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ON EXPONENTIAL DICHOTOMY OF SEMIGROUPS

B. SASU

Abstract. The aim of this paper is to analyze the connections between the exponential dichotomy of a semigroup on

a Banach space X and the admissibility of the pair (`p(N, X), `q(N, X)). We obtain necessary and sufficient conditions
for exponential dichotomy of exponentially bounded semigroups using discrete time techniques.

1. Introduction

Asymptotic behaviour of semigroups in Banach spaces is a classical and well-studied subject (see [2], [5], [11],
[12], [15], [18]). In the last decades an impressive progress has been made in the qualitative theory of evolution
equations, by associating to an evolution family or to a linear skew-product flow an evolution semigroup on
different function spaces and by expressing their asymptotic properties in terms of the characteristic particularities
of this semigroup (see [2], [10]). In fact, this new approach allowed, in certain situations, the treatment of the non-
autonomous case in the unified setting of the autonomous one. One of the main results in [2] states that a linear
skew-product flow is exponentially dichotomic if and only if the associated evolution semigroup is hyperbolic. In
[10] exponential stability and exponential dichotomy of an evolution family are related to the properties of the
infinitesimal generator of the evolution semigroup associated to it. An extensive study concerning the applicability
of the theory of evolution semigroups in dynamical systems has been presented in [2].

Discrete methods in the study of the exponential dichotomy of evolution equations have proved to be the
starting points for important results in this field (see [1]–[3], [6], [8], [9], [16], [18]). These techniques have the
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origin in the work of Henry (see [6]). In [2] and in [9], it is proved by different methods the equivalence between
the exponential dichotomy of a linear skew-product flow and the exponential dichotomy of the discrete linear
skew-product flow associated to it. The main advantage of the discrete characterizations of diverse asymptotic
properties is that they are applicable for a large class of systems without imposing continuity or measurability
conditions. Therefore in what follows our central concern will be the study of a very general class of semigroups,
without requiring continuity or measurability properties – the class of exponentially bounded semigroups.

The purpose of the present paper is to obtain characterizations for the exponential dichotomy of exponentially
bounded semigroups in terms of the solvability of discrete-times equations on lp(N, X)-spaces and to point out
the special properties of the autonomous case. We associate to a semigroup T = {T (t)}t≥0 the subspace

X1 = {x ∈ X :
∞∑

n=0

||T (n)x||p < ∞}

and we discuss the properties implied by the solvability of a discrete-time equation associated to the semi-
group, under the assumption that X1 is closed and complemented. We study when the admissibility of the pair
(lp(N, X), lq(N, X)) is a sufficient condition for exponential dichotomy of a semigroup. For p, q ∈ [1,∞), p ≥ q
we prove that an exponentially bounded semigroup T = {T (t)}t≥0 is exponentially dichotomic if and only if the
pair (lp(N, X), lq(N, X)) is admissible for T and X1 is closed and it has a T-invariant complement.

2. Exponential dichotomy of semigroups

Let X be a real or a complex Banach space and let L(X) be the Banach algebra of all bounded linear operators
on X. In what follows we denote by || · || the norm on X and on L(X), respectively. An operator P ∈ L(X) will
be called projection if P 2 = P .

Definition 2.1. A family T = {T (t)}t≥0 ⊂ L(X) is called a semigroup on X if T (0) = I and T (t + s) =
T (t)T (s), for all t, s ≥ 0.
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A semigroup T = {T (t)}t≥0 is said to be exponentially bounded if there are M ≥ 1 and ω > 0 such that
||T (t)|| ≤ Meωt, for all t ≥ 0.

Definition 2.2. A semigroup T = {T (t)}t≥0 is said to be exponentially dichotomic if there exist a projection
P ∈ L(X) and two constants K ≥ 1 and ν > 0 such that:

(i) T (t)P = PT (t), for all t ≥ 0;

(ii) ||T (t)x|| ≤ Ke−νt||x||, for all x ∈ Im P and all t ≥ 0;

(iii) ||T (t)x|| ≥ 1
K eνt||x||, for all x ∈ KerP and all t ≥ 0;

(iv) T (t)| : KerP → KerP is an isomorphism, for all t ≥ 0.

Definition 2.3. If T = {T (t)}t≥0 is a semigroup on X and U ⊂ X is a linear subspace, U is said to be
T-invariant if T (t)U ⊂ U , for all t ≥ 0.

Let T = {T (t)}t≥0 be an exponentially bounded semigroup on X and let p ∈ [1,∞). We define the linear
subspace

X1 = {x ∈ X :
∞∑

n=0

||T (n)x||p < ∞}.

In what follows we suppose that X1 is closed and it has a closed T-invariant complement X2 such that X =
X1 ⊕X2.

For p ∈ [1,∞) let `p(N, X) = {s : N → X :
∞∑

n=0
||s(n)||p < ∞} which is a Banach space with respect to the

norm

||s||p = (
∞∑

n=0

||s(n)||p)1/p.
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Definition 2.4. Let p, q ∈ [1,∞). The pair (`p(N, X), `q(N, X)) is said to be admissible for T if for every
s ∈ `q(N, X) there is γ ∈ `p(N, X) such that

(Ed) γ(n + 1) = T (1)γ(n) + s(n), ∀n ∈ N.

