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RANKS AND INDEPENDENCE OF SOLUTIONS
OF THE MATRIX EQUATION AXB + CY D = M

YONGGE TIAN

Abstract. Suppose AXB + CY D = M is a consistent matrix equation. In this

paper, we give some formulas for the maximal and minimal ranks of two solutions

X and Y to the equation. In addition, we investigate the independence of solutions
X and Y to this equation.

1. Introduction

Throughout this paper, the notation AT, A∗, r(A) andR(A) stand for the transpo-
se, conjugate transpose, rank and range (column space) of a matrix A over the field
C of complex numbers, respectively. A matrix X is called a generalized inverse of
A, denoted by A−, if it satisfies AXA = A. In addition, EA and FA stand for the
two oblique projectors EA = I −AA− and FA = I −A−A induced by A and A−.

Linear matrix equations have been the objects of many studies in matrix theory
and its applications. The primary work in the investigation of a matrix equation
is to give its solvability conditions and general solutions. In additions to these two
problems, many other topics can be investigated for a matrix equation. For exam-
ple, the uniqueness of solution, minimal norm solutions, least-squares solutions,
Hermitian solutions, and skew-Hermitian solutions to the equation. For some sim-
plest matrix equations, it is easy to characterize the solvability and to give general
solutions by generalized inverses. For instance, the matrix equation AXB = C,
where A, B and C are m× p, q×n and m×n matrices, respectively, is consistent
if and only if AA−CB−B = C. In this case, the general solution of AXB = C
can be written as X = A−CB−+ ( Ip −A−A )U + V ( Iq −BB− ), where U and V
are arbitrary. Many problems can be considered for solutions of AXB = C, one of
which is to determine the maximal and minimal possible ranks of solutions. The
present author has shown in [10] that

max
AXB=C

r(X) = min { p, q, p + q + r(C)− r(A)− r(B) } ,

min
AXB=C

r(X) = r(C).
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Write complex solution of AXB = C as X = X0 + X1i, where X0 and X1 are
both real. The present author also gives in [10] the maximal and minimal ranks
of X0 and X1. In addition to AXB = C, another well-known matrix equation is

AXB + CY D = M,(1.1)

where A ∈ Cm×p, B ∈ Cq×n, C ∈ Cm×s, D ∈ Ct×n, M ∈ Cm×n. Equation (1.1)
and its applications have been investigated extensively, see, e.g., [1, 3, 4, 6, 7,
13, 15]. A regression model related to (1.1) is

M = AXB + CY D + ε,

where both X and Y are unknown parameter matrices and ε is a random error
matrix. This model is also called the nested growth curve model in the literature,
see, e.g., [5, 14].

The rank of a matrix A, a key concept in linear algebra, is the dimension of the
vector space generated by the columns or rows of A, that is, the maximum number
of linearly independent columns or rows of A. Equivalently, the rank of a matrix
A is the largest order of square submatrix of A which determinant is nonzero. If a
matrix has some variant entries, the rank of the matrix is also variant with respect
to the entries.

A general method for solving linear matrix equations is the vec operation of a
matrix Z = (zij) ∈ Cm×n defined by

vec Z = [ z11, . . . , zm1, z12, . . . , zm2, . . . , z1n, . . . , zmn ]T .

Applying the well-known formula vec (AXB) = (BT ⊗A)vec X, where BT ⊗A is
the Kronecker product of BT and A, to (1.1) gives

[BT ⊗A, DT ⊗ C ]
[

vecX
vecY

]
= vecM,(1.2)

where [ BT ⊗ A, DT ⊗ C ] is a row block matrix. Hence (1.2) is solvable if and
only if [ BT ⊗A, DT ⊗C ][BT ⊗A, DT ⊗C ]−vecM = vecM . In such a case, the
general solution of (1.2) can be written as[

vecX
vecY

]
=[BT ⊗A, DT ⊗ C ]−vecM

+ ( I − [BT ⊗A, DT ⊗ C ]−[BT ⊗A, DT ⊗ C ] )V,

(1.3)

where V is an arbitrary column vector. Result (1.3) implies that the general
solutions X and Y of (1.1) are in fact two linear matrix expressions involving
variant entries.

