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FREE SYSTEMS OF ALGEBRAS AND ULTRACLOSED CLASSES

R. THRON and J. KOPPITZ

Abstract. There is considered the concept of the so-called free system of algebras for an ultraclosed class of algebras of

a fixed arithmetic type. Certain free systems exist for such a class if and only if the class is defined by finite disjunctions
of identities where the operational symbols are interpreted as operational variables for fundamental operations of an
algebra.

1. Introduction and Summary

Among various concepts in algebra one of the most useful is that of the free algebra. G. Birkhoff [1] defines (for a
fixed type τ) a free algebra in a class of algebras of type τ . Especially, free algebras are related with equationally
defined classes and can be characterized by identities of type τ .

The subject of this paper concerns with a similar connection between the concept of the free system of algebras
for a class of algebras and classes which are defined by disjunctions of identities where the operational symbols
are interpreted as operational variables for fundamental operations of an algebra.

Ordinary disjunctions of identities have been investigated as so-called power identities on semigroups [2], [4],
especially and also in a more general form [7].

In this paper the use of a disjunction of identities corresponds to the concept of a disjunction of second-order
formulas

∀X1 . . .∀Xm∀x1 . . .∀xn(w1 ≈ w2)
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(for short w1 ≈ w2) on an algebra where X1, . . . , Xm are operational variables for fundamental operations of the
algebra and x1, . . . , xn are the individual variables in the terms w1 and w2. A second-order formula w1 ≈ w2 is
a hyperidentity by Yu. Movsisyan [5].

Another concept of hyperidentity was introduced by W. Taylor where an identity w1 ≈ w2 becomes to a
hyperidentity on an algebra if the operational variables are variables for derived operations of the algebra [6]. In
this paper we do not apply the concept of a hyperidenty in the sense of W. Taylor.

The paper deals with a class K of algebras of several types τ but of a fixed arithmetic type N , i.e., for each
algebra it is N the set of the arities of the operations [5]. Especially, each algebra has a reduct of any type.

We introduce a free system for K (with respect to a set X of individual variables and a set F of operational
symbols) to be a set U ⊆ K such that each C ∈ U is a homomorphic image of the termalgebra T (X,F ) and each
homomorphism

T (X,F ) −→ A
from T (X,F ) into any reduct A (of the appropriate type) of an algebra B ∈ K is the composition

T (X,F ) onto−→ C −→ A

of a homomorphism from T (X,F ) onto some C ∈ U with a homomorphism from C into A.
Furthermore, we investigate the existence and construction of free systems for classes of algebras.
Then we consider certain classes K which are closed under the formation of ultraproducts. For such a class K

there exists a free system for any set X and any set F if and only if K is defined by finite disjunctions

P1 ≈ Q1 ∨ . . . ∨ Pn ≈ Qn

of identities P1 ≈ Q1, . . . , Pn ≈ Qn in the following way. For each identity Pi ≈ Qi the terms Pi and Qi are usual
compositions of individual variables and operational symbols. However, the operational symbols are interpreted
as operational variables for fundamental operations of an algebra [5]. Therefore, it is said that a disjunction holds
in an algebra A if whenever the individual variables are replaced by any elements a ∈ A and the operational



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

symbols are replaced by any fundamental operations of A of the appropriate arity, then in the disjunction there
exist some identity Pi ≈ Qi such that the values of Pi and Qi are equal.

2. Basic Notions

In this section we introduce some basic notions with respect to the considered algebras [3], [5].
(a) Let N be a fixed arithmetic type, i.e., a set of natural numbers (greater than zero). A type τF is a function

from a set F of finitary operational symbols into the set of the natural numbers where f is a τF (f)-ary operational
symbol for f ∈ F . We assume that

N = {τF (f) : f ∈ F}
and define

Fn := {f : f ∈ F and τF (f) = n}
for each n ∈ N .

