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SOME APPLICATIONS OF PARABOLIC COMPARISON PRINCIPLES TO THE STUDY
OF DECAY ESTIMATES

C.-P. DANET

Abstract. This paper is concerned with the asymptotic behavior of solutions of general nonlinear parabolic equations.

We consider a boundary value problem which was treated by Reynolds in a classical paper (J. Diff. Equations 12 (1972),
256–261). Our goal is to prove by different means a version of the main result in the above mentioned paper. We also
point out that it remains valid under some weaker hypotheses if the working domain is cylindrical.

1. Introduction

We consider the problem:

Qu = −Dtu + aij(x, t, u,Du)Diju + b(x, t, u,Du) = 0 inΩ× IR+

u = h onS,
(1)

where Ω is a bounded domain in IRn and S are the “side walls” ∂Ω × [0,∞). Here IR+ = {t ∈ IR|t > 0}, and
b(x, t, z, p) is differentiable with respect to the z and p variables in Ω× IR+× IR× IRn. The summation convention
is followed throughout.

We make the following assumptions:
The operator Q is strictly parabolic in the sense that there exists a constant λ > 0 such that,

λ|ξ2| ≤ aij(x, t, z, p)ξiξj ,(2)
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for all ξ = (ξ1, . . . , ξn) ∈ IRn \ {0} and for all (x, t, z, p) ∈ Ω× IR+ × IR× IRn.∣∣∣∣ ∂b

∂pi

∣∣∣∣ = |Dpi
b| ≤ β(3)

in Ω× IR+ × IR× IRn, for i = 1, . . . , n, where β > 0 is a constant.

∂b

∂z
= Dzb ≤ C =

β + 1 + δ

e(β+1+δ)diamΩ
(4)

in Ω× IR+ × IR× IRn where diamΩ is the diameter of Ω, and δ is a strictly positive constant

|b(x, t, 0, 0)| ≤ K1e
−µ1t(5)

and

|h(x, t)| ≤ K2e
−µ2t(6)

in ∂Ω× IR+, where K1,K2, µ1, µ2 are strictly positive constants.
Reynolds [5] proved (alongside with other relations) decay for the classical solution u of problem (1) when

Dzb ≤ C∗(x, t) inΩ× IR+ × IR× IRn,

lim sup
t→∞

C∗(x, t) ≤ 0 inΩ× IR+.(7)

Our main purpose here is to relax the condition (7) allowing lim supt→∞ C∗(x, t) ≥ α > 0, where α is a constant
(see condition (4)) and to note that the full conditions
(1.5.a) (i.e. b(x, t, 0, 0) is continuous in Ω× IR+),
(1.5.b) (i.e. aij are continuous in Ω× IR+ × IR× IRn, i, j = 1, . . . , n),
(1.5.c) (i.e. Dpi

b is continuous in Ω× IR+ × IR× IRn, i = 1, . . . , n) and
(1.5.d) (i.e. Dzb is continuous in Ω× IR+ × IR× IRn, i = 1, . . . , n)
in [5] are not needed if the working domain is supposed cylindrical. Moreover our decay remains valid for strong
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solutions u ∈ C0(Ω× IR+) ∩W 2,1
n+1,loc(Ω× IR+). W 2,1

n+1(D), D ∈ IRn+1 is defined to be the completion of C∞(D)
under the norm

||u||W 2,1
n+1(D) = ||Dtu||Ln+1(D) +

∑
||Diju||Ln+1(D) +

∑
||Diu||Ln+1(D) + ||u||C0(D).

