
Acta Math. Univ. Comenianae
Vol. LXXV, 2(2006), pp. 253–266

253

ON HYPERGEOMETRIC-TYPE GENERATING RELATIONS
ASSOCIATED WITH THE GENERALIZED ZETA FUNCTION

M. G. BIN-SAAD and A. A. AL-GONAH

Abstract. In this paper, we aim at introducing and studying two hypergeometric-

type generating functions associated with the generalized zeta function; our goal

is to derive their basic properties including integral representations, sums, series
representations and generating functions. A number of (known and new) results

are shown to follow as special cases of our formulae.

1. Introduction, Definitions and Notations

The generalized zeta function Φ∗µ is defined by [5, p. 100, (1.5)]:

Φ∗µ(x, z, a) =
∞∑

n=0

(µ)n

(a + n)z

xn

n!
, |x| < 1, Re(a) > 0, µ ≥ 1,(1.1)

with the Pochhammer symbols (λ)n = Γ(λ+n)/Γ(λ) for n = 0, 1, . . . , where Γ(λ)
denotes the gamma function. Equivalently, it has the integral expression

Φ∗µ(x, z, a) =
1

Γ(z)

∞∫
0

tz−1e−at(1− xe−t)−µdt,(1.2)

provided that µ ≥ 1, Re a > 0 , |x| ≤ 1, and either Re z > 0 or Re z > Re µ
according to x 6= 1 or x = 1.

Obviously, when µ = 1, Φ∗µ(x, z, a) reduces to the zeta function Φ(x, z, a)of
Erdélyi [2, p. 27, (1)], and in particular (1.1) and (1.2) become

Φ∗1(x, z, a) = Φ(x, z, a) =
∞∑

n=0

xn

(a + n)z
, |x| < 1, a 6= 0,−1,−2, . . . ,(1.3)

and

Φ∗1(x, z, a) = Φ(x, z, a) =
1

Γ(z)

∞∫
0

tz−1e−at(1− xe−t)−1dt,(1.4)
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respectively.
Moreover, Φ∗µ(x, z, a) reduces further to the Hurwitz’s zeta-function ζ(z, a), and

so to the Riemann zeta-function ζ(z) = ζ(z, 1), which asserts that cf. [2, p. 32]:

Φ∗1(1, z, 1) = ζ(z) =
∞∑

n=1

1
nz

,(1.5)

and

Φ∗1(1, z, a) = ζ(z, a) =
∞∑

n=0

1
(a + n)z

.(1.6)

In [6], Katsurada introduced two hypergeometric – type generating functions
of the Riemann zeta function in the forms:

ez(x) =
∞∑

m=0

ζ(z + m)
xn

m!
, |x| < +∞,(1.7)

fz(ν;x) =
∞∑

m=0

(ν)m ζ(z + m)
xn

m!
, |x| < 1,(1.8)

where ν and x are arbitrary fixed complex parameters.
Motivated by the work of Katsurada [6], Bin-Saad [1] subsequently proposed a

unification (and generalization) of the generating functions ez(x) and fz(ν;x) in
the forms:

ζ(x, y; z, a) =
∞∑

m=0

Φ(y, z + m,a)
xm

m!
, |y| < 1, |x| < ∞,(1.9)

and

ζν(x, y; z, a) =
∞∑

m=0

(ν)m Φ(y, z + m,a)
xm

m!
, |y| < 1, |x| < |a|,(1.10)

respectively.
In fact, it is easily verified by comparing (1.7) and (1.8) with (1.9) and (1.10)

respectively that

ζ(x, 1; z, 1) = ez(x) and ζν(x, 1; z, 1) = fz(ν;x).(1.11)

The main object of the present paper is to investigate the functions ζ(x, y; z, a)
and ζν(x, y; z, a) above, and their further generalizations defined by

ζ∗µ(x, y; z, a) =
∞∑

m=0

Φ∗µ(y, z + m,a)
xm

m!
, |y| < 1, |x| < ∞,(1.12)

and

ζ∗µ, ν(x, y; z, a) =
∞∑

m=0

(ν)mΦ∗µ(y, z + m,a)
xm

m!
, |y| < 1, |x| < |a|,(1.13)
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respectively, where a and z are complex parameters with a /∈ {0,−1,−2, . . .},
Re(z) > 1, µ ≥ 1 and Φ∗µ is the generalized zeta function defined by (1.1).

Clearly, on putting µ = 1 in (1.12) and (1.13), we get the above mentioned
definitions (1.9) and (1.10), respectively. For x =0, (1.12) and (1.13) reduce to
(1.1), whereas, with x = 0 and µ = 1, (1.12) and (1.13) reduce to (1.3).

Further, on putting y = µ = 1 in definitions (1.12) and (1.13), we get the
relations:

ζ∗1 (x, 1; z, a) =
∞∑

m=0

Φ(1, z + m,a)
xm

m!
=

∞∑
m=0

ζ(z + m,a)
xm

m!
,(1.14)

and

ζ∗1, ν(x, 1; z, a) =
∞∑

m=0

(ν)m Φ(1, z + m,a)
xm

m!
=

∞∑
m=0

(ν)m ζ(z + m,a)
xm

m!
,(1.15)

respectively, where ζ(z, a) is Hurwitz zeta function defined by (1.6).

Next, on putting a = 1 in equations (1.14) and (1.15), we get the functions (1.7)
and (1.8). In fact, if we let ν = z in (1.8), this formula reduces to a well-known
result of Ramanujan [8]:

ζ(z, 1− x) =
∞∑

m=0

(z)m ζ(z + m)
xm

m!
, |x| < 1.(1.16)

As an immediate consequence of the definitions (1.12) and (1.13), the following
propositions are proved by substituting (1.1) and by changing the order of sum-
mation.

Proposition 1. For any complex z, ν, µ and a with a /∈ {0,−1,−2, . . .} and
µ ≥ 1 we have

ζ∗µ(x, y; z, a) =
∞∑

m,n=0

(µ)nxmyn

m!n! (a + n)z+m
(1.17)

=
∞∑

n=0

ex/(a+n) (µ)nyn

n!(a + n)z
, |x| < ∞, |y| < 1,

ζ∗µ, ν(x, y; z, a) =
∞∑

m,n=0

(ν)m (µ)n xmyn

m!n! (a + n)z+m
(1.18)

=
∞∑

n=0

[
1− x

(a + n)

]−ν (µ)nyn

n!(a + n)z
, |x| < |a|, |y| < 1.

Proposition 2. Under the same assumptions as in Proposition 1 with y = 0,
we have

ζ∗µ(x, 0; z, a) = ζ(x, 0; z, a) = a−z ex/a, |x| < ∞,(1.19)

ζ∗µ, ν(x, 0; z, a) = ζν(x, 0; z, a) = a−z
(
1− x

a

)−ν

, |x| < |a|,(1.20)
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while if x = 0, we have

ζ∗µ(0, y; z, a) = ζ∗µ,ν(0, y; z, a) = Φ∗µ(y, z, a).(1.21)

2. Integral representations

We recall that if βj 6= 0,−1,−2, . . . , (j = 1, . . . , q), then the generalized hyperge-
ometric series pFq is defined by (see [9]):

pFq (α1, ..., αp;β1, ..., βq; z) =
∞∑

m=0

(α1)m... (αp)m

(β1)m... (βq)m

zm

m!
.(2.1)

Important special cases of the series (2.1) are the Kummerian hypergeometric
series 1F1(α;β; z) and 0F1(−;β; z).

By using Eulerian integral formula of the second kind (see e.g.[2]]):

a−zΓ(z) =

∞∫
0

e−attz−1dt, Re(z) > 0, Re(a) > 0,(2.2)

it is easy to derive the following integral representations.

Theorem 1. Let Re a > 0, Re µ ≥ 0, |x| < 1, |y| ≤ 1, and either for Re z > 0
or Re z > Re µ according to y 6= 1 or y = 1 , then

ζ∗µ(x, y; z, a) =
1

Γ(z)

∞∫
0

e−attz−1(1− ye−t)−µ
0F1(−; z;xt) dt,(2.3)

and

ζ∗µ, ν(x, y; z, a) =
1

Γ(z)

∞∫
0

e−attz−1(1− ye−t)−µ
1F1(ν; z;xt) dt.(2.4)

Proof. Denote, for convenience, the right-hand side of equation (2.3) by I. Then
it is easily seen that

I =
∞∑

m=0

xm

m!(z)m

1
Γ(z)

∞∫
0

e−attz+m−1(1− ye−t)−µdt.

Since each term in the sum above can be evaluated by (1.2), we obtain (2.3) in
view of the definition (1.12). In the same manner, one can derive the formula
(2.4).

Moreover, by using the contour integral formula [2, p. 14, (4)]

2i sin(π z) Γ(z) = −
(0+)∫
∞

(−t)z−1e−tdt, | arg(−t)| ≤ π,(2.5)

one can derive the following contour integral representations. �
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Theorem 2. Let Re(a) > 0, Re(µ) > 0 and | arg(−t)| ≤ π, then

ζ∗µ(x, y; z, a) =
−Γ(1− z)

2π i

(0+)∫
∞

(−t)z−1e−at(1− ye−t)−µ
0F1(−; z;xt) dt,(2.6)

and

ζ∗µ, ν(x, y; z, a) =
−Γ(1− z)

2π i

(0+)∫
∞

(−t)z−1e−at(1− ye−t)−µ
1F1(ν; z;xt) dt.(2.7)

Proof. We start from the right-hand side of formula (2.6) and use (2.1) and the
binomial expansion to get

−Γ(1− z)
2πi

(0+)∫
∞

(−t)z−1 e−at (1− ye−t)−µ
0F1[−; z;xt] dt

=
∞∑

m,n=0

(−1)m(µ)n xmyn

m!n! (z)m
· −Γ(1− z)

2πi

(0+)∫
∞

(−t)z+m−1 e−(a+n)t dt.

The desired result now follows from the first equality in (1.17), upon evaluating
each integral above by (2.5) with the reflection formula Γ(1−x) Γ(x) = π/ sin (πx)
for the gamma function. The proof of (2.7) runs parallel to that of (2.6). �

If x = 0, (2.3) and (2.4) would immediately reduce to (1.2). Whereas, with
x = 0 and µ = 1, (2.6) and (2.7) reduce to another known result [2, p. 28, (5)].

3. Integrals involving ζ∗µ(x, y; z, a) and ζ∗µ, ν(x, y; z, a)

In this section we evaluate definite integrals involving the functions ζ∗µ(x, y; z, a)
and ζ∗µ, ν(x, y; z, a) in terms of the other kinds of zeta and hypergeometric functions.

At first, we obtain the following

Theorem 3. Let Re c > Re(b) > 0, µ ≥ 1, then

Γ(c)
Γ(c− b)Γ(b)

1∫
0

tb−1(1− t)c−b−1 ζ∗µ(xt, y; z, a) dt

=
∞∑

n=0

1F1

[
b; c;

x

a + n

]
(µ)n yn

n!(a + n)z
,

(3.1)

Γ(c)
Γ(c− b)Γ(b)

1∫
0

tb−1(1− t)c−b−1 ζ∗µ, ν(xt, y; z, a) dt

=
∞∑

n=0

2F1

[
b, ν; c;

x

a + n

]
(µ)n yn

n!(a + n)z
.

(3.2)
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Proof. By using (1.12), we have

Γ(c)
Γ(c− b)Γ(b)

1∫
0

tb−1(1− t)c−b−1 ζ∗µ(xt, y; z, a) dt

=
Γ(c)

Γ(c− b) Γ(b)

∞∑
m,n=0

(µ)n xmyn

m!n! (a + n)z+m

1∫
0

tb+m−1 (1− t)c−b−1dt.

