ON THE STRONG STABILITY OF A NONLINEAR VOLTERRA
INTEGRO-DIFFERENTIAL SYSTEM

A. DIAMANDESCU
ABSTRACT. In this paper we provide sufficient conditions for strong stability of the trivial solution of the systems (1)
and (2).

1. INTRODUCTION

In [3], T. Hara, T. Yoneyama and T. Itoh proved sufficient conditions for uniform stability, asymptotic stability,
uniform asymptotic stability and exponential asymptotic stability of trivial solution of a nonlinear Volterra integro-
differential system of the form

(1) i A(t)er/O F(t,s,xz(s))ds

The purpose of our paper is to provide sufficient conditions for strong stability of trivial solution of (1), as a
perturbed system of

(2) ' = A(t)z.

We investigate conditions on the fundamental matrix Y (¢) for linear system (2) and on the function F(¢, s, )
under which the trivial solution of (1) or (2) is strongly stable on R...
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2.  DEFINITIONS, NOTATIONS AND HYPOTHESES

Let R™ denote the Euclidean n-space. For z € R™, let ||z|| be the norm of x. For an n x n matrix A, we define
the norm |A| of A by
|Al = sup [|Az]|.

llzll<1

In equation (1) we consider that A is a continuous n xn matrix on Ry and F : DxR" — R", D = {(t, s) € R?;
0 < s <t < oo}, is a continuous n-vector such that F(¢,s,0) = 0 for (¢,s) € D.

Definition 2.1. The solution z(t) of (1) is said to be strongly stable (Ascoli, [1]) on R, if for every e > 0,
there exists 0 = 0 (€) > 0 such that any solution Z(¢) of (1) which satisfies the inequality ||Z(to) — x(¢o)|| < ¢ for
some to > 0, exists and satisfies the inequality ||Z(t) — z(t)| < € for all ¢ > 0.

Remark 2.1. For definitions of other types of stability, see [2, page 51].
Remark 2.2. It is easy to see that strong stability is not equivalent with none of these types of stability.

3. THE MAIN RESULTS
The following result [2] is well-known.

Theorem 3.1. Let Y (t) be a fundamental matriz for (2). Then, the trivial solution of (2) is strongly stable
on Ry if and only if there exists a positive constant K such that

Y ()Y '(s) < K for all 0<s,t <00
or, equivalently,

Y| <K and |Y'®)| <K  foral t>0.
Let Y (t) be a fundamental matrix for (2). Consider the following hypotheses:
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H; : There exist a continuous function ¢ : Ry — (0, 00) and the constants p; > 1, Ky > 0 for
/Ot (e(s)Y ()Y " (s)[)" ds < Ky, forall t > 0.

H, : There exist a continuous function ¢ : Ry — (0, 00) and the constants py > 1, Ky > 0 for
/Ot ()Y ()Y (5)])" ds < Ky, forall ¢ > 0.

Hs : There exist a continuous function ¢ : Ry — (0, 00) and the constants p3 > 1, K3 > 0 for
/Ot (p(s)[YH(s)Y (8)])” ds < K, for all t > 0.

H, : There exist a continuous function ¢ : Ry — (0, 00) and the constants py > 1, K4 > 0 for
[ ooy o) s <m,  oraiizo

Theorem 3.2. Suppose that the fundamental matriz Y (t) for (2) satisfies one of the following conditions:

C;: H; and Hsy are true.
Csy: H; and Hy are true.
Cs: Hs and H3 are true.
Cys: Hj and Hy are true.

Then, the trivial solution of (2) is strongly stable on Ry.

Proof. We will prove that Y (t) and Y ~1(¢) are bounded on R .
First of all, we consider the case Ca. For the beginning we prove that Y (¢) is bounded on R
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Let q(t) = P (¢)|Y (t)|7P* for ¢ > 0. From the identity
([ atas) ()= [ otr v o)ae) )y ) t20
0 0
it follows that
© ([ atas) vl < [ (@Y @76 o)) e s t>0.
In case p; = 1, we have that ¢(s)(p(s)) Y (s)| = 1. From (3) and the hypothesis Hj it follows that

</OtCI(S)ds) [Y'()] < /Otcp(s)|Y(t)Y1(s)|d5 <K, t>0.

1

In case p; > 1, we have that ¢(s)(¢(s)) 7Y (s)] = (¢q(s))ar, + L =1. From (3), it follows that

(/ q(S)dS> P(t)(g(t)) 7 S/ (p(s)Y ()Y~ (s)])(g(s))* ds,
0 0

for all t > 0.
Using the Holder inequality, we obtain
1

(/ t 0(5)ds ) l0)(a(0)

<(/ t(so<s>|Y<t>Y1<s>>P1ds) 8 (f t o))"z

Using the hypothesis H;, we obtain that

(f t a(5)is) " olo)a(0) < KP £ 0
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or

([fa@w)n«wW1SKa

Thus, for p; > 1, the function |Y'(¢)| satisfies the inequality

wu>SKﬁ(AE@m§_%,

t
Denote Q(t) = / q(s)ds for t > 0. Thus, we have
0

1

| Y (t) < K" (Q(t) 1,
Because

Q'(t) = q(t) > K7 (1) Q(t)

we have that

for t > 0.

for t > 0,

fort > 1.

for t > 1.
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Because |Y (t)] is a continuous function on [0, 1], it follows that there exists a positive constant M; such that

Y (t)] < My for ¢ > 0.
In what follows we prove that Y ~1() is bounded on R .
Let q(t) = ¢P4(¢t)|Y ~1(¢)|7P4 for t > 0. From the identity

(/ t a(s)ds )Y (1)
= [ ) ) ) ol (Y s,

it follows that

([ aras) =0

(4) S/O (a(s)(e(s)) Y (3)]) (2 ()Y ()Y (B)]) ds,

In case py = 1, we have that q(s)(p(s)) Y ~1(s)| = 1.
From (4) and the hypothesis Hy, it follows that

< / tq(s)ds> Yi(0)] < / @Y ()Y (O)lds < K,
In case py > 1, we have that
a(5)((s) Y 71 (s)] = (a(s)) 7,

1
where — + — = 1.
Ps 44

®First ®Prev ®Next ®Last

0 Go Back e®Full Screen ®Close ®Quit



From (4) it follows that

(/th(S)ds> Y 1(t)] < /thqt(s) (9(s)[Y ()Y ~1(2)]) ds

for all t > 0.
Using the Holder inequality, we obtain that

([ atras) e

Using the hypothesis Hy, we have

(/Ot q(s)ds) Y ~1(t)| < (/Ot q(s)d8> % K;

( / tq<s>ds> