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ON THE STRONG STABILITY OF A NONLINEAR VOLTERRA
INTEGRO-DIFFERENTIAL SYSTEM

A. DIAMANDESCU

Abstract. In this paper we provide sufficient conditions for strong stability of the
trivial solution of the systems (1) and (2).

1. Introduction

In [3], T. Hara, T. Yoneyama and T. Itoh proved sufficient conditions for uni-
form stability, asymptotic stability, uniform asymptotic stability and exponential
asymptotic stability of trivial solution of a nonlinear Volterra integro-differential
system of the form

x′ = A(t)x +
∫ t

0

F (t, s, x(s))ds(1)

The purpose of our paper is to provide sufficient conditions for strong stability of
trivial solution of (1), as a perturbed system of

x′ = A(t)x.(2)

We investigate conditions on the fundamental matrix Y (t) for linear system
(2) and on the function F (t, s, x) under which the trivial solution of (1) or (2) is
strongly stable on R+.

2. Definitions, notations and hypotheses

Let Rn denote the Euclidean n-space. For x ∈ Rn, let ‖x‖ be the norm of x. For
an n× n matrix A, we define the norm |A| of A by

|A| = sup
‖x‖≤1

‖Ax‖.

In equation (1) we consider that A is a continuous n × n matrix on R+ and
F : D × Rn −→ Rn, D = {(t, s) ∈ R2; 0 ≤ s ≤ t < ∞}, is a continuous n-vector
such that F (t, s, 0) = 0 for (t, s) ∈ D.
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Definition 2.1. The solution x(t) of (1) is said to be strongly stable (Ascoli,
[1]) on R+ if for every ε > 0, there exists δ = δ (ε) > 0 such that any solution x̃(t)
of (1) which satisfies the inequality ‖x̃(t0)−x(t0)‖ < δ for some t0 ≥ 0, exists and
satisfies the inequality ‖x̃(t)− x(t)‖ < ε for all t ≥ 0.

Remark 2.1. For definitions of other types of stability, see [2, page 51].

Remark 2.2. It is easy to see that strong stability is not equivalent with none
of these types of stability.

3. The Main Results

The following result [2] is well-known.

Theorem 3.1. Let Y (t) be a fundamental matrix for (2). Then, the trivial
solution of (2) is strongly stable on R+ if and only if there exists a positive constant
K such that

|Y (t)Y −1(s)| ≤ K for all 0 ≤ s, t < ∞
or, equivalently,

|Y (t)| ≤ K and |Y −1(t)| ≤ K for all t ≥ 0.

Let Y (t) be a fundamental matrix for (2). Consider the following hypotheses:
H1 : There exist a continuous function ϕ : R+ −→ (0,∞) and the constants

p1 ≥ 1, K1 > 0 for∫ t

0

(
ϕ(s)|Y (t)Y −1(s)|

)p1
ds ≤ K1, for all t ≥ 0.

H2 : There exist a continuous function ϕ : R+ −→ (0,∞) and the constants
p2 ≥ 1, K2 > 0 for∫ t

0

(
ϕ(s)|Y −1(t)Y (s)|

)p2
ds ≤ K2, for all t ≥ 0.

H3 : There exist a continuous function ϕ : R+ −→ (0,∞) and the constants
p3 ≥ 1, K3 > 0 for∫ t

0

(
ϕ(s)|Y −1(s)Y (t)|

)p3
ds ≤ K3, for all t ≥ 0.

H4 : There exist a continuous function ϕ : R+ −→ (0,∞) and the constants
p4 ≥ 1, K4 > 0 for∫ t

0

(
ϕ(s)|Y (s)Y −1(t)|

)p4
ds ≤ K4, for all t ≥ 0.

Theorem 3.2. Suppose that the fundamental matrix Y (t) for (2) satisfies one
of the following conditions:
C1 : H1 and H2 are true.
C2 : H1 and H4 are true.
C3 : H2 and H3 are true.
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C4 : H3 and H4 are true.

Then, the trivial solution of (2) is strongly stable on R+.

Proof. We will prove that Y (t) and Y −1(t) are bounded on R+.
First of all, we consider the case C2. For the beginning we prove that Y (t) is

bounded on R+.
Let q(t) = ϕp1(t)|Y (t)|−p1 for t ≥ 0. From the identity(∫ t

0

q(s)ds

)
Y (t) =

∫ t

0

(ϕ(s)Y (t)Y −1(s))(q(s)(ϕ(s))−1Y (s))ds, t ≥ 0,

it follows that

(∫ t

0

q(s)ds

)
|Y (t)| ≤

∫ t

0

(
ϕ(s)|Y (t)Y −1(s)|

) (
q(s)(ϕ(s))−1|Y (s)|

)
ds, t ≥ 0.

(3)

In case p1 = 1, we have that q(s)(ϕ(s))−1|Y (s)| = 1. From (3) and the hypoth-
esis H1 it follows that(∫ t

0

q(s)ds

)
|Y (t)| ≤

∫ t

0

ϕ(s)|Y (t)Y −1(s)|ds ≤ K1, t ≥ 0.

In case p1 > 1, we have that q(s)(ϕ(s))−1|Y (s)| = (q(s))
1

q1 , 1
p1

+ 1
q1

= 1.
From (3), it follows that(∫ t

0

q(s)ds

)
ϕ(t)(q(t))−

1
p1 ≤

∫ t

0

(ϕ(s)|Y (t)Y −1(s)|)(q(s))
1

q1 ds,

for all t ≥ 0.
Using the Hölder inequality, we obtain(∫ t

0

q(s)ds

)
ϕ(t)(q(t))−

1
p1

≤
(∫ t

0

(ϕ(s)|Y (t)Y −1(s)|)p1ds

) 1
p1

(∫ t

0

q(s)ds

) 1
q1

, t ≥ 0.

Using the hypothesis H1, we obtain that(∫ t

0

q(s)ds

) 1
p1

ϕ(t)(q(t))−
1

p1 ≤ K
1

p1
1 , t ≥ 0

or (∫ t

0

q(s)ds

)
|Y (t)|p1 ≤ K1, t ≥ 0.

Thus, for p1 ≥ 1, the function |Y (t)| satisfies the inequality

|Y (t)| ≤ K
1

p1
1

(∫ t

0

q(s)ds

)− 1
p 1

, t ≥ 0.
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Denote Q(t) =
∫ t

0

q(s)ds for t ≥ 0. Thus, we have

| Y (t) |≤ K
1

p1
1 (Q(t))−

1
p1 , for t ≥ 0.

Because

Q′(t) = q(t) ≥ K−1
1 (ϕ(t))p1Q(t) for t ≥ 0,

we have that

Q(t) ≥ Q(1) e
K−1

1

∫ t

1

ϕp1(s)ds
, for t ≥ 1.

It follows that

|Y (t)| ≤ K
1

p1
1 (Q(1))−

1
p1 e

−(p1K1)
−1

∫ t

1

ϕp1(s)ds
, for t ≥ 1.

Because |Y (t)| is a continuous function on [0, 1], it follows that there exists a
positive constant M1 such that |Y (t)| ≤ M1 for t ≥ 0.
In what follows we prove that Y −1(t) is bounded on R+.

Let q(t) = ϕp4(t)|Y −1(t)|−p4 for t ≥ 0. From the identity(∫ t

0

q(s)ds

)
Y −1(t)

=
∫ t

0

(q(s)(ϕ(s))−1Y −1(s))(ϕ(s)Y (s)Y −1(t))ds, t ≥ 0

it follows that(∫ t

0

q(s)ds

)
|Y −1(t)|

≤
∫ t

0

(
q(s)(ϕ(s))−1|Y −1(s)|

) (
ϕ(s)|Y (s)Y −1(t)|

)
ds, t ≥ 0.(4)

In case p4 = 1, we have that q(s)(ϕ(s))−1|Y −1(s)| = 1.
From (4) and the hypothesis H4, it follows that(∫ t

0

q(s)ds

)
|Y −1(t)| ≤

∫ t

0

ϕ(s)||Y (s)Y −1(t)|ds ≤ K4, t ≥ 0.

In case p4 > 1, we have that

q(s)(ϕ(s))−1|Y −1(s)| = (q(s))
1

q4 , s ≥ 0.

where
1
p4

+
1
q4

= 1.
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From (4) it follows that(∫ t

0

q(s)ds

)
|Y −1(t)| ≤

∫ t

0

q
1

q4 (s)
(
ϕ(s)|Y (s)Y −1(t)|

)
ds

for all t ≥ 0.
Using the Hölder inequality, we obtain that(∫ t

0

q(s)ds

)
|Y −1(t)|

≤
(∫ t

0

(
ϕ(s)|Y (s)Y −1(t)|

)p4
ds

) 1
p4

(∫ t

0

q(s)ds

) 1
q4

, t ≥ 0.

Using the hypothesis H4, we have(∫ t

0

q(s)ds

)
|Y −1(t)| ≤

(∫ t

0

q(s)ds

) 1
q4

K
1

p4
4 , t ≥ 0

or(∫ t

0

q(s)ds

) 1
p4

|Y −1(t)| ≤ K
1

p4
4 , t ≥ 0.

Thus, for p4 ≥ 1, the function |Y −1(t)| satisfies the inequality

| Y −1(t)| ≤ K
1

p4
4

(∫ t

0

q(s)ds

)− 1
p4

, t ≥ 0.

Denote Q(t) =
∫ t

0

q(s)ds for t ≥ 0. Thus, we have

|Y −1(t)| ≤ K
1

p4
4 (Q(t))−

1
p4 , t ≥ 0.

Because

Q′(t) = q(t) ≥ ϕp4(t)K−1
4 Q(t), t ≥ 0,

we have

Q(t) ≥ Q(1)eK−1
4

∫ t
1 ϕp4 (s)ds, t ≥ 1.

It follows that

|Y −1(t)| ≤ K
1

p4
4 (Q(1))−

1
p4 e−(p4K4)

−1 ∫ t
1 ϕp4 (s)ds, t ≥ 1.

Because |Y −1(t)| is a continuous function on [0, 1], it follows that there exists a
positive constant M2 such that |Y −1(t)| ≤ M2 for t ≥ 0.

Hence, the conclusion follows immediately from Theorem 3.1.
Finally, in the cases C1, C3 or C4, the proof is similarly.

The proof is now complete. �
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Remark 3.1. The function ϕ can serve to weaken the required hypotheses on
the fundamental matrix Y .

Theorem 3.3. If
1. the fundamental matrix Y (t) of the equation (2) satisfies

|Y (t)Y −1(s)| ≤ K

for all 0 ≤ s, t < +∞, where K is constant,
2. the function F satisfies the condition

‖F (t, s, x)− F (t, s, y)‖ ≤ f(t, s)‖x− y‖
for 0 ≤ s ≤ t < +∞ and for all x, y ∈ Rn, where f is a continuous nonnegative
function on D such that

M =
∫ ∞

0

∫ t

0

f(t, s) ds dt < K−1,

then, for all t0 ≥ 0, x0 ∈ Rn and ρ > 0, there exists a unique solution of (1) on
R+ such that x(t0) = x0 and ‖x(t)‖ ≤ ρ for all t ∈ [0, t0], if ‖ x0‖ is sufficiently
small.

Proof. It is well-known that the problem

x′ = A(t)x +
∫ t

0

F (t, s, x(s))ds, x(t0) = x0

can be reduced by means of variation of constants to the nonlinear integral system

x(t) = Y (t)Y −1(t0)x0 +
∫ t

t0

Y (t)Y −1(s)
∫ s

0

F (s, u, x(u)) du ds, t ≥ 0.(5)

We introduce the Fréchet space Cc of all continuous maps from R+ into Rn with
the seminorms ‖x|τ = sup

0≤t≤τ
‖x(t)‖, τ ≥ 0. Thus, convergence in Cc is equivalent

to the usual convergence over all compact intervals of R+.
For t0 ≥ 0 and ρ > 0, let x0 ∈ Rn be such that ‖x0‖ < ρ(1−KM)K−1. Let Sρ

be the set

Sρ = {x ∈ Cc ; ‖x‖t0 ≤ ρ, ‖x‖τ ≤ ρeKM for τ > t0}.
We consider the following operator T from Sρ into Cc :

(Tx)(t) = Y (t)Y −1(t0)x0 +
∫ t

t0

Y (t)Y −1(s)
∫ s

0

F (s, u, x(u)) du ds, t ≥ 0.