(b) In the following we consider algebras A of a type τF (or simply τF -algebras) such that

A = (A, (fA)f∈F )

where each τF (f)-ary operational symbol f is associated with some τF (f)-ary operation fA on A.
(c) For a type τF and a set X of individual variables let

T (X,F ) = (T(X,F ), (fT (X,F ))f∈F )

be the algebra of terms over X and F of type τF where T(X,F) denotes the set of all terms over X and F and
each τF (f)-ary operational symbol f corresponds with the τF (f)-ary operation fT (X,F ) on T(X,F ).

(d) Let A be a τF -algebra and B be a τG-algebra. Then A is called to be a τF -reduct of B if A = B and

{fA : f ∈ F} ⊆ {gB : g ∈ G}.
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(e) A class K of algebras is called to be closed under the formation of reducts if for any type τF and B ∈ K
each τF -reduct of B belongs to K.

Proposition 2.1. Let B be a τG-algebra. Then for each type τF there exists a τF -reduct A of B.

Proof. Let B be a τG-algebra and τF be a type. Now, we construct a τF -algebra A. For this let A := B and
we assume that the set G is well-ordered. If f ∈ F , then let fA := gB where g is the least element of the set
GτF (f) = {g : τG(g) = τF (f)} which is not empty. By construction the algebra A is a τF -reduct of B. �

(f) For a class K of algebras let ΦXF (K) be the set of all homomorphisms ϕ from T (X,F ) into any τF -reduct
A of some B ∈ K (because of Proposition 2.1 there exists such a τF -reduct).

(g) Let B be an algebra and D ⊆ T (X,F )× T (X,F ). We say that the disjunction (of identities)∨
(P,Q)∈D

P ≈ Q

holds in B (in symbols, B |= D) if D ∩ ker(ϕ) 6= ∅ for all ϕ ∈ ΦXF ({B}).
(h) K is called to be defined by disjunctions if there are a set X of individual variables, a set F of operational

symbols and a family ∆ of sets D ⊆ T (X,F) × T (X,F) such that K is equal to the class of all algebras A with
A |= D for each D ∈ ∆ (in symbols, K = MOD(∆)).

(i) Especially, K is called to be defined by finite disjunctions if there are a set X of individual variables
with |X| = ℵ0, a set F of operational symbols with |Fn| = ℵ0 for each n ∈ N and a family ∆ of finite sets
D ⊆ T (X,F)× T (X,F) such that K = MOD(∆).

(j) We define DISXF (K) to be the family of all sets D ⊆ T (X,F )×T (X,F ) such that A |= D for each A ∈ K.

3. Free Systems

We consider the existence and construction of free systems with respect to a set X of individual variables and a
set F of operational symbols.
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Definition 3.1. Let K be a class of algebras. Then a free system for K (over X and F ) is defined to be a set
U ⊆ K such that each C ∈ U is a τF -algebra which is a homomorphic image of T (X,F ) and each homomorphism
from T (X,F ) into any τF -reduct A of a B ∈ K is the composition of a homomorphism from T (X,F ) onto some
C ∈ U with a homomorphism from C into A.

Definition 3.2. For sets U and U ′ of τF -algebras we define U ≺ U ′ (over X and F ) if each homomorphism
from T (X,F ) onto any C′ ∈ U ′ is the composition of a homomorphism from T (X,F ) onto some C ∈ U with a
homomorphism from C onto C′.

Let I(DISXF (K)) be the set of all E ⊆ T(X,F ) × T(X,F ) with E ∩D 6= ∅ for all D ∈ DISXF (K) and σ(E)
be that congruence relation on the termalgebra T (X,F ) which is generated by some E ∈ I(DISXF (K)).

Proposition 3.3. Let K be a class of algebras and U be a set of τF -algebras. Then the following statements
are equivalent.

(i) U is a free system for K (over X and F ).
(ii) U ≺ {T (X,F )/σ(E) : E ∈ I(DISXF (K))} (over X and F ) and U ⊆ K.