Now, with the help of the result

1∫
0

tx−1 (1− t)y−1 dt =
Γ(x) Γ(y)
Γ(x + y)

, Re(x) > 0, Re(y) > 0,

and (2.1), we get the expression on the right-hand side of (3.1), which completes
the proof of (3.1). The proof of (3.2) runs parallel to that of (3.1), and then we
ship the details. �

Note that, with y = a = µ = 1, (3.1) and (3.2) reduce to the known result (see
[6, p. 24, (5.5) and (5.6)]):

Γ(c)
Γ(c− b)Γ(b)

1∫
0

tb−1(1− t)c−b−1 ez(xt) dt, = Gz(b; c;x),(3.3)

and

Γ(c)
Γ(c− b)Γ(b)

1∫
0

tb−1(1− t)c−b−1 fz(ν, xt) dt = Gz, ν(b, ν; c;x),(3.4)

respectively, where

Gz(b; c;x) =
∞∑

m=0

(b)m

(c)m
ζ(z + m)

xm

m!
, |x| < 1,(3.5)

and

Gz, µ(b, µ; c;x) =
∞∑

m=0

(b)m (µ)m

(c)m
ζ(z + m)

xm

m!
, |x| < +∞.(3.6)

Further, in view of Proposition 2, if we let y = 0 in (3.1) and (3.2) and replace
x by xa, we get other known results (see [10, p. 31, (11) and p. 37, (6)]).

Now, other integral formulae would occur if we use the integral relation (2.2),
and this asserts
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Theorem 4. Let Re(z) > 0, Re(µ) > 0 and Re(λ) < 1, then

1
Γ(1− λ)

∞∫
0

t−λ e−atζ∗µ

(x

t
, ye−t; z, a

)
dt = Φ∗µ(y, z − λ + 1, a) 0F1(−;λ;−x),

(3.7)

1
Γ(1− λ)

∞∫
0

t−λ e−atζ∗µ, ν

(x

t
, ye−t; z, a

)
dt = Φ∗µ(y, z − λ + 1, a) 1F1(ν;λ;−x),

(3.8)

1
Γ(ν)

∞∫
0

tν−1 e−tζ∗µ(xt , y; z, a) dt = ζ∗µ, ν(x, y; z, a),

(3.9)

1
Γ(1− ν)

∞∫
0

t−ν e−tζ∗µ, ν

(
−x

t
, y; z, a

)
dt = ζ∗µ(x, y; z, a).

(3.10)

Proof. Denote, for convenience, the left-hand side of equality (3.7) by I. Then
in view of (1.12), it is easily seen that:

I =
∞∑

m,n=0

(µ)n xmyn

n!m!(a + n)z+m

1
Γ(1− λ)

∞∫
0

t−λ−m e−(a+n)t dt .

Upon using the integral formula (2.2) and the definition (1.1), we are finally led to
right-hand side of formula (3.7). It is equally straightforward in the same manner
to derive the formulae (3.8), (3.9) and (3.10). �

Now, with x = 0 and y = 1, equation (3.7) and (3.8) reduce to the interesting
result

1
Γ(1− λ)

∞∫
0

t−λ e−at Φ∗µ(e−t, z, a)dt = Φ∗µ(1, z − λ + 1, a).(3.11)

For µ = 1, (3.11) reduces to the elegant result

1
Γ(1− λ)

∞∫
0

t−λ e−at Φ(e−t, z, a)dt = ζ(z − λ + 1, a).(3.12)
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4. Sums

First, we derive the following basic sums of series.

Theorem 5. Let z 6= 1, 2, 3, . . ., then
∞∑

k=0

ζ∗µ(x, y; z − k, a)
wk

k!
= eawζ∗µ(x, yew; z, a),

|x| < +∞, |y| < 1, |w| < +∞,(4.1)
∞∑

k=0

ζ∗µ, ν(x, y; z − k, a)
wk

k!
= eawζ∗µ, ν(x, yew; z, a),

|x| < |a|, |y| < 1, |w| < +∞.(4.2)

Proof. In formula (1.12), we replace z by z − k with k ∈ Z+ ∪ {0}, multiply
both sides by wk/k! and then sum up with k ∈ Z+ ∪ {0} to get (4.1). The proof
of (4.2) is similar to that of (4.1). �

Again, starting from (1.12) and (1.13), and changing the order of summation,
we get

Theorem 6. Let Re(z) > 0, a 6= 0,−1,−2, . . ., then

∞∑
k=0

(b)k

(c)k
ζ∗µ(xw, y; z + k, a)

wk

k!

=
∞∑

k=0

{ 2 F1[−k, 1− c− k; 1− b− k;−x] · Φ∗µ(y, z + k; a) } (b)k

(c)k

wk

k!
,(4.3)

|w| < 1, |x| < 1,
∞∑

k=0

(b)k(d)k

(c)k
ζ∗µ, ν(xw, y; z + k, a)

wk

k!

=
∞∑

k=0

{ 3F2[−k, ν, 1− c− k; 1− b− k, 1− d− k;−x] · Φ∗µ(y, z + k; a) }(4.4)

· (b)k(d)k

(c)k

wk

k!
, |w| < 1, |x| < |a|.

Proof. By starting from the left-hand side of (4.3) and using (1.17), we get

∞∑
k=0

(b)k

(c)k
ζ∗µ(xw, y;z + k, a)

wk

k!

=
∞∑

k=0

(b)k

(c)k

{ ∞∑
m=0

∞∑
n=0

(µ)n xmyn

m!n! (a + n)z+k+m

}
wk+m

k!
.
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In the above relation, if we replace k by k −m, use the formulae

(λ)n−k =
(−1)k (λ)n

(1− λ− n)k
and (−n)k =

(−1)n n!
(n− k)!

,

and note the definitions (1.1) and (2.1), we are led to the right-hand side of relation
(4.3). This completes the proof of (4.3). The proof of (4.4) is similar to that of
(4.3). �

If in (4.3) and (4.4), we let x = 0, y = a = µ = 1 and use (1.5), then we obtain
two Dirichlet series expressions due to Katsurada [6, p. 24, (5.3) and (5.4)]):

Gz(b; c;w) =
∞∑

n=1

1F1

(
b; c;

w

n

)
n−z,(4.5)

and

Gz, d(b, d; c;w) =
∞∑

n=1

2F1

(
b, d; c;

w

n

)
n−z.(4.6)

Next, if in (4.3) and (4.4), we let b = c, we obtain the following results
∞∑

k=0

ζ∗µ(xw, y; z + k, a)
wk

k!
=

∞∑
k=0

(1 + x)k Φ∗µ(y, z + k, a)
wk

k!
,(4.7)

and
∞∑

k=0

(d)k ζµ, ν
∗(xw, y; z + k, a)

wk

k!

=
∞∑

k=0

2F1(−k, ν; 1− d− k;−x)Φ∗µ(y, z + k, a)
wk

k!
,(4.8)

respectively.
Moreover, if in (4.4), we set d = c, b = z and let x = 0. Upon noting that[

1− w

a + n

]−z

= (a + n)z(a + n− w)−z,

the assertion (4.4) reduces to
∞∑

k=0

(z)k Φ∗µ(y, z + k, a)
wk

k!
= Φ∗µ(y, z, a− w),(4.9)

which with µ = y = 1 reduces to a known result [7, p. 396, (6)]
∞∑

k=0

(z)k ζ(z + k, a)
wk

k!
= ζ(z, a− w).(4.10)

Note that, with a = 1 (4.10) reduces to (1.16).
Further, from the definitions (1.12) and (1.13), we easily have the following

interesting series relation.
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Theorem 7. Let |x| < 1, |y| < 1, |w| < |a|, |t| < |a|, then for any complex
number z and b

ζ∗µ(x, y; z, a− w) =
∞∑

k=0

ζ∗µ, z+k(w, y; z + k, a)
xk

k!
,(4.11)