Since the two matrices X and Y satisfying (1.1) are not necessarily unique, it
is of interest to find the maximal and minimal possible ranks of X, Y , AXB and
CY D in (1.1). Another problem on a pair solutions X and Y to (1.1) is concerned
with their independence, where the independence means that for any two pairs of
solutions X1, Y1 and X2, Y2 of (1.1), the two new pairs X1, Y2 and X2, Y1 are also
solutions to (1.1). This problem can also be solved through some rank formulas
associated with (1.1).



RANKSAND INDEPENDENCE OFSOLUTIONS OFTHEMATRIXEQUATION 77

Some useful rank formulas for partitioned matrices are given in the following
lemma.

Lemma 1.1 ([2]). Let A ∈ Cm×n, B ∈ Cm×k and C ∈ Cl×n. Then:
(a) r[A, B ] = r(A) + r(EAB) = r(B) + r(EBA).

(b) r

[
A
C

]
= r(A) + r(CFA) = r(C) + r(AFC).

(c) r

[
A B
C 0

]
= r(B) + r(C) + r(EBAFC).

The formulas in Lemma 1.1 can be used to simplify various matrix expressions
involving generalized inverses of matrices. For example,

r

[
EA1B1

EA2B2

]
= r

[
A1 0 B1

0 A2 B2

]
− r(A1)− r(A2),(1.4)

r[D1FC1 , D2FC2 ] = r

D1 D2

C1 0
0 C2

− r(C1)− r(C2),(1.5)

r

[
A BFB1

EC1C 0

]
= r

 A B 0
C 0 C1

0 B1 0

− r(B1)− r(C1).(1.6)

Lemma 1.2. Let A ∈ Cm×n, B ∈ Cm×k, C ∈ Cl×n, B1 ∈ Cm×p and C1 ∈
Cq×n be given, X ∈ Ck×l, Y ∈ Ck×n, Z ∈ Cm×l and U ∈ Cp×q be variant matrices.
Then

max
X

r(A−BXC ) = min
{

r[A, B ], r

[
A
C

]}
,(1.7)

min
X

r( A−BXC ) = r[A, B ] + r

[
A
C

]
− r

[
A B
C 0

]
,(1.8)

max
Y, Z

r(A−BY − ZC ) = min
{

m, n, r

[
A B
C 0

]}
,(1.9)

min
Y, Z

r( A−BY − ZC ) = r

[
A B
C 0

]
− r(B)− r(C),(1.10)

max
Y, Z, U

r( A−BY − ZC −B1UC1 )

= min

m, n, r

[
A B B1

C 0 0

]
, r

 A B
C 0
C1 0

,
(1.11)

min
Y, Z, U

r( A−BY − ZC −B1UC1 ) = r

[
A B B1

C 0 0

]

+ r

 A B
C 0
C1 0

− r

 A B B1

C 0 0
C1 0 0

− r(B)− r(C).
(1.12)
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Results (1.7) and (1.8) are shown in [12]; (1.9) and (1.10) are shown in [8, 9].
The general expressions of X and Y satisfying (1.7)–(1.10) are given in [8, 9, 12].
Combining (1.7) and (1.9), (1.8) and (1.10) yields (1.11) and (1.12), respectively.

2. Ranks of solutions to AXB + CY D = M

Concerning the solvability conditions and general solutions of (1.1), the following
results have been shown.

Lemma 2.1.
(a) [3] There are X and Y that satisfy (1.1) if and only if

r[A, C, M ] = r[A, C ], r

 B
D
M

 = r

[
B
D

]
,(2.1)

r

[
M A
D 0

]
= r(A) + r(D), r

[
M C
B 0

]
= r(B) + r(C),(2.2)

or equivalently,

[A, C ][A, C ]−M = M, M

[
B
D

]−[
B
D

]
= M,

( Im −AA− )M( In −D−D ) = 0, ( Im − CC− )M( In −B−B ) = 0.