For x ∈ Sρ and t ∈ [0, t0], we have

‖(Tx)(t)‖ ≤ K‖x0‖+ K

∫ t0

t

∫ s

0

f(s, u)‖x(u)‖ du ds

≤ K‖x0‖+ K sup
0≤t≤t0

‖x(t)‖
∫ t0

0

∫ s

0

f(s, u) du ds

≤ Kρ(1−KM)K−1 + KρM = ρ.
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For x ∈ Sρ and t > t0, using the same kind of arguments as above, we obtain

‖(Tx)(t)‖ ≤ ρeKM .

Thus, TSρ ⊂ Sρ.
Let x, y ∈ Sρ. For t ∈ [0, t0], we have

‖(Tx)(t)− (Ty)(t)‖

=
∥∥∥∥∫ t

t0

Y (t)Y −1(s)
∫ s

0

(F (s, u, x(u))− F (s, u, y(u))) du ds

∥∥∥∥
≤

∫ t0

t

∣∣Y (t)Y −1(s)
∣∣ ∫ s

0

‖F (s, u, x(u))− F (s, u, y(u))‖ du ds

≤ K

∫ t0

t

∫ s

0

f(s, u) ‖x(u)− y(u)‖ du ds

≤ K sup
0≤u≤t0

‖x(u)− y(u)‖
∫ t0

t

∫ s

0

f(s, u) du ds

≤ KM‖x− y‖t0.

Then,

‖Tx− Ty‖t0 ≤ KM‖x− y‖t0 .

Similarly, for τ > t0, we have

‖Tx− Ty‖τ ≤ KM‖x− y‖τ .

Hence, T is a contraction. By the Banach’s Theorem for Fréchet spaces [4],
Sρ contains a unique fixed point x̃ = T x̃, i. e., the equation (1) has a unique
solution x̃(t) on R+ such that x̃(t0) = x0 and ‖x̃(t)‖ ≤ ρ for all t ∈ [0, t0] and
‖x̃(t)‖ ≤ ρeKM for all t ≥ 0, if ‖x0‖ is sufficiently small.

Now, we suppose that x(t) is a solution in Cc of (5) such that ‖x(t)‖ ≤ ρ for
t ∈ [0, t0] and ‖x0‖ ≤ ρ(1−KM)K−1. For t ≥ t0 we have

‖x(t)‖ = ‖Y (t)Y −1(t0)x0 +
∫ t

t0

Y (t)Y −1(s)
∫ s

0

F (s, u, x(u)) du ds‖

≤ K‖x0‖+ K

∫ t

t0

∫ s

0

f(s, u)‖x(u)‖ du ds

= K‖x0‖+ K

∫ t

t0

∫ t0

0

f(s, u)‖x(u)‖ du ds + K

∫ t

t0

∫ s

t0

f(s, u)‖x(u)‖ du ds

≤ K‖x0‖+ Kρ

∫ t

t0

∫ t0

0

f(s, u) du ds + K

∫ t

t0

∫ s

t0

f(s, u)‖x(u)‖ du ds

≤ Kρ(1−KM)K−1 + KρM + K

∫ t

t0

∫ s

t0

f(s, u)‖x(u)‖ du ds

= ρ + K

∫ t

t0

∫ s

t0

f(s,u)‖x(u)‖ du ds.
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It is easy to see that the function Q(t) =
∫ t

t0

∫ s

t0

f(s, u)‖x(u)‖ du ds is continu-

ously differentiable and increasing on [t0,∞).
For t ≥ t0, we have

Q′(t) =
∫ t

t0

f(t, u)‖x(u)‖du

≤
∫ t

t0

f(t, u)(ρ + KQ(u))du = ρ

∫ t

t0

f(t, u)du + K

∫ t

t0

f(t, u)Q(u)du.