ζ∗µ, b(x, y; z, a− w) =
∞∑

k=0

(b)k ζ∗µ, z+k(w, y; z + k, a)
xk

k!
.(4.12)

Proof. By starting from (1.17) and according to the result

(a + n− w)−λ =
∞∑

m=0

(λ)mwm

m!(a + n)λ+m
,

it is easily seen that

ζ∗µ(x, y; z, a− w) =
∞∑

k=0

∞∑
m,n=0

(z + k)m(µ)n wmyn

m!n!(a + n)z+m+k

xk

k!
,

which, in view of (1.13), yields the right-hand side of (4.11). In the same manner
one can prove the relation (4.12). �

Note that, for w → 0, (see equation (1.21)), the formulae (4.11) and (4.12)
reduce immediately to the results (1.12) and (1.13) respectively. Moreover, for
x → 0, equations (4.11) and (4.12) yield the following interesting identity

Φ∗µ(y, z, a− w) = ζ∗µ, z(w, y; z, a).(4.13)

For µ = y = 1, (4.13) reduces to a known result mentioned in (4.10).

5. Series Representations and Generating functions

By means of the integral representations (2.3) and (2.4) and Euler integral formula
(2.2), we now proceed to establish a new representations of the functions ζ∗µ and
ζ∗µ , ν in terms of Humbert’s series Ψ1 and Appell’s series F2 (see e.g. [9]).

For the purpose of the present study, we recall a known result of Exton [3,
p. 147, (3)]:

exp
[
s + u− wu

s

]
=

∞∑
m=−∞

∞∑
n=0

sm

Γ(m + 1)
un

Γ(n + 1) 1F1[−n;m + 1;w].

On putting a = 1 − s − u + wu/s in (2.3) and making use of the above formula,
we find that

ζ∗µ

(
x, y; z, 1− s− u +

wu

s

)
=

∞∑
m=−∞

∞∑
n=0

sm

Γ(m + 1)
un

Γ(n + 1)

· 1
Γ(z)

∞∫
0

e−ttz+m+n−1(1− ye−t)−µ
0F1(−; z;xt) 1F1(−n;m + 1;wt) dt.(5.1)
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Making use of the series representation (2.1) and expanding the function
(1 − ye−t)−µ, we can integrate the resulting series term-by-term by means of
the result (2.2). We thus find that

ζ∗µ

(
x, y; z, 1− s− u +

wu

s

)
=

∞∑
m=−∞

∞∑
n,p=0

(z)m+n(µ)p

Γ(m + 1) Γ(n + 1)Γ(p + 1) (1 + p)z

(
s

1 + p

)m(
u

1 + p

)n

yp(5.2)

·Ψ1

[
z + m + n,−n;m + 1, z;

w

1 + p
,

x

1 + p

]
,

where Ψ1 is Humbert’s confluent function of two variables (see [2, p. 225, 5.7.1(23)]).
Similarly, for the function ζ∗µ, ν , we can show that

ζ∗µ, ν

(
x, y; z, 1− s− u +

wu

s

)
=

∞∑
m=−∞

∞∑
n,p=0

(z)m+n (µ)p

Γ(m + 1)Γ(n + 1)Γ(p + 1) (1 + p)z

(
s

1 + p

)m(
u

1 + p

)n

yp(5.3)

· F 2

[
z + m + n,−n, ν;m + 1, z;

w

1 + p
,

x

1 + p

]
,

where F2 is Appell’s function of two variables (see [9, p. 23, (3)]).
Some special cases of equations (5.2) and (5.3) are of interest. First, setting

w = 0, equations (5.2) and (5.3) would reduce to the following interesting repre-
sentations

ζ∗µ(x, y; z,1− s− u)

=
∞∑

m=−∞

∞∑
n,p=0

(z)m+n (µ)p

Γ(m + 1)Γ(n + 1) Γ(p + 1)(1 + p)z

(
s

1 + p

)m(
u

1 + p

)n

yp(5.4)

· 1F1

[
z + m + n; z;

x

1 + p

]
,

and

ζ∗µ, ν(x, y; z,1− s− u)

=
∞∑

m=−∞

∞∑
n,p=0

(z)m+n (µ)p

Γ(m + 1)Γ(n + 1) Γ(p + 1) (1 + p)z

(
s

1 + p

)m(
u

1 + p

)n

yp(5.5)

· 2F 1

[
z + m + n, ν; z;

x

1 + p

]
,

respectively.