Proof. (i)=⇒(ii): We assume that U is a free system of algebras for K (over X and F ). Now, let α be a homo-
morphism from T (X,F ) onto some T (X,F )/σ(E) with E ∈ I(DISXF (K)). Then there exists a homomorphism
ϕ from T (X,F ) into some τF -reduct A of a B ∈ K such that ker(ϕ) ⊆ σ(E). Otherwise,

(ker(ϕ) \ E) ⊇ (ker(ϕ) \ σ(E)) 6= ∅

for each ϕ ∈ ΦXF (K). We define D :=
⋃
{(ker(ϕ) \ E) : ϕ ∈ ΦXF (K)}. Then D ∈ DISXF (K), E ∩D = ∅. This

contradicts the assumption that E ∈ I(DISXF (K)).
The homomorphism ϕ into A is also a homomorphism onto a subalgebra A′ of A.
Because of ker(ϕ) ⊆ σ(E) there exists a homomorphism ϕ′ from the algebra A′ onto T (X,F )/σ(E) such that

α = ϕ′ · ϕ.
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Since U is a free system for K (over X and F ) it follows that the homomorphism ϕ is the composition γ · ξ of
a homomorphism ξ from T (X,F ) onto some C ∈ U with a homomorphism γ from C into A. Therefore, α is the
composition (ϕ′ · γ) · ξ of the homomorphism ξ from T (X,F ) onto some C ∈ U with the homomorphism ϕ′ · γ
from C onto T (X,F )/σ(E). Consequently,

U ≺ {T (X,F )/σ(E) : E ∈ I(DISXF (K))}
(over X and F ). By assumption it is U ⊆ K, finally.

(ii)=⇒(i): We assume
U ≺ {T (X,F )/σ(E) : E ∈ I(DISXF (K))}

(over X and F ) and U ⊆ K. Now, let ϕ be a homomorphism from T (X,F ) into any τF -reduct A of a B ∈ K.
The homomorphism ϕ is also a homomorphism onto a subalgebra A′ of A with A′ ∼= T (X,F )/ker(ϕ). Then there
exists some E ∈ I(DISXF (K)) such that

T (X,F )/ker(ϕ) = T (X,F )/σ(E).

Clearly, for D ∈ DISXF (K) it is ker(ϕ) ∩D 6= ∅ and (ker(ϕ) ∪D) ∈ DISXF (K). Consequently, for

E :=
⋃
{ker(ϕ) ∩D : D ∈ DISXF (K)}

there hold E ∈ I(DISXF (K)) and E = ker(ϕ) = σ(E).
Therefore, from the assumption it follows that the homomorphism ϕ is the composition of a homomorphism

from T (X,F ) onto some C ∈ U with a homomorphism from C into A. Because of U ⊆ K it is U a free system
for K (over X and F ). �

Proposition 3.4. Let K be a class of algebras, U be a free system for K (over X and F ) and U ′ be a set of
τF -algebras. Then the following statements are equivalent.

(i) U ′ is a free system for K (over X and F ).
(ii) U ′ ≺ U (over X and F ) and U ′ ⊆ K.
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Proof. (i)=⇒(ii): Let U ′ be a free system for K (over X and F ). Then U ′ ⊆ K, consequently and we show
U ′ ≺ U . For this let α be a homomorphism from T (X,F ) onto any C ∈ U . Because C is a τF -algebra it is C a
τF -reduct of itself. By assumption U ′ is a free system for K. Therefore, α is the composition of a homomorphism
from T (X,F ) onto some C′ ∈ U ′ with a homomorphism from C′ onto C, i.e., U ′ ≺ U (over X and F ).

