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ON THE STATIONARY MOTION
OF A STOKES FLUID IN A THICK ELASTIC TUBE:

A 3D/3D INTERACTION PROBLEM

C. SURULESCU

Abstract. We study the problem of a steady-state fluid-flexible structure interac-
tion in 3D: a Stokes flow moving in an elastic tube. We consider periodic conditions

(in the direction parallel to the tube’s axis) and assume the exterior lateral surface
of the flexible wall clamped. We prove the existence of a solution of the coupled
problem.

1. Introduction

In this paper we study the problem of a steady-state fluid-flexible structure inter-
action in 3D. A stationary fluid-structure interaction problem in space dimension
three was treated also in [10], in the case where the fluid was completely enclosed
by the elastic structure, in 2D/1D in [9] when the equations of the fluid were
coupled with those of an elastic beam. In the 2D/1D case, in [4] is analyzed a
non-homogeneous Stokes-rod coupled problem. We take here the Stokes equations
for describing the behavior of the fluid moving inside a flexible tube with thickness.
The equations of linearized elasticity are used for the elastic structure. The stress
acting on the structure is supposed to come from the fluid, thus this would be the
stress on the structure at the interface between the two media. Fluid and solid
mechanics are coupled through the wall position and the traction exerted by the
fluid on the tube wall. Assuming that periodic boundary conditions are prescribed
at the ends of the tube and that the exterior lateral surface of the elastic cylinder
is clamped, we prove the existence of a solution for the coupled problem, for small
enough data.

2. The mathematical model

We denote by C̃f := {(x1, x2, x3) ∈ R3 : x2
1 + x2

2 < r2
1} the infinite undeformed

cylindrical pipe occupied by the viscous, incompressible fluid, with viscosity ν > 0
and by C̃s := {(x1, x2, x3) ∈ R3 : r2

1 < x2
1 + x2

2 < r2
2} the initial configuration of
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the elastic structure. Let C̃yl ⊂ R3 be the union of these two infinite cylinders.
Thus we have C̃yl = C̃f ∪ C̃s, C̃f ∩ C̃s = ∅. The fluid-structure interface is
Γ̃fs := {(x1, x2, x3) ∈ R3 : x2

1 + x2
2 = r2

1}.
We consider for the fluid the Stokes equations and for the elastic structure the

Lamé equations and we denote by φ̃(ũ) the deformation of the interface between
the two media, for which we have:

φ̃ (ũ)(x) = x + ũ(x).(1)

Observe that this mapping depends on the displacement ũ of the elastic structure.
The following equations describe the behavior of the elastic structure – a St.

Venant-Kirchhoff material – in the small deformations regime (linearized elasticity):

−div(λtrace e(u)I + 2µe(u)) = g in C̃s,(2)

(λtrace e(u)I + 2µe(u)) · n = G on Γ̃fs,(3)

u = 0 on Γ̃0,(4)

u(x1, x2, x3) = u(x1, x2, x3 +
2π

a
) in C̃s(5)

where n is the unit outer normal vector along ∂C̃s∩∂C̃f =: Γ̃fs and g denotes the
exterior volumic force applied to the structure part. Γ̃0 is the exterior boundary
of the elastic tube, while the interior one is obviously Γ̃fs. a ∈ R∗

+ is a constant
such that a << 2π.

G := −σf · n is the surfacic force, which the fluid applies on the interface,
with σφ

f := −pφ · I + 2νe(vφ) the fluid stress on the deformed interface, where
e(vφ) := 1

2 (∇vφ + (∇vφ)t) denotes the fluid strain tensor; they are to be written
on the reference (undeformed) interface. The outer normal nφ on the deformed
interface φ̃(Γ̃fs) transforms to the outer normal n on the reference interface Γfs.

