup of S which is a completely simple semigroup with an identity adjoined is a group with

an identity adjoined.
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Proof. (i), (ii) and (v) are equivalent. This follows directly from Theorem 8.1 and its dual.
(i) implies (iii). Let a ∈ S and b ∈ B(a). Then there exists e ∈ E(S) such that e ≥ a0 and e ≥ b0.

By hypothesis, eSe is an almost L- and R-unipotent semigroup; also a, b ∈ eSe and b ∈ V (a) in eSe. Now
Corollary 7.2 implies that b = a−1. Therefore a−1 is the only bounded inverse of a.

(iii) implies (iv). This is obvious.
(iv) implies (ii). Let e, f, g ∈ E(S) be such that e ≥ f , e ≥ g and f L g. Then g is a bounded inverse of f

and by hypothesis, must be twosided. It follows that f = g. Hence S satisfies L-majorization; analogously it also
satisfies R-majorization. �

Recall first that a band satisfying the identity xya = yxa is right normal. Compare the next result with
Proposition 7.3.

Proposition 8.3. The semigroup S satisfies any of the conditions in Theorem 7.1, any of the conditions in
the dual of Theorem 8.1 and the product of any two idempotents of S is a regular element if and only if E(S) is
either empty or is a right normal band. In the latter case, the set R of all regular elements of S is a right inverse
locally inverse semigroup.

Proof. Necessity. Assume that E(S) is not empty. By Proposition 7.3, E(S) is a right regular band and by the
dual of Theorem 8.1, S satisfiesR-majorization. Hence E(S) is a right regular band which satisfiesR-majorization
and it is well known that then E(S) must be a right normal band.

Sufficiency. By Proposition 7.3, S satisfies the conditions in Theorem 7.1. It is well known that a right
normal band satisfies R-majorization. It follows that also S satisfies R-majorization. Hence S satisfies the dual
of the conditions in Theorem 8.1. The product of any two idempotents is not only a regular element but it is an
idempotent.

Assume that E(S) is a right normal band. By Proposition 7.3, the set R is a right inverse subsemigroup of S.
Since E(S) = E(R) is a right normal band, it is locally a semilattice and thus R is locally inverse. �
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Regular semigroups in Proposition 8.3 are called right normal right inverse semigroups by Madhavan [5]. In
that paper he constructed for them a representation by means of partial transformations on a set which generalizes
that of Wagner for inverse semigroups. They are also called right normal orthodox semigroups.

9. Remarks

When S is regular and e, f ∈ E(S), Nambooripad [6] introduced the sandwich set S(e, f) of e and f , one of whose
formulations is

S(e, f) = fV (ef)e.

It is easy to see that S(e, f) = V (ef) ∩ fSe so that S(e, f) is the set of all inverses of ef in fSe. In fact,
S(e, f) is always a rectangular band. Here we encounter special kinds of inverses of elements of S of the form
ef for e, f ∈ E(S). Of course, one can consider S(e, f) in an arbitrary semigroup. Under the hypothesis that
the product of any two idempotents is a regular element, which we used in Proposition 7.3, Corollary 7.4 and
Proposition 8.3, all sandwich sets S(e, f) are nonempty and are thus rectangular bands.
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