Most decay results (see [2], [5], [7]) are stated under the restriction “there exists (at least) an i such that aii

is bounded below”. We next show, using a method due to Hu and Yin ([4]), that a decay holds without this
restriction. The proofs are based on the well known Nagumo-Westphal Lemma ([6, p. 187]) as well as on the
following comparison principle:

Theorem 1. Let u, v ∈ C0(ΩT ) ∩W 2,1
n+1,loc(ΩT ) satisfy Qu ≥ Qv in ΩT ,u ≤ v on ST . Assume that

i) Q is uniformly parabolic in ΩT ,
ii) the coefficients aij are independent of z,
iii) the coefficient b is non-increasing in z for each (x, t, p) ∈ ΩT × IRn,
iv) the coefficients aij , b are continuously differentiable with respect to the p variables in ΩT × IR× IRn.

Then u ≤ v in ΩT .
Here ΩT = Ω× (0, T ], ST = Ω× {0} ∪ ∂Ω× [0, T ].

Proof. We will imitate the proof of [3, Theorem 10.1, p. 263]. The details are left to the reader.
Step 1. Write Qu−Qv = Lw = −Dtw+aij(x, t)Dijw+ bi(x, t)Diw ≥ 0 in Ω+

T = {(x, t) ∈ ΩT |w(x, t) > 0}, where
w = u− v.
Step 2. Prove a similar result to [3, Theorem 9.6, p. 235], i. e. if u ∈ W 2,1

n+1,loc(ΩT ) satisfies Lu ≥ 0 in ΩT , then u

cannot achieve a maximum in ΩT , unless it is a constant. Here L is uniformly parabolic in ΩT and bi are bounded
in ΩT To prove this result use an Alexandrov, Bakelman, Pucci, Krylov and Tso maximum principle (for example
[1, Corollary 1.16, p. 548]), an auxiliary function v(x, t) = e−α[r2+(t−t0)

2] − e−α(R2+T 2), α large and imitate the
proof of Theorem 9.6.
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Step 3. Use Step 1 and Step 2 to conclude that

max
ΩT

+
w = max

∂ΩT
+

w.

Step 4. Use Step 3, the continuity of w and the boundary conditions to obtain

w ≤ 0 inΩT .

�

2. Main results

We are now in position to prove our main results.

Theorem 2. Let (2)–(6) hold. If u is a classical solution of (1) (i.e. u ∈ C0(Ω× IR+) ∩ C2,1(Ω× IR+) then
limt→∞ |u(x, t)| = 0 uniformly in Ω× IR+

Proof. We restrict ourselves to the case aij = δij . We assume initially that u solves Qu ≥ 0 in Ω × IR+. We
also assume that Ω lies in the strip 0 < x1 < diamΩ.
We choose as comparison function, the strictly positive function

w(x, t) = e−rt[γ − eηx1 ],

where the strictly positive constants r, η and γ are to be chosen below.
Hence

Qw = e−rteηx1

[
r
( γ

eηx1
− 1

)
− η2

]
+ b(x, t, w, D1w, 0, . . . , 0, 0).

By the mean value theorem we get

b(x, t, w, D1w, 0, . . . , 0, 0) = b(x, t, 0, . . . , 0, 0) + wDzb(ξ) + D1wDp1b(ξ).
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By (3), (4) and (5)
b(x, t, w, D1w, 0, . . . , 0, 0) ≤ K1e

−µ1t + Cw + β|D1w|
in Ω× IR+. We now have

Qw ≤ e−rteηx1

[
r
( γ

eηx1
− 1

)
− η2 + C

( γ

eηx1
− 1

)
+ βη + K1e

(r−µ1)t
]
.

We select r small such that
r
( γ

eηx1
− 1

)
<< 1 inΩ

and
0 < r < min{1, µ1, µ2}

to obtain
Qw ≤ e−rteηx1

[
δ − η2 + C(γ − 1) + βη

]
in Ω× [σ,∞), where δ > 0 is any positive constant and σ is a sufficiently large constant.