Then,Q(t)e
−K

∫ t

t0

∫ s

t0

f(s, u)duds


′

= e
−K

∫ t

t0

∫ s

t0

f(s, u) du ds [
Q′(t)−KQ(t)

∫ t

t0

f(t, u)du

]

≤ e
−K

∫ t

t0

∫ s

t0

f(s, u) du ds [
ρ

∫ t

t0

f(t, u)du + K

∫ t

t0

f(t, u)(Q(u)−Q(t))du

]

≤ e
−K

∫ t

t0

∫ s

t0

f(s, u) du ds [
ρ

∫ t

t0

f(t, u)du

]
=

−ρK−1e
−K

∫ t

t0

∫ s

t0

f(s, u) du ds


′

.

By integrating from t0 to t ≥ t0, we have

Q(t)e
−K

∫ t

t0

∫ s

t0

f(s, u) du ds
−Q(t0) ≤ −ρK−1e

−K

∫ t

t0

∫ s

t0

f(s, u)duds
+ ρK−1.

We deduce that

‖x(t)‖ ≤ ρ + KQ(t) for t ≥ t0,

and then

‖x(t)‖ ≤ ρeKM for t ≥ t0.

This shows that x ∈ Sρ and then x = x̃. Thus, for all t0 ≥ 0, x0 ∈ Rn and ρ > 0,
there exists a unique solution of (1) on R+ such that x(t0) = x0 and ‖x(t)‖ ≤ ρ
for all t ∈ [0, t0], if ‖x0‖ is sufficiently small. The proof is complete. �

Theorem 3.4. If the hypotheses of Theorem 3.3 are satisfied, then the trivial
solution of (1) is strongly stable on R+.
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Proof. Let ε > 0 be arbitrary and let δ(ε) = ε(1 − KM)K−1e−KM , t0 ≥ 0
and let x0 ∈ Rn satisfy ‖x0‖ < δ (ε).

Applying Theorem 3.3, we deduce that there exists a unique solution x(t) on
R+ of (1) with x(t0) = x0 such that x ∈ Sεe− KM , i. e., ‖x(t)‖ ≤ ε for t ≥ 0.

This proves that the trivial solution of (1) is strongly stable on R+. The proof
is complete. �

Example 3.1. Let a, b : R+ → R be continuous and let the system (2) with

A(t) =
(

a(t) −b(t)
b(t) a(t)

)
.

It is easy to see that

Y (t) = r(t)
(
− cos θ(t) − sin θ(t)
− sin θ(t) cos θ(t)

)
,

where

r(t) = e
∫ t
0 a(u)du and θ(t) =

∫ t

0

b(u)du,

is a fundamental matrix of (2).
We have

|Y (t)Y −1(s)| ≤
√

2e
∫ t

s
a(u)du for all t, s ≥ 0.

In [3], it is proved that if there exists λ > 0 such that

a(t) ≤ −λ for all t ≥ 0.

then the system (2) is uniformly asymptotically stable on R+.
We remark that if there exist C ≥ 0 and λ > 0 such that∫ t

s

a(u)du ≤ C − λ(t− s) for all t ≥ s ≥ 0,

then we have the same conclusion.
In addition, if there exists L > 0 such that

|
∫ t

s

a(u)du| ≤ L for all t, s ≥ 0,

then the system (2) is strongly stable on R+.

Now, we consider

F (t, s, x) = e−αt+s

(
sinx1 + t arctanx2

s sinx1 − arctanx2

)
,

where α ∈ R.
It is easy to see that the function F satisfies the conditions of Theorem 3.3 for

α sufficiently large positive number.
In these conditions for A(t) and F , for all t0 ≥ 0, x0 ∈ Rn and ρ > 0, there

exists a unique solution x(t) of (1) on R+ such that x(t0) = x0 and ‖x(t)‖ ≤ ρ for
all t ∈ [0, t0], if ‖x0‖ is sufficiently small.
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In addition, the trivial solution of (1) is strongly stable on R+.
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