λ > 0 and µ > 0 are the Lamé constants of the St. Venant-Kirchhoff material
considered and

e(u) =
1
2
(∇u +∇ut)

is Green’s strain tensor for the elastic material.
Denoting the deformed fluid domain by φ̃(ũ)(C̃f ), we can write the equations

for the fluid flow (vφ̃, pφ̃ are the velocity, respectively the pressure of the fluid in
the deformed configuration):

−ν∆vφ̃ +∇pφ̃ = f φ̃ in φ̃(ũ)(C̃f )(6)

div vφ̃ = 0 in φ̃(ũ)(C̃f )(7)

vφ̃ = 0 on φ̃(ũ)(Γ̃fs),(8)

to which we add a periodicity condition for the velocity:

vφ̃(x) = vφ̃(x1, x2, x3 +
2π

a
), x = (x1, x2, x3) ∈ φ̃(ũ)(C̃f ).(9)

Now, since the fluid equations are written in Eulerian coordinates in the un-
known deformed domain and the structure equations are expressed in Lagrange
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(material) coordinates in the reference configuration, in order to study the prob-
lem in the known reference configuration we have to do some tranformations on
the equations for the fluid.

We thus want to transform the unknown domain φ̃(ũ)(C̃f ) into the fixed one
C̃f . We therefore define φ̃(ũ) in C̃f as:

φ̃(ũ) := Id + L(tracefs(ũ)),

where Id is the identity, tracefs is the trace operator over Γ̃fs and L : Γ̃fs → C̃f

is a linear, continuous lifting. Denote xφ̃ := φ̃(ũ)(x), x ∈ C̃f .

With the following transformations:

pφ̃(xφ̃) = pφ̃(φ̃(ũ)(x)) =: p(ũ(x)), vφ̃(xφ̃) = vφ̃(φ̃(ũ)(x)) =: v(ũ(x))

f φ̃(xφ̃) = f φ̃(φ̃(ũ)(x)) =: f(ũ(x)), J(ũ) := det∇φ̃(ũ)(10)

and

nφ̃ =
cof∇φ̃(ũ) · n
||cof∇φ̃(ũ) · n||

, dσφ̃ = ||cof∇φ̃(ũ)||dσ

M := cof∇φ̃ (cofactor matrix), N := (∇φ̃)−1 · cof∇φ̃,(11)

the system (6)–(9) becomes (when written in the reference configuration):

−νdiv ((N∇)v) + (M∇)p = fJ in C̃f ,(12)

div (Mtv) = 0 in C̃f ,(13)

v = 0 on Γ̃fs(14)

where fJ(ũ) := f(ũ)J(ũ) and the periodicity condition

v(x) = v(x1, x2, x3 +
2π

a
) in C̃f .(15)

We shall keep in mind that the functions above are related to the (initial)
displacement ũ, but we omit it in the writing.

In order to analyze the above three-dimensional linear problems with mixed
boundary conditions, we proceed like in [11], treating equivalent problems with
homogeneous Dirichlet boundary conditions on tori.

Let T be a torus in R3. We transform the cylinders

Cf := {(x1, x2, x3) ∈ R3 : 0 < x3 <
2π

a
, x2

1 + x2
2 < r2

1}

and

Cs := {(x1, x2, x3) ∈ R3 : 0 < x3 <
2π

a
, r2

1 < x2
1 + x2

2 < r2
2}

(having the interface Γfs := {(x1, x2, x3) ∈ R3 : 0 < x3 < 2π
a , x2

1 + x2
2 = r2

1})
into the tori Tf , respectively Ts by identifying the top and the bottom parts of
the corresponding cylinders: the disk {x3 = 0, x2

1 + x2
2 ≤ r2

1} with the disk
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{x3 = 2π
a , x2

1 + x2
2 ≤ r2

1}, respectively {x3 = 0, r2
1 ≤ x2

1 + x2
2 ≤ r2

2} with
{x3 = 2π

a , r2
1 ≤ x2

1 + x2
2 ≤ r2

2}.
We consider the mapping [0, L] 3 s 7→ δ(s) = ϕ, δ(s) = 2πs

L , ∀s ∈ [0, L], where
we take L = 2π

a .
Then the mapping transforming the cylinder Cyl = Cf ∪Cs into the torus is of

the form:

t : Cyl ⊂ R3 → T ⊂ R3(16)

t1(x) = (
1
a

+ x1) cos(ax3); t2(x) = (
1
a

+ x1) sin(ax3), t3(x) = x2.(17)

We denote by Tf and Ts the fluid domain, respectively the domain of the elastic
structure, both transformed by (16), (17).