(ii)=⇒(i): Let U ′ ≺ U (over X and F ), U ′ ⊆ K and α be a homomorphism from T (X,F ) into any τF -reduct
A of a B ∈ K. Because U is a free system for K (over X and F ) there exist a C ∈ U , a homomorphism β from
T (X,F ) onto C and a homomorphism γ from C into A such that α = γ ·β. From U ′ ≺ U it follows that there are
a C′ ∈ U ′, a homomorphism β′ from T (X,F ) onto C′ and a homomorphism γ′ from C′ onto C such that β = γ′ ·β′.
Consequently, α = (γ · γ′) · β′ and γ · γ′ is a homomorphism from C′ into A, i.e., U ′ is a free system for K (over
X and F ). �

Proposition 3.5. Let K be a class of algebras which is defined by disjunctions, X be a set of individual
variables and F be a set of operational variables. Then there exists a free system U for K (over X and F ).

Proof. By assumption it is K = Mod(∆) and ∆ is a family of sets D ⊆ T (X,F)× T (X,F). Let
D(ξ) be the set of all (ξ(P ), ξ(Q)) with (P,Q) ∈ D and a homomorphism ξ from T (X,F) into any τF-reduct of

T (X,F ),
H(∆) be the set of all D(ξ) with respect to all D ∈ ∆ and to all homomorphisms ξ from T (X,F) into any

τF-reduct T (X,F ),
I(H(∆)) be the set of all E ⊆ T(X,F )× T(X,F ) with E ∩D 6= ∅ for D ∈ H(∆),
σ(E) be that congruence relation on the termalgebra T (X,F ) which is generated by some E ∈ I(H(∆)).
At first, we define a set U . Let U be the set of all algebras T (X,F )/σ(E) with E ∈ I(H(∆)).
It holds U ⊆ K. For this let B ∈ U and D ∈ ∆. Then there holds B = T (X,F )/σ(E) for some E ∈ I(H(∆)).

Now, let ϕ be a homomorphism from T (X,F) into any τF-reduct (T (X,F )/σ(E))F of T (X,F )/σ(E). Then there
exists a homomorphism ξ from T (X,F) into a appropriate τF-reduct (T (X,F ))F of T (X,F ) such that

ϕ(t) = [ξ(t)]σ(E) ∈ (T (X,F )/σ(E))F
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for t ∈ T(X,F). Because of the definition of E it is a pair (P,Q) ∈ D such that (ξ(P ), ξ(Q)) ∈ E ⊆ σ(E) and
therefore

ϕ(P ) = [ξ(P )]σ(E) = [ξ(Q)]σ(E) = ϕ(Q).

From this it follows B |= D and U ⊆ K.
Then U is a free system of K. Obviously, each C ∈ U is a τF -algebra which is a homomorphic image of T (X,F ).

Now, let A be a τF -reduct of an algebra B ∈ K and α be a homomorphism from T (X,F ) into A. We define E
to be the family of all sets

{(ξ(P ), ξ(Q)) : (P,Q) ∈ D and (α · ξ)(P) = (α · ξ)(Q)}

with respect to all homomorphisms ξ from T (X,F) into any τF-reduct of T (X,F ) and all D ∈ ∆. Because of
B ∈ K = Mod(∆) the elements of E are nonempty sets and therefore E ∈ I(H(∆)), i.e., C := T (X,F )/σ(E) ∈ U
and there is a homomorphism β from T (X,F ) onto C such that β(t) = [t]σ(E) for t ∈ T (X,F ).

It is easy to check that from (s, t) ∈ σ(E) it follows that α(s) = α(t). Therefore, it exists a homomorphism ϕ
from C into A such that ϕ([t]σ(E)) = α(t) for [t]σ(E) ∈ C.

Consequently, α(t) = ϕ([t]σ(E)) = ϕ(β(t)) for t ∈ T (X,F ), i.e., α = ϕ · β and U is a free system for K. �

4. Ultraclosed Classes

In the following section we consider free systems for an ultraclosed class of algebras.
For this let K be a class of algebras. Then K is called to be ultraclosed if for each type τF , any (not empty)

set {Ai : i ∈ I} ⊆ K of τF -algebras and any ultrafilter J on I the filtered product
∏

i∈I Ai/J belongs to K. (We
assume that the filters are proper, i.e., ∅ /∈ J , especially.)