(b) [6, 7] Under (2.1) and (2.2), the general solutions of X and Y to (1.1) can
be decomposed as

X = X0 + X1X2 + X3, Y = Y0 + Y1Y2 + Y3,

where X0 and Y0 are a pair of special solutions of (1.1), X1, X2, X3

and Y1, Y2, Y3 are the general solutions of the following four homogeneous
matrix equations

AX1 = −CY1, X2B = Y2D, AX3B = 0, CY3D = 0,

or explicitly,

X = X0 + S1FGUEHT1 + FAV1 + V2EB ,(2.3)
Y = Y0 + S2FGUEHT2 + FCW1 + W2ED,(2.4)

where

S1 = [ Ip, 0 ], S2 = [ 0, Is ], T1 =
[

Iq

0

]
, T2 =

[
0
It

]
, G = [A, C ], H =

[
B

−D

]
;

the matrices U, V1, V2, W1 and W2 are arbitrary.

For convenience, we adopt the following notation

J1 = {X ∈ Cp×q | AXB + CY D = M },(2.5)
J2 = {Y ∈ Cs×t | AXB + CY D = M }.(2.6)
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Results (2.3) and (2.4) imply that the general solutions of (1.1) are in fact
two linear matrix expressions, each of them involves three independent variant
matrices. Applying Lemma 1.2 to (2.3) and (2.4) gives the following result.

Theorem 2.2. Suppose that the matrix equation (1.1) is solvable, and let J1

and J2 be defined in (2.5) and (2.6). Then:

(a) The maximal and minimal ranks of solution X of (1.1) are given by

max
X∈J1

r(X) = min
{

p, q, p + q + r[M, C ]− r[A, C ]− r(B),

p + q + r

[
M
D

]
− r

[
B
D

]
− r(A)

}
,

min
X∈J1

r(X) = r[M, C ] + r

[
M
D

]
− r

[
M C
D 0

]
.

(b) The maximal and minimal ranks of solution Y of (1.1) are given by

max
Y ∈J2

r(Y ) = min
{

s, t, s + t + r[M, A ]− r[C, A ]− r(D),

s + t + r

[
M
B

]
− r

[
D
B

]
− r(C)

}
,

min
Y ∈J2

r(Y ) = r[M, A ] + r

[
M
B

]
− r

[
M A
B 0

]
.

Proof. Applying (1.7) and (1.8) to (2.3) yields

max
X∈J1

r(X) = max
U, V1, V2

r( X0 + S1FGUEHT1 + FAV1 + V2EB )

= min

p, q, r

[
X0 FA S1FG

EB 0 0

]
, r

 X0 FA

EB 0
EHT1 0

,

min
X∈J1

r(X) = min
U, V1, V2

r( X0 + S1FGUEHT1 + FAV1 + V2EB )

= r

[
X0 FA S1FG

EB 0 0

]
+ r

 X0 FA

EB 0
EHT1 0

− r

 X0 FA S1FG

EB 0 0
EHT1 0 0


− r(FA)− r(EB),

where r(FA) = p− r(A) and r(EB) = q− r(B). As shown in (1.4), (1.5) and (1.6),
the ranks of the block matrices in these two formulas can be simplified further by
Lemma 1.1, as well as the equality AX0B + CY0D = M and elementary block
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matrix operations

r

[
X0 FA S1FG

EB 0 0

]
= r


X0 Ip S1 0
Iq 0 0 B
0 A 0 0
0 0 G 0

− r(A)− r(B)− r(G)

= r


0 Ip 0 0
Iq 0 0 0
0 0 −AS1 AX0B
0 0 G 0

− r(A)− r(B)− r(G)

= r

[
−A 0 AX0B
A C 0

]
+ p + q − r(A)− r(B)− r(G)