Thus, the system (12)–(15) is equivalent to

(18)

−νdiv ((N (ũ)γf·∇)v(ũ)·γf ) + ν(N (ũ)γf ·∇)v(ũ)·div γf

+(M(ũ)γf · ∇)p(ũ) = f̃J(ũ) in Tf

M(ũ)γf : ∇v(ũ) = 0 in Tf

v(ũ) = 0 on ∂Tf ,

where M(ũ)(X) := cof (γf · ∇φ̃(ũ(X))),
N (ũ)(X) := (γf · ∇φ̃(ũ))−1 · cof (γf · ∇φ̃(ũ))

and γf
ij(x) := ∂tj

∂xi
(x), i, j = 1, 2, 3

(we make the notation t(x) = X and γf
ij(X) := γf

ij ◦ t−1(X)). We also have

f̃J(ũ)(X) := (f(ũ) ◦ t−1)(X)J((γf∇)φ̃(ũ(X)));
v(ũ)(X) := (v(ũ) ◦ t−1)(X);
p(ũ)(X) := (p(ũ) ◦ t−1)(X).

Analogously, the system (2)–(5) is equivalent to:

−div (λtr E(γs ·(∇U(ũ))t)·I + 2µE(γs ·(∇U(ũ))t)) = K(γs)−1 ·g in Ts(19)

(λtr E(γs · (∇U(ũ))t) · I + 2µE(γs · (∇U(ũ))t) · n = KG on Γfs(20)

U(ũ) = 0 on Γ0,(21)

where K := λ + µ and E(γs · ∇Ut) := 1
2 (γs · ∇Ut + (γs · ∇Ut)t).

Γ0 denotes the exterior boundary surface of the elastic torus. Observe that

G(ũ) = p(ũ)M(ũ) · n− ν(N (ũ)γf∇)v(ũ) · n.

Here we make the same convention of notation, where

γs
mj(x) = (λ + µ)

∂tj
∂xm

(x), j,m = 1, 2, 3

and
g(X) = (g ◦ t−1)(X), G(X) = (G ◦ t−1)(X).
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Now, having all equations set in a known configuration, we want to prove the
existence of a solution to the coupled problem. This will be done in the following
way: for a given displacement ũ, we split the equations for the fluid and the
equations for the structure, then prove for each of these systems the existence of
a unique solution. This means that we prove the existence and uniqueness for
the solution of the fluid equations (for ũ known), then solve the problem for the
elastic structure as a mixed Dirichlet-Neumann boundary value problem (with the
right-hand side known, since we would have solved the fluid problem). Then the
existence of the solution for the coupled problem will be done by a fixed point
theorem.

3. The fluid problem

Let p ∈ R with 3 < p < ∞. We consider the following system

(22)

−νdiv ((Nγf · ∇)v · γf ) + ν(Nγf · ∇)v · div γf

+(Mγf · ∇)p = f̂ in Tf ,

Mγf : ∇v = 0 in Tf ,

v = 0 on ∂Tf ,

which is of the same type as (18). We keep here the notations for the matrices
in (18), but for the matrices involved in (22) we forget about the dependence on
some displacement ũ and only assume that the following hypotheses are satisfied:
(H1) N is a symmetric and positive definite matrix such that coeff (N ) ∈

W1,p(Tf ), γf is a regular enough matrix; also assume that ∃c > 0 a
constant such that Nγf ≥ cI;

(H2) M is invertible in W1,p(Tf ) and ∃ Θ with M = cof ∇Θ;
(H3) ∃ C > 0 a constant with ‖I−Nγf‖W1,p(Tf ) ≤ C,

‖I− (Mγf )t‖W1,p(Tf ) ≤ C and ‖I−Mγf‖W1,p(Tf ) ≤ C.