Proposition 4.1. Let K be a class of algebras which is closed under the formation of reducts and ultraclosed.
Then for each D ⊆ T (X,F ) × T (X,F ) it exists a finite subset D′ ⊆ D such that for each algebra B ∈ K from
B |= D it follows that B |= D′.
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Proof. Let K be a class of algebras such that K is closed under the formation of reducts and ultraclosed.
Furthermore, let D ⊆ T (X,F )× T (X,F ).

Clearly, there is the least cardinal number λ such that it exists some D′ ⊆ D where |D′| = λ and for each
algebra B ∈ K from B |= D it follows that B |= D′.

Now, it is proved that λ < ℵ0: Otherwise, λ ≥ ℵ0. Let α be the least ordinal number such that |{i : 0 ≤ i <
α}| = λ. Since λ is an infinite cardinal number it follows that α is a limit ordinal number. Then

D′ = {(Pi, Qi) : 0 ≤ i < α}
and

|{(Pj , Qj) : 0 ≤ j ≤ i}| < λ

for i < α. Consequently, for each i < α there is a homomorphism ϕi from T (X,F ) into a τF -reduct Ai of some
B ∈ K such that ϕi(Pj) 6= ϕi(Qj) for each j ≤ i and ϕi(Pj) = ϕi(Qj) for some j > i.

Let I := {i : 0 ≤ i < α} and G be the collection of all I \M with M ⊆ I and |M | < λ. Because of λ ≥ ℵ0 it is
G a filter on I which is contained in some ultrafilter J on I such that M /∈ J for each M ⊆ I with |M | < λ.

Because K is closed under the formation of reducts it follows {Ai : i ∈ I} ⊆ K. By assumption K is ultraclosed
and therefore C :=

∏
i∈I Ai/J ∈ K and it is C |= D′. Let ϕ be that homomorphism from T (X,F ) into the τF -

algebra C such that
ϕ(w) = [(ϕi(w) : i ∈ I)]J ∈ C

for each w ∈ T(X,F ). Consequently,

{(P,Q) : (P,Q) ∈ D′ and ϕ(P ) = ϕ(Q)} 6= ∅
and

[(ϕi(Pj) : i ∈ I)]J = [(ϕi(Qj) : i ∈ I)]J
for some j < α. Let M be the set of all i ∈ I such that

ϕi(Pj) = ϕi(Qj).
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Because of
ϕi(Pj) 6= ϕi(Qj)

for each j ≤ i it follows that
M ⊆ {i : 0 ≤ i < j}

and |M | < λ, contradicting M ∈ J , i.e., λ < ℵ0. Consequently, for each D there is some D′ ⊆ D with |D′| < ℵ0

such that for each algebra B ∈ K from B |= D it follows that B |= D′. �

Now, let X be a set of individual variables such that |X| = ℵ0 and F be a set of operational symbols such that
|Fn| = ℵ0 for each n ∈ N .

Proposition 4.2. Let K be a class of algebras which is closed under the formation of reducts and ultraclosed.
Then the following implication holds provided that |X| ≥ ℵ0 and |Fn| ≥ ℵ0 for each n ∈ N : If U is a free system
for K (over X and F ), then U is also a free system for MOD.DISXF(K) (over X and F ).

Proof. Let U be a free system for K (over X and F ). Then by Proposition 3.3 it is U ≺ {T (X,F )/σ(E) : E ∈
I(DISXF (K))} and U ⊆ K.