Remark 2.1. If the pair (`p(N, X), `q(N, X)) is admissible for T, then:

(i) for every s ∈ `q(N, X) there is a unique γs ∈ `p(N, X) such that γs(0) ∈ X2 and (γs, s) satisfies the equation
(Ed);

(ii) there is α > 0 such that ||γs||p ≤ α||s||q, for every pair (γs, s) which verifies the equation (Ed) and γs(0) ∈ X2.

Indeed, if D is the linear subspace of all γ ∈ `p(N, X) with γ(0) ∈ X2 and there is s ∈ `q(N, X) such
that the pair (γ, s) satisfies (Ed), we deduce that the operator W : D → `q(N, X),Wγ = s is invertible.
Considering the graph norm on D, i.e. ||γ||D = ||γ||p + ||Wγ||q, by the Banach principle there is α > 0 such that
||γ||p ≤ ||γ||D ≤ α||Wγ||q, for all γ ∈ D.

Theorem 2.1. There are two constants K, ν > 0 such that

||T (t)x|| ≤ Ke−νt||x||, ∀t ≥ 0,∀x ∈ X1.

Proof. Let T1(t) := T (t)|X1 , for all t ≥ 0. Then we have that T1 = {T1(t)}t≥0 is a semigroup on X1.

For every x ∈ X1 we consider the mapping ϕx : N → X, ϕx(n) = T (n)x. We define the operator

Γ : X1 → `p(N, X1), Γx = ϕx.

Then it is easy to verify that Γ is a closed linear operator, so it is bounded. It results that
∞∑

n=0

||T1(n)x||p ≤ ||Γ||p ||x||p, ∀x ∈ X1.(2.1)
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In particular, from relation (2.1) we have that ||T1(n)|| ≤ ||Γ||, for all n ∈ N. Let m ∈ N∗ be such that
m ≥ 2p||Γ||2p. Then from relation (2.1) we deduce that

m||T1(m)x||p ≤ ||Γ||p
m∑

j=1

||T1(j)x||p ≤ ||Γ||2p ||x||p, ∀x ∈ X1.

This implies that

||T1(m)x|| ≤ 1
2
||x||, ∀x ∈ X1.

If M,ω are the constants given by Definition 2.1, setting ν = (ln 2/m) and K = Me(ω+ν)m we obtain the
conclusion. �

If A ⊂ N we denote by χA the characteristic function of the set A.

Theorem 2.2. If the pair (`p(N, X), `q(N, X)) is admissible for T, then:
(i) for every t ≥ 0, the restriction T (t)| : X2 → X2 is an isomorphism;
(ii) there are K, ν > 0 such that

||T (t)x|| ≥ 1
K

eνt||x||, ∀x ∈ X2.

Proof. Let α > 0 be given by Remark 2.1 (ii).
(i) It is sufficient to prove that for every h ∈ N∗ the operator T (h)| : X2 → X2 is an isomorphism. Indeed, let

h ∈ N∗.
Injectivity. Let x ∈ X2, with T (h)x = 0. We consider the sequence

γ : N → X, γ(n) = χ{0,...,h−1}(n)T (n)x.

It is easy to see that the pair (γ, 0) satisfies the equation (Ed). Since γ(0) = x ∈ X2 from Remark 2.1 (i) it follows
that γ = 0. In particular this implies that x = γ(0) = 0, so T (h)| is injective.
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Surjectivity. Let x ∈ X2. We define

s : N → X, s(n) = −xχ{h−1}(n).

Let γ ∈ `p(N, X) be such that (γ, s) verifies the equation (Ed). From our assumption X = X1 ⊕ X2, so there
are x1 ∈ X1 and x2 ∈ X2 with γ(0) = x1 + x2. Taking into account that γ(h) = T (h)γ(0) − x, it follows that
T (h)x2 − x = γ(h) − T (h)x1. Since γ(n) = T (n − h)γ(h), for all n ≥ h, it immediately follows that γ(h) ∈ X1.
Hence x = T (h)x2, so T (h)| is also surjective.
(ii) Let M,ω > 0 be the constants given by Definition 2.1. Let x ∈ X2 and let n ∈ N∗. We consider the
sequences

s, γ : N → X, s(k) = −χ{n}(k) T (1)x γ(k) = χ{0,...,n}(k)T (n− k)−1
| x

where T (j)−1
| is the inverse of the operator T (j)| : X2 → X2. It is easy to see that the pair (γ, s) satisfies the

equation (Ed). Since γ(0) ∈ X2, from Remark 2.1 it follows that ||γ||p ≤ α||s||q. This shows that
n∑

j=0

||T (j)−1
| x||p ≤ λp ||x||p

where λ = α||T (1)||. Since n ∈ N∗ and x ∈ X2 were arbitrary we obtain that
∞∑

j=0

||T (j)−1
| x||p ≤ λp ||x||p, ∀x ∈ X2.