Theorem 3.1. Let f̂ ∈ Lp(Tf ). There exists a unique solution (v, p) of the
system (22) in (W2,p(Tf ) ∩W1,p

0,∂Tf
(Tf ))×W 1,p(Tf ), with:

||v||W2,p(Tf ) + ||p||W 1,p(Tf ) ≤ C1||f̂ ||Lp(Tf )(23)

(C1 is a positive constant).

Proof. The existence of a (unique) solution (v, p) ∈ H1
0,Γfs

(Tf )×L2
0(Tf ) of (22)

can be shown e.g., like in [6]. Concerning the existence of a unique pressure, we
verify a corresponding inf-sup condition:

∃k > 0 (constant) s. t.

sup
ψ∈H1

0(Tf )

∫
Tf

τMγf : ∇ψ
||ψ||H1

0(Tf )

≥ k‖τ‖L2(Tf ), ∀τ ∈ L2
0(Tf )

(24)
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Indeed, it is known see [7, ch. III, s. 3] that ∀τ ∈ L2
0(Tf ) ∃ψ̂ ∈ H1

0(Tf ) such that

div ψ̂ = τ and ‖ψ̂‖H1(Tf ) ≤ C‖τ‖L2(Tf ).

Thus, to any given τ ∈ L2
0(Tf ) we associate a ψ̂ and we take ψ such that ∇ψ =

(Mγf )−t∇ψ̂. It follows that ψ ∈ H1
0(Tf ) and (using the above estimate for

‖ψ̂‖) that condition (24) above is satisfied, with the constant k depending on
‖(Mγf )−t||L∞(Tf ); the rest is classical.

The regularity stated in the theorem and the estimate (23) will be proved in
what follows.

Thus, let us consider the sequence S(n) :

(25)
−νdiv(∇vn · γf ) + ν∇vn · divγf +∇pn = f̂ − νdiv(((I−Nγf )∇)vn−1) · γf )

+ ν((I−Nγf )∇)vn−1 · div γf + (I−Mγf )∇pn−1 in Tf ,

I : ∇vn = (I−Mγf ) : ∇vn−1 in Tf ,

vn = 0 on Γfs,

having the first term S(0) :

(26)

−νdiv(∇v0 · γf ) + ν∇v0 · div γf +∇p0 = f̂ in Tf

div v0 = 0 in Tf

v0 = 0 on Γfs.

Problems of this type are treated in [6]. Existence, uniqueness and regularity
of a solution v0 ∈ H2(Tf ), p0 ∈ H1(Tf ) can be proved similarly (see also [3]).
Since the ellipticity condition in [2] is satisfied for the system (26), it follows (see
[8]) that v0 ∈ W2,p(Tf ), p0 ∈ W 1,p(Tf ).

Then for any positive integer n, (vn, pn) ∈ (W2,p(Tf ) ∩W1,p
0 (Tf ))×W 1,p(Tf )

and it converges to the unique solution of the system (18). Indeed, we argument
here by mathematical induction on n.

Assuming that (vn, pn) ∈ (W2,p(Tf ) ∩W1,p
0 (Tf )) × W 1,p(Tf ), it follows that

f̂ − νdiv(((I−Nγf )∇)vn) · γf ) + ν((I−Nγf )∇)vn · div γf + (I−Mγf )∇pn ∈
Lp(Tf ), by the hypotheses we have made and the fact that W 1,p is a Banach
algebra for p > 3.

Also by (H1), (H2), it follows that (I−Mγf ) : ∇vn ∈ W1,p(Tf ) and it has zero
mean over Tf , since vn satisfies the boundary condition in (25). It follows then that
S(n + 1) has a unique solution (vn+1, pn+1) ∈ (W2,p(Tf )∩W1,p

0 (Tf ))×W 1,p(Tf )
and thus the induction on the regularity of the solutions for the fluid system is
complete.