Now, it holds DISXF (K) = DISXF (MOD.DISXF(K)). First of all we prove MOD.DISXF (K)=MOD.DISXF(K).
For this let A ∈ MOD.DISXF (K) and this is if and only if A |= D for each D ∈ DISXF (K). D ∈ DISXF (K)
means B |= D for each B ∈ K. By assumption it is K a class of algebras which is closed under the formation of
reducts and ultraclosed. Therefore by Proposition 4.1 it exists a subset D′ ⊆ D such that |D′| < ℵ0 and from
B |= D it follows B |= D′ for each B ∈ K. Consequently, MOD.DISXF (K) is the set of all algebras A such that
A |= D for each D ∈ DISXF (K) with |D| < ℵ0. Especially, MOD.DISXF(K) is the set of all algebras A such that
A |= D for each D ∈ DISXF(K) with |D| < ℵ0. Since |X| ≥ |X| = ℵ0 and |Fn| ≥ |Fn| = ℵ0 for each n ∈ N it
follows

MOD.DISXF (K) = MOD.DISXF(K)
and

DISXF (MOD.DISXF (K)) = DISXF (MOD.DISXF(K)).
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With respect to the Galois connection of the operators MOD and DISXF it is DISXF (MOD.DISXF (K)) =
DISXF (K) and

DISXF (K) = DISXF (MOD.DISXF(K)),

consequently. Therefore

U ≺ {T (X,F )/σ(E) : E ∈ I(DISXF (MOD.DISXF(K)))}.

With respect to the Galois connection of the operators MOD and DISXF it is U ⊆ MOD.DISXF(K) and U is a
free system for MOD.DISXF(K) by Proposition 3.3. �

Proposition 4.3. A class K of algebras is defined by finite disjunctions if and only if the following statements
hold:

(i) K is closed under the formation of reducts;
(ii) K is closed under the formation of homomorphic images;
(iii) for each set X of individual variables and each set F of operational symbols there exists a free system for

K (over X and F );
(iv) K is ultraclosed.

Proof. Necessity. Let K = MOD(∆) with a family ∆ of finite sets D ⊆ T (X,F)× T (X,F).
(i) Let A ∈ K be a τH -algebra and A′ be a τG-reduct of A. Now, let A′′ be a τF-reduct of A′. Because of

A′′ = A′ = A and
{fA

′′
: f ∈ F} ⊆ {gA

′
: g ∈ G} ⊆ {hA : h ∈ H}

it is A′′ a τF-reduct of A, too. Therefore, from A ∈ K, i.e., A |= D for each D ∈ ∆ it follows that A′ |= D for
each D ∈ ∆. Consequently, A′ ∈ K.

(ii) Let A ∈ K be a τG-algebra and B be a homomorphic image of A with respect to a homomorphism ψ. Now,
let B′ be a τF-reduct of B, ϕ be a homomorphism from T (X,F) into B′ and D ∈ ∆.
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We construct a τF-reduct A′ of A as follows. For this let us assume that G is well-ordered. If f ∈ F, then let
gf be the least element of {g : fB

′
= gB} and fA

′
:= gAf . Then B′ is a homomorphic image of A′ with respect to

ψ. Since B is a homomorphic image of A with respect to ψ it is

ψ(gA(a1, . . . , an)) = gB(ψ(a1), . . . , ψ(an))

for g ∈ G, τG(g) = n and a1, . . . , an ∈ A. For f ∈ F, τF(f) = n and a1, . . . , an ∈ A it holds

ψ(fA
′
(a1, . . . , an)) = ψ(gAf (a1, . . . , an))

and
gBf (ψ(a1), . . . , ψ(an)) = fB

′
(ψ(a1), . . . , ψ(an))

for the least element gf of {g : fB
′
= gB}. Therefore,

ψ(fA
′
(a1, . . . , an)) = fB

′
(ψ(a1), . . . , ψ(an))

and B′ is a homomorphic image of A′ with respect to ψ.
There exists a homomorphism γ from T (X,F) into A′ such that ϕ(t) = ψ(γ(t)) for each t ∈ T (X,F) and

ker(γ) ⊆ ker(ϕ). By (i) it is A′ ∈ K. Therefore, A′ |= D and D ∩ ker(γ) 6= ∅. Consequently, D ∩ ker(ϕ) 6= ∅ and
therefore, B |= D and B ∈ K, too.