= r[C, AX0B ] + p + q − r(B)− r(G)

= r[C, M ] + p + q − r(B)− r(G),

r

 X0 FA

EB 0
EHT1 0

 = r


X0 Ip 0 0
Iq 0 B 0
T1 0 0 H
0 A 0 0

− r(A)− r(B)− r(H)

= r


0 Ip 0 0
Iq 0 0 0
0 0 −T1B H
0 0 AX0B 0

− r(A)− r(B)− r(H)

= r

 B B
0 D

AX0B 0

 + p + q − r(A)− r(B)− r(H)

= r

[
D

AX0B

]
+ p + q − r(A)− r(H)

= r

[
D
M

]
+ p + q − r(A)− r(H),

r

 X0 FA S1FG

EB 0 0
EHT1 0 0



= r


X0 Ip S1 0 0
Iq 0 0 B 0
T1 0 0 0 H
0 A 0 0 0
0 0 G 0 0

− r(A)− r(B)− r(G)− r(H)



RANKSAND INDEPENDENCE OFSOLUTIONS OFTHEMATRIXEQUATION 81

= r


0 Ip 0 0 0
Iq 0 0 0 0
0 0 0 −T1B H
0 0 −AS1 AX0B 0
0 0 G 0 0

− r(A)− r(B)− r(G)− r(H)

= r


0 0 −B B
0 0 0 −D

−A 0 AX0B 0
A C 0 0

 + p + q − r(A)− r(B)− r(G)− r(H)

= r


0 0 −B 0
0 0 0 D

−A 0 0 0
0 C 0 M

 + p + q − r(A)− r(B)− r(G)− r(H)

= r

[
M C
D 0

]
+ p + q − r(G)− r(H).

Thus, we have (a). Similarly, we can show (b). �

Furthermore, we can give the formulas for the maximal and minimal ranks of
AXB and CY D in (1.1) when it is solvable.

Theorem 2.3. Suppose that there are X and Y that satisfy (1.1), and let J1

and J2 be defined in (2.5) and (2.6). Then

max
X∈J1

r(AXB)

= min
{

r[M, C ]− r[A, C ] + r(A), r

[
M
D

]
− r

[
B
D

]
+ r(B)

}
,

(2.7)

min
X∈J1

r(AXB) = r[M, C ] + r

[
M
D

]
− r

[
M C
D 0

]
,(2.8)

max
Y ∈J2

r(CY D)

= min
{

r[M, A ]− r[C, A ] + r(C), r
[

M
B

]
− r

[
D
B

]
+ r(D)

}
,

(2.9)

min
Y ∈J2

r(CY D) = r[M, A ] + r

[
M
B

]
− r

[
M A
B 0

]
.(2.10)
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Proof. Applying (1.7) and (1.8) to AXB = AX0B + AS1FGUEHT1B yields

max
X∈J1

r(AXB) = max
U

r( AX0B + AS1FGUEHT1B )

= min
{

r[AX0B, AS1FG ], r

[
AX0B
EHT1B

]}
,

min
X∈J1

r(AXB) = min
U

r( AX0B + AS1FGUEHT1B )

= r[AX0B, AS1FG ]+r

[
AX0B
EHT1B

]
−r

[
AX0B AS1FG

EHT1B 0

]
.

Also find by Lemma 1.1, AX0B + CY0D = M and elementary block matrix
operations that

r[AX0B, AS1FG ] = r

[
AX0B AS1

0 G

]
− r(G)

= r

[
AX0B A 0

0 A C

]
− r(G)

= r[AX0B, C ] + r(A)− r(G)
= r[M, C ] + r(A)− r(G),

r

[
AX0B
PHT1B

]
= r

[
AX0B 0
T1B H

]
− r(H)

= r

AX0B 0
B B
0 −D

− r(H)

= r

[
AX0B

D

]
+ r(B)− r(H)