Let us now prove that the solution of S(n) converges to the unique solution of
(22). This is done by showing that (vn, pn) is a Cauchy sequence in W2,p(Tf ) ×
W 1,p(Tf ) and by passing to the limit for n →∞ in S(n).
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S(n + 1)− S(n) :

(27)

−νdiv(∇(vn+1 − vn) · γf ) + ν∇(vn+1 − vn)div γf +∇(pn+1 − pn)

=− νdiv(((I−Nγf )∇)(vn − vn−1) · γf )

+ ν((I−Nγf )∇)(vn − vn−1)div γf

+ ((I−Mγf )∇)(pn − pn−1) in Tf

div (vn+1 − vn) = (I−Mγf ) : ∇(vn − vn−1) in Tf(28)

vn+1 − vn = 0 on Γfs.(29)

Upon using again for this Stokes system estimates of the kind of those in [6],
one gets:

||vn+1 − vn||W2,p(Tf ) + ||pn+1 − pn||W 1,p(Tf )

≤ const {||I−Nγf ||W1,p(Tf )||vn − vn−1||W2,p(Tf )

+ ||I− (Mγf )t||W1,p(Tf )||vn − vn−1||W2,p(Tf )

+ ||I−Mγf ||W1,p(Tf )||pn − pn−1||W 1,p(Tf )},
const > 0 being a constant independent of n, N , M, but depending on the bound
of γf .

Now we choose C in the hypotheses we made in order to satisfy const · C < 1
and it follows that:
‖vn+1 − vn‖W2,p(Tf ) + ‖pn+1 − pn‖W 1,p(Tf )

≤ Cprod{‖vn − vn−1‖W2,p(Tf ) + ‖pn − pn−1‖W 1,p(Tf )},
with 0 < Cprod < 1.

Consequently, the sequence (vn, pn) converges in W2,p(Tf )×W 1,p(Tf ). Thus,
there exists the limit (vC , pC) ∈ (W2,p(Tf ) ∩W1,p

0 (Tf ))×W 1,p(Tf ) such that

vn → vC in W2,p(Tf ) as n →∞
and

pn → pC in W 1,p(Tf ) as n →∞.

Passing now to the limit in S(n), we conclude that (vC , pC) is the unique solution
of (22) and thus vC = v and pC = p.

We still have to prove the inequality (23). Using the above estimations, observe
that we can write
‖vn‖W2,p(Tf ) + ‖pn‖W 1,p(Tf )

≤ C‖f̂‖Lp(Tf ) + Cprod{‖vn−1‖W2,p(Tf ) + ‖pn−1‖W 1,p(Tf )},
where C > 0 is a constant. For n →∞ this estimation becomes

||v||W2,p(Tf ) + ||p||W 1,p(Tf ) ≤ C(1− Cprod)−1||f̂ ||Lp(Tf ).

Thus we obtain the inequality (23), with C1 = C(1− Cprod)−1. �
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4. The flexible structure

Consider now the following system for the flexible structure:

−div (λtr E(γs · ∇U t) · I + 2µE(γs · ∇U t)) = K(γs)−1g in Ts(30)

(λtr E(γs · ∇U t) · I + 2µE(γs · ∇U t)) · n = KG on Γfs(31)

U = 0 on Γ0,(32)

where g is a given volumic force, while G is a given surfacic force (which is actually
related to the fluid stress tensor). Then we have:

Theorem 4.1. For p ∈ R, 3 < p < ∞ let g ∈ Lp(Ts) and G ∈ W1−1/p,p(Γfs).
Then there exists a unique solution U ∈ W2,p(Ts) ∩W1,p

0,Γ0
(Ts) of the system

(30)–(32) and it satisfies:

||U||W2,p(Ts) ≤ const (||g||Lp(Ts) + ||G||W1−1/p,p(Γfs)).(33)

Proof. The problem corresponding to the system (30)–(32) is equivalent to the
problem of finding a solution U of the following equation:

A(U,ψ) = L(ψ), ∀ψ ∈ V,(34)

where
A(U,ψ) :=

∫
Ts

S(U) : E(γs · ∇ψt),

with S(U) := λtr E(γs · ∇Ut)I + 2µE(γs · ∇Ut) and

L(ψ) :=
∫

Ts

Kg ·ψdy +
∫

Γfs

KG ·ψdσ.

V denotes a space of smooth enough vector-valued functions ψ : T̄s → R3 that
vanish on Γ0. We take here V := {ψ ∈ H1(Ts) : ψ = 0 on Γ0} = H1

0,Γ0
(Ts).