(iii) By Proposition 3.5 for each set X of individual variables and each set F of operational symbols there
exists a free system for K (over X and F ).

(iv) Let J be an ultrafilter on a set I and {Ai : i ∈ I} ⊆ K a (not empty) set of τF -algebras. Then it follows
C :=

∏
i∈I Ai/J ∈ K. For this let ϕ be a homomorphism from T (X,Y) into any τF-reduct C′ of C. Similar to the

proof of (ii) it follows that there exists a set {A′
i : i ∈ I} ⊆ K of τF-reducts A′

i of Ai such that C′ =
∏

i∈I A′
i/J ∈ K.

Then it exists a system {ϕi : i ∈ I} of homomorphisms ϕi from T (X,Y) into A′
i such that

ϕ(t) = [(ϕi(t) : i ∈ I)]J ∈ C ′
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for each t ∈ T(X,Y). Let D ∈ ∆. It follows that

{(P,Q) : (P,Q) ∈ D and ϕ(P ) = ϕ(Q)} 6= ∅.
Otherwise,

[(ϕi(P ) : i ∈ I)]J 6= [(ϕi(Q) : i ∈ I)]J
for each (P,Q) ∈ D, i.e., I(P,Q) := {i : ϕi(P ) = ϕi(Q)} /∈ J for each (P,Q) ∈ D. Because of J is an ultrafilter
on I it follows that {I \ I(P,Q) : (P,Q) ∈ D} ⊆ J . Since |D| < ℵ0 it is |{I \ I(P,Q) : (P,Q) ∈ D}| < ℵ0, too. J is
assumed to be a filter and therefore

⋂
{I \ I(P,Q) : (P,Q) ∈ D} ∈ J . By assumption it is A′

i |= D for each i ∈ I
and

{(P,Q) : (P,Q) ∈ D and ϕi(P ) = ϕi(Q)} 6= ∅
for i ∈ I. Consequently, for each i ∈ I there is a (P,Q) ∈ D such that ϕi(P ) = ϕi(Q) and i ∈ I(P,Q). Hence,⋂
{I \ I(P,Q) : (P,Q) ∈ D} = ∅ ∈ J . This contradicts the fact that J is a proper filter, i.e., ∅ /∈ J , especially.

Therefore, K is ultraclosed.
Sufficiency. Let K be a class of algebras such that the statements (i)–(iv) are fulfilled. We will show K =

MOD.DISXF(K). Clearly, K ⊆ MOD.DISXF(K). Now, it holds MOD.DISXF(K) ⊆ K. For this let

A = (A, (gA)g∈G) ∈ MOD.DISXF(K),

X be a set of individual variables such that
|X| = |A|+ ℵ0

and F be a set of operational symbols such that

|Fn| = |{gA : g ∈ Gn}|+ ℵ0

for each n ∈ N . Then it is a τF -reduct A′ of A such that A is a τG-reduct of A′.
By (iii) there exists a free system U for K (over X and F ), i.e., U ⊆ K, especially. Because of |X| ≥ ℵ0 and

|Fn| ≥ ℵ0 for each n ∈ N it is U also a free system for MOD.DISXF(K) (over X and F ) by Proposition 4.2.
Since |X| ≥ |A| it exists a homomorphism from T (X,F ) onto A′ and therefore A′ is a homomorphic image
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of an algebra B ∈ U ⊆ K and A′ ∈ K by (ii). Consequently, A ∈ K by (i), i.e., MOD.DISXF(K) ⊆ K and
K = MOD.DISXF(K), finally.

Now, let ∆ := {D : D ∈ DISXF(K) and |D| < ℵ0}. By (i), (iv) and Proposition 4.1 for each D ⊆ T (X,F ) ×
T (X,F ) it exists a finite subset D′ ⊆ D such that for each algebra B ∈ K from B |= D it follows that B |= D′.
Therefore, K = MOD(∆) and K is defined by finite disjunctions. �
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