Choose η = β + 1 + δ and γ = eηdiamΩ + 1.
It follows that

Qw < 0 ≤ Qu

in Ω× [σ,∞). The Nagumo-Westphal Lemma tells us that u < w in Ω× [σ,∞). Since −u solves a similar equation
we obtain |u| < w in Ω× [σ,∞),
and the result follows. �

In Theorem 1, the condition “there exist an i such that aii > λ in Ω × IR+ × IR × IRn” cannot be relaxed to
allow aii > 0, i = 1, 2, . . . n. This is possible in

Theorem 3. Suppose that the matrix [aij ] is semipositive definite and that relation (3) holds. If in addition
the following assumptions are satisfied

aij are bounded in Ω× IR+ × IR× IRn for i 6= j, i, j = 1, . . . , n.(8)
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aii are bounded above in Ω× IR+ × IR× IRn for i, j = 1, . . . , n.(9)

Dzb ≤
K1

t2+δ
in Ω× IR+ × IR× IRn.(10)

b(x, t, 0, 0) ≤ K2

t2+δ
in Ω× IR+,(11)

where K1, K2 and δ are strictly positive constants,
then the classical solution of problem (1) satisfies limt→∞ |u(x, t)| = 0 uniformly in Ω× IR+.

Proof. For the sake of simplicity we take aij = δij . Let us assume initially that Ω is of class C2.
We define the distance function d(x) = dist(x, ∂Ω). For µ > 0 small (µ need to be less than 1

K where K is an
upper bound for the normal curvatures of Ω ) we set Ωµ = {x ∈ Ω|d(x) < µ}. [3, Lemma 14.16, p. 335] tells us
that the function d is smooth, namely d ∈ C2(Ωµ).

In a principal coordinate system (see [3, p. 354]) we have for small enough µ

∆d2 + 2βd
∑

|Did|+ 2 = 2(1 + d∆d) + 2βd + 2 ≤ 6 inΩµ.

We extend the function d to a strictly positive function in Ω, belonging to C2(Ω), which we still denote by d,
such that

∆d2 + 2βd
∑

|Did|+ 2 ≤ C

2
inΩ,

for some C > 0.
We choose w as comparison function, where

w(x, t) = ε− 1
d2 + Ct + 1

.
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Here ε is any strictly positive constant. Of course w(x, t) > 0 in Ω× [σ,∞), for sufficiently large σ.
We get

Qw ≤ −C

(d2 + Ct + 1)2
+

1
(d2 + Ct + 1)2

[
∆d2 − 8d2|Dd|2

d2 + Ct + 1

]
+ b(x, t, w, Dw)

in Ω× [σ,∞).
Using the mean value theorem, (10) and (11) we obtain

Qw ≤ −1
(d2 + Ct + 1)2

[
C −

(
∆d2 − 8d2|Dd|2

d2 + Ct + 1

)
−εK1(d2 + Ct + 1)2

t2+δ
− K2(d2 + Ct + 1)2

t2+δ
− 2βd

∑
|Did|

]
in Ω× [σ,∞).
Hence Qu < 0 ≤ Qw in Ω× [σ,∞) and the proof follows by the Nagumo-Westphal Lemma for smooth domains.

To remove the above restriction on Ω we approximate Ω by smooth domains. �

By virtue of Theorem 1 it is easy to check that the conclusion of Theorem 2 and Theorem 3 remain valid for
solutions u ∈ C0(Ω× (0,∞)) ∩W 2,1

n+1,loc(Ω× (0,∞)).
Similar decay estimates for fully nonlinear parabolic operators defined on non cylindrical domains can be inferred
from the corresponding results for quasilinear equations. One can easily check that

−Dtu + F (x, t, u,Du, D2u) = −Dtu + aij(x, t, u,Du)Diju + b(x, t, u,Du)

where,

aij(x, t, z, p) =
∫ 1

0

Fij(x, t, z, p, sD2u)ds,

b(x, t, z, p) = F (x, t, z, p, 0).
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Here F = F (x, t, z, p, r), r = [rij ] is a matrix and Fij = ∂F
∂rij

.
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