Now, A is a continuous, bilinear form that is also V-elliptic (via Korn’s inequal-
ity) and L is a continuous linear form defined on V. By the Lax-Milgram lemma
it follows that there is one and only one function U in the space V, solution of
(34). Moreover, using the regularity of the data and the regularity properties of
the mixed Neumann-Dirichlet boundary value problem see [5, Th. 6.3.6 and the
remarks after it], it follows that U ∈ W2,p(Ts) and the estimate (33) holds. �

5. The coupling

We now come to the coupled problem. The following is the main result for the
fluid-structure interaction problem (on the torus):

Theorem 5.1. Let p ∈ R with 3 < p < ∞, f φ̃ ∈ Lp(R3) and g ∈ Lp(Ts).
Assume there exists a constant χ > 0 with:

Ccoupl(‖f φ̃‖Lp(R3) + ‖g‖Lp(Ts)) ≤ χ.(35)

Then there exists a solution (v, p,U) of the equations (18), (19)–(21), with
v ∈ W2,p(Tf ) ∩W1,p

0 (Tf ), p ∈ W 1,p(Tf ) and U sufficiently small in W2,p(Ts).
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Proof. The idea of the proof is the following: let

Uχ := {ũ ∈ W2,p(Ts) : ‖ũ‖W2,p(Ts) ≤ χ}.

The mapping

Uχ 3 ũ A7→ U(ũ) ∈ W2,p(Ts)

has at least one fixed point.
Let ũ ∈ Uχ. Then ∇φ̃(ũ) is an invertible matrix in W1,p(Tf ) (p > 3) and (for χ

sufficiently small) we have det∇φ̃(ũ)(x) > 0, thus the deformation φ̃(ũ) = Id + ũ
is orientation preserving [5, Theorem 5.5] and injective. Indeed, by the mean value
theorem:

‖φ̃(ũ(x1))− φ̃(ũ(x2))‖ = ‖x1 − x2 + ũ(x1)− ũ(x2)‖
≥ ‖x1 − x2‖ − sup ‖∇ũ‖ · ‖x1 − x2‖
> (1− C(Tf ))‖x1 − x2‖ (for x1 6= x2),(36)

C(Tf ) being the constant in the orientation preserving theorem.
The solution (v(ũ), p(ũ)) of (18) satisfies the same type of equations as those

in Theorem 3.1, with f̂ := f̃J , N := N (ũ), M := M(ũ) (see the Appendix for the
properties of M and N in (11); thus, since γf in (18) is regular, the hypotheses
in Theorem 3.1 are satisfied for N (ũ) and M(ũ), too). Then by Theorem 3.1 it
follows that for any ũ ∈ Uχ, (v(ũ), p(ũ)) ∈ W 2,p(Tf )×W 1,p(Tf ) and

‖v(ũ)‖W2,p(Tf ) + ‖p(ũ)‖W 1,p(Tf ) ≤ C1‖f̃J(ũ)‖Lp(Tf ),

thus also

‖v(ũ)‖W2,p(Tf ) + ‖p(ũ)‖W 1,p(Tf ) ≤ C(C1, χ)‖f φ̃‖Lp(R3).(37)

We have G(ũ) = p(ũ)M(ũ) · n− ν(N (ũ)γf∇)v(ũ) · n ∈ W1−1/p,p(Γfs).
G in (31) satisfies:

‖G‖W1−1/p,p(Γfs) ≤ C(‖v(ũ)‖W2,p(Tf ) + ‖p(ũ)‖W 1,p(Tf ))

≤ C(C1, χ)‖f φ̃‖Lp).

Now apply Theorem 4.1 to get the existence of a unique solution U(ũ) ∈ W2,p(Ts)
of (19)–(21)) with

‖U(ũ)‖W2,p(Ts) ≤ const(C(C1, χ)‖f φ̃‖Lp + ‖g‖Lp(Ts)).(38)

We have thus constructed the mapping Uχ 3 ũ A7→ U(ũ) ∈ Uχ ⊂ W2,p(Ts). This
mapping has a fixed point, by the theorem of Schauder:
• A is weakly sequentially continuous on W2,p(Ts).