= r

[
M
D

]
+ r(B)− r(H),

r

[
AX0B AS1FG

EHT1B 0

]
= r

AX0B AS1 0
T1B 0 H

0 G 0

− r(G)− r(H)

= r


AX0B A 0 0

B 0 0 B
0 0 0 −D
0 A C 0

− r(G)− r(H)

= r


0 A 0 0
B 0 0 0
0 0 0 D
0 0 C AX0B

− r(G)− r(H)

= r

[
M C
D 0

]
+ r(A) + r(B)− r(G)− r(H).
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Therefore, we have (2.7) and (2.8). In the same manner, one can show (2.9) and
(2.10). �

3. Independence of solutions X and Y to AXB + CY D = M

The independence of the two matrices X1 and X2 that satisfy the matrix equation
A1X1+A2X2 = B is investigated in the author’s recent paper [11]. In this section,
we consider the independence of X and Y that satisfy (1.1).

Consider J1 and J2 in (2.5) and (2.6) as two independent matrix sets. If for
any given X ∈ J1 and Y ∈ J2, the pair satisfy (1.1), X and Y for (1.1) are said
to be independent. The independence of solutions X and Y for (1.1) can also be
examined through the rank formulas in Lemma 1.2.

Theorem 3.1. Suppose that the matrix equation (1.1) is solvable. Moreover,
let J1 and J2 in (2.5) and (2.6) as two independent matrix sets. Then

max
X∈J1, Y ∈J2

r( M −AXB − CY D )

= min
{

r(A) + r(C)− r[A, C ], r(B) + r(D)− r

[
B
D

]}
.(3.1)

In particular,
(a) Solutions X and Y of (1.1) are independent if and only if

R(A) ∩R(C) = {0} or R(B∗) ∩R(D∗) = {0}.(3.2)

(b) If (3.2) holds, the general solution of (1.1) can be written as the two inde-
pendent forms

X = X0 + S1FGU1EHT1 + FAV1 + V2EB ,(3.3)
Y = Y0 + S2FGU2EHT2 + FCW1 + W2ED,(3.4)

where X0 and Y0 are a pair of special solutions to (1.1), U1, U2, V1, V2, W1

and W2 are arbitrary.

Proof. Writing (2.3) and (2.4) as two independent matrix expressions, sub-
stituting them into M − AXB − CY D and observing AS1FG = −CS2FG and
EHT1B = EHT2D gives

M −AXB − CY D

= M −AX0B − CY0D −AS1FGU1EHT1B − CS2FGU2EHT2D

= −AS1FGU1EHT1B − CS2FGU2EHT2D

= −AS1FGU1EHT1B + AS1FGU2EHT1B

= AS1FG(−U1 + U2 )EHT1B,

where U1 and U2 are arbitrary. Then it follows by (1.3) that

max
X∈J1, Y ∈J2

r( M −AXB − CY D ) = max
U1, U2

r[AS1FG(−U1 + U2 )EHT1B ]

= min { r(AS1FG), r(EHT1B) } ,
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where by Lemma 1.1

r(AS1FG) = r

[
AS1

G

]
− r(G) = r

[
A 0
A C

]
− r(G) = r(A) + r(C)− r(G),

r(EHT1B) = r[T1B, H ]− r(H) = r

[
B B
0 −D

]
− r(H) = r(B) + r(D)− r(H).

Therefore, (3.1) follows. Result (3.2) follows from (3.1); the solutions in (3.3) and
(3.4) follow from (2.3) and (2.4). �

Remark 3.2. The matrix equation (1.1) is one of the basic linear matrix equa-
tions. Many other types of matrix equations can be solved through (1.1). For
example, From Lemma 2.1, one can derive necessary and sufficient conditions for
the matrix equation AXA∗ + BY B∗ = C to have Hermitian and skew-Hermitian
solutions. From Lemma 2.1, one can also give necessary and sufficient conditions
for the two matrix equations AXB + (AXB)∗ = C and AXB − (AXB)∗ = C to
be solvable.
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