264 M. G. BIN-SAAD and A. A. AL-GONAH

Further, in view of the result (1.21), we find from (5.2) and (5.3) that

Φ∗µ
(
y; z, 1− s− u +

wu

s

)
=

∞∑
m=−∞

∞∑
n,p=0

(z)m+n(µ)p

Γ(m + 1)Γ(n + 1) Γ(p + 1)(1 + p)z

(
s

1 + p

)m(
u

1 + p

)n

yp(5.6)

· 2F 1

[
z + m + n,−n;m + 1;

w

1 + p

]
.

More interestingly, for y = µ = 1 and s = u = w/2 (in conjunction with (1.5))
equation (5.6) yields the following elegant representation relation for the Riemann
zeta function ζ(z)

ζ(z) =
∞∑

m=−∞

∞∑
n,p=0

(z)m+n

2m+nΓ(m + 1) Γ(n + 1) (1 + p)z

(
w

1 + p

)m+n

· 2F 1

[
z + m + n,−n;m + 1;

w

1 + p

]
.(5.7)

Still, other interesting special cases of the assertions (5.2) and (5.3) occur when
we employ (1.19) and (1.20). We thus find that(

1− s − u +
wu

s

)−z

exp
(

x

1− s− u + wu/s

)
=

∞∑
m=−∞

∞∑
n=0

(z)m+n
sm

Γ(m + 1)
un

Γ(n + 1)
Ψ1 [z + m + n,−n;m + 1, z;w, x] ,(5.8)

and(
1− s − u +

wu

s

)−z
(

1− x

1− s− u + wu/s

)−ν

=
∞∑

m=−∞

∞∑
n=0

(z)m+n
sm

Γ(m+1)
un

Γ(n+1)
F2 [z + m + n,−n, ν;m + 1, z;w, x] .(5.9)

For x = 0, equations (5.8) and (5.9) reduce to the known result of Exton [4, p. 174,
(5.1)]:(

1− s − u +
wu

s

)−z

=
∞∑

m=−∞

∞∑
n=0

(z)m+n
sm

Γ(m+1)
un

Γ(n+1) 2 F 1 [z + m + n,−n;m + 1;w] ,(5.10)

which is exactly the same as the result of Yasmeen [11, Eq. (5.2.3)].

Finally, according to the formulae (1.17) and (1.18) and the identity

(λ + m)n =
(λ)n(λ + n)m

(λ)m
,
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we easily have the following generating relations of the functions ζ∗µ and ζ∗µ,ν

∞∑
m1,...,mr=0

ζ∗µ+M (x, y; z + M,a)
r∏

j=1

{
(αj)mj

w
mj

j

mj !

}

=
∞∑

n=0

(µ)n

(a+n)z
ex/(a+n) F

(r)
D

[
µ + n, α1, . . . , αr;µ;

w1

a+n
, . . . ,

wr

a+n

]
yn

n!
,(5.11)

and

∞∑
m1,...,mr=0

ζ∗µ+M,ν+M (x, y; z, a)
r∏

j=1

{
(αj)mj

w
mj

j

mj !

}

=
∞∑

n=0

(µ)n

(a + n)z

[
1− x

a + n

]−ν

(5.12)

· F
(r)
D

[
µ + n, α1, . . . , αr;µ;

w1

1− x/(a + n)
, . . . ,

wr

1− x/(a + n)

]
yn

n!
,

with M = m1 + ... + mr, where F
(r)
D is Lauricella’s hypergeometric function in

r-variables (see [9, p. 33, (1)]).
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