Using similar arguments as in the proof of Theorem 2.1 it follows that there is h ∈ N∗ such that

||T (h)−1
| x|| ≤ 1

2
||x||, ∀x ∈ X2.

This implies that
||T (h)x|| ≥ 2||x||, ∀x ∈ X2.
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Taking K = 1/(Meωh) and ν = (ln 2)/h we deduce that

||T (t)x|| ≥ 1
K

eνt||x||, ∀t ≥ 0,∀x ∈ X2.

�

The first main result of this paper is

Theorem 2.3. If the pair (`p(N, X), `q(N, X)) is admissible for the exponentially bounded semigroup T and
the subspace X1 is closed and it has a T-invariant complement, then T is exponentially dichotomic.

Proof. From our assumption X = X1 ⊕ X2. We denote by P the projection corresponding to the above
decomposition, i.e. Im P = X1 and Ker P = X2. Then it is easy to see that

T (t)P = PT (t), ∀t ≥ 0.

Applying Theorem 2.1 and Theorem 2.2 we obtain the conclusion. �

In what follows we study when the admissibility of the pair (`p(N, X), `q(N, X)) is a sufficient condition for
exponential dichotomy.

Lemma 2.1. Let p, q ∈ [1,∞) with p ≥ q and let ν > 0. If s ∈ `q(N,R+) and

δs, βs : N → R+, δs(n) =
n∑

k=0

e−ν(n−k)s(k) βs(n) =
∞∑

k=n+1

e−ν(k−n)s(k)

then δs, βs ∈ `p(N,R+).

Proof. It immediately follows applying Hölder’s inequality. �

The second main result of this paper is
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Theorem 2.4. Let p, q ∈ [1,∞) with p ≥ q. Then T is exponentially dichotomic if and only if the pair
(`p(N, X), `q(N, X)) is admissible for T and the subspace X1 is closed and it has a T-invariant complement.

Proof. Necessity. Let P be the projection and let K, ν > 0 be the constants given by Definition 2.2. If
s ∈ `q(N, X) setting s(−1) = 0 we consider the sequence

γ : N → X, γ(n) =
n∑

k=0

T (n− k)Ps(k − 1)−
∞∑

k=n+1

T (k − n)−1
| (I − P )s(k − 1)

where T (k)−1
| is the inverse of the operator T (k)| : Ker P → Ker P . Using Lemma 2.1 we deduce that γ ∈

`p(N, X) and an immediate computation shows that the pair (γ, s) verifies the equation (Ed). It follows that the
pair (`p(N, X), `q(N, X)) is admissible for T.

It is easy to see that Im P ⊂ X1. Conversely, let x ∈ X1. Then

||x− Px|| ≤ Ke−νn||T (n)(I − P )x|| ≤ K(1 + ||P ||) e−νn||T (n)x||, ∀n ∈ N

so x− Px = 0, which yields that x ∈ Im P . It results that X1 = Im P , so it is closed and it has a complement
– Ker P – which is T-invariant.

Sufficiency. It follows from Theorem 2.3. �

We present now an example in order to illustrate that for p < q the exponential dichotomy of a semigroup
does not imply the admissibility of the pair (`p(N, X), `q(N, X)).

Example 2.1. On X = R2 endowed with the norm ||(x1, x2)|| = |x1|+ |x2| we define T (t) : X → X by

T (t)(x1, x2) = (e−tx1, e
tx2), ∀x = (x1, x2) ∈ R2,∀t ≥ 0.

Then the semigroup T = {T (t)}t≥0 is exponentially dichotomic.
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Let p, q ∈ [1,∞) with p < q. Suppose by contrary that the pair (`p(N,R2), `q(N,R2)) is admissible for T.
Let r ∈ (p, q). We define s : N → R2, s(n) = (0, s̃(n)), where s̃(n) = (n + 1)−1/r. Then s ∈ `q(N,R2) \

`p(N,R2). From the supposed admissibility there is γ̃ ∈ `p(N,R) such that

γ̃(n + 1)
e

= γ̃(n) +
s̃(n)

e
, ∀n ∈ N.(2.2)

Using relation (2.2) and the fact that lim
n→∞

γ̃(n) = 0 we deduce that

γ̃(n) = −en
∞∑

k=n

s̃(k)
ek+1

, ∀n ∈ N.(2.3)

Using Stolz-Cesaro theorem and relation (2.3) we have that

lim
n→∞

|γ̃(n)|
s̃(n)

= lim
n→∞

−e−(n+1)s̃(n)
e−(n+1)s̃(n + 1)− e−ns̃(n)

= lim
n→∞

1
e− (n+1

n+2 )1/r
=

1
e− 1

.

Since s̃ /∈ `p(N,R) it follows that γ̃ /∈ `p(N,R), which is absurd.
In conclusion the pair (`p(N,R2), `q(N,R2)) is not admissible for T.

Remark 2.2. The above example points out the fact that in Theorem 2.4 the condition p ≥ q is essential.
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