Indeed, let ũn ∈ Uχ with ũn
n→∞
⇀ ũ in W2,p(Ts); by (37) and (38) it follows that

(v(ũn), p(ũn),U(ũn)) is (independently on n) bounded in W2,p(Tf )×W 1,p(Tf )×
W2,p(Ts), thus (∃)(v̂, p̂, Û) ∈ W2,p(Tf ) ×W 1,p(Tf ) ×W2,p(Ts) and there exists
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a subsequence (ũnk)k ⊂ (ũn)n with

v(ũnk) k→∞
⇀ v̂ in W2,p(Tf )

p(ũnk) k→∞
⇀ p̂ in W 1,p(Tf )

U(ũnk) k→∞
⇀ Û in W2,p(Ts).

We have to show that U(ũ) = Û and this will prove the weak continuity of
A, for then the sequence U(ũn) will converge to U(ũ) in the weak topology of
W2,p(Ts), U(ũ) being the unique solution of (19)–(21) for ũ given.

We intend to pass to the limit in the equations satisfied by v(ũnk), p(ũnk),
U(ũnk).

Now, φ̃(ũnk) k→∞
⇀ φ̃(ũ) in W2,p(Tf ). Since p > 3, W2,p(T ) is compactly

imbedded in C1(T̄ ) and therefore there exists a subsequence of (ũnk), still de-
noted by (ũnk) such that

ũnk
k→∞→ ũ in C1(T̄s)

and
φ̃(ũnk) k→∞→ φ̃(ũ) in C1(T̄f ).

It follows (see the definitions of M and N after (18)) that M(ũnk) k→∞→
M(ũ) in C0(T̄f ), since W1,p(Tf ) ↪→ C0(T̄f ) (p > 3).

Moreover, since ∇φ̃(ũnk) is invertible in W1,p(Tf ), thus also in C0(T̄f ) and

since C0(T̄f ) 3 mapping 7→ mapping−1 ∈ C0(T̄f ), it also follows that N (ũnk) k→∞→
N (ũ) in C0(T̄f ).

We also have that f φ̃(φ̃(ũnk)) k→∞→ f φ̃(φ̃(ũ)) in Lp(Tf ). This is ensured by the
following lemma (for a justification see, for instance, [10]):

Lemma 5.1. Let ψ ∈ Lp(R3). The mapping

C1(T̄f ) 3 θ 7→ ψ ◦ (Id + θ) ∈ Lp(Tf )

is continuous at each point of the open ball {θ ∈ C1(T̄f ), ‖∇θ‖C0(T̄f ) < C(Tf )},
where C(Tf ) is the constant in the orientation preserving theorem for the mapping
Id + θ (see (36) above).

We are able now to pass to the limit in the equations (18), (19)–(21) and due
to the uniqueness of the solution to these equations we get v̂ = v(ũ), p̂ = p(ũ),
Û = U(ũ).

• A(Uχ) ⊂ Uχ: by (35) and (38), with an adequate choice of Ccoupl.

• Uχ is convex and weakly compact in W2,p(Ts) (this is straightforward).

Consequently, the hypotheses of Schauder’s fixed-point theorem are satisfied
and the conclusion follows. �

Now using the above results and transforming back to the original domain (see
[11]), we obtain the following theorem for the fluid-structure interaction problem
in the cylinder of length L = 2π

a :
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Theorem 5.2. Let f φ̃ ∈ Lp(R3) and g ∈ Lp
per(Cs). Assume there exists a

constant χ1 > 0 with:

K(‖f φ̃‖Lp(R3) + ‖g‖Lp(Cs)) ≤ χ1,(39)

where K is a constant depending on a.
Then there exists a solution (v, p,U) of the equations (2)–(5)), (12)–(15) with

v ∈ W2,p
per(Cf ) ∩W, p ∈ W 1,p

per(Cf ) and U sufficiently small in W2,p
per(Cs).

Remark. Remember the way fJ in (12) was defined. For the definitions of the
involved spaces see the Appendix.

Appendix

Let C̃ be an infinite cylindrical pipe like in Section 3 and Γ̃ be its boundary. For
a ∈ R+ \{0} and the finite cylinder C with boundary Γ like in Section 3, we define

C∞0,per(C) := {f ∈ C∞per(C) : supp (f) ∩ (C̄ − Γ) is compact in Cf},
Lp

per(C) := the closure of C∞per(C) in Lp(C)

Wm,p
per (C) := the closure of C∞per(C) in Wm,p(C),

Wm,p
0,per(C) := the closure of C∞0,per(C) in Wm,p(C),

W̃ := {F ∈ C∞0,per(C) : ∇ · F = 0},

W := the closure of W̃ in W1,p
0,per(C).

Observe that
W = {v ∈ W1,p

0,per(C) : ∇ · v = 0}

and that, by the Poincaré inequality, the inner product in W1,p
0,per(C) is equivalent

to the inner product

((v,w)) :=
∫

C

∂vj

∂xi

∂wj

∂xi
dx, v,w ∈ W1,p

0,per(C).

***

The following lemma gives some properties of the mappings N, M and J, which
were defined in (11) and (10).

Lemma 5.2. The mappings M, J : W 2,p(Ts) → W 1,p(Tf ) are of class C∞.
N : Uχ → W 1,p(Tf ) is also C∞(Uχ) and it also satisfies an ellipticity condition:

∃ ζ > 0 such that N(ũ) ≥ ζI, ∀ũ ∈ Uχ, ∀x ∈ T̄f .

Proof. The proof is a straightforward adaptation of the proof of Lemma 3 in
[10]. It relies on the properties of φ̃, on the fact that the mapping W 1,p(Tf ) 3
M → M−1 ∈ W 1,p(Tf ) is C∞ at any invertible matrix of W 1,p(Tf ) and on the
compact embedding of W1,p(Tf ) in C0(Tf ). The fact that p > 3 is essential. �
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Remark 5.3. The fact that ũ ∈ Uχ and the above lemma ensure that the hy-
pothesis (H1) in Theorem 3.1 is satisfied. In order to be able to apply Theorem 3.1
in the proof of Theorem 5.1, hypothesis (H3) must be satisfied, too.

By the previous lemma, the mappings M and N are of class C∞ and clearly
M(0) = I, N(0) = I.

Thus we write the Taylor seria for N and M and get

‖N(ũ)− I‖W 1,p(Tf ) ≤ [[DN]] · ‖ũ‖W 2,p(Ts),

respectively
‖M(ũ)− I‖W 1,p(Tf ) ≤ [[DM]] · ‖ũ‖W 2,p(Ts),

where [[DN]] := supu∈Uξ
‖DN(u)‖L(W2,p(Tf ),W1,p(Tf )).

Choose χ such that χmax{[[DN]], [[DM]]} ≤ C, where C is the constant in hy-
pothesis (H3) of Theorem 3.1.

References

1. Adams R., Sobolev Spaces, Academic Press, New York, 1975.
2. Agmon S., Douglis A. and Nirenberg L., Estimates near the boundary of elliptic partial

differential equations satisfying general boundary conditions II, Comm. Pure Appl. Math.
17 (1964), 35–92.

3. Agmon S., Lectures on Elliptic Boundary Value Problems, Mathematical Studies, Van Nos-

trand 1965.
4. Bayada G., Chambat M., Cid B. and Vázquez C., On the existence of solution for a

non-homogeneous Stokes-rod coupled problem, preprint 362 of the research team “Analyse

Numérique Lyon-Saint Etienne” (UMR 5585), 2003.
5. Ciarlet P.G., Mathematical Elasticity. Volume I: Three-Dimensional Elasticity, North-

Holland, 1988.

6. Constantin P. and Foias C., Navier-Stokes Equations. The University of Chicago Press,
Chicago 1988.

7. Galdi G. P., An Introduction to the Mathematical Theory of the Navier-Stokes Equations.
Vol.I: Linearized Steady Problems, Springer Tracts in Natural Philosophy 38, Springer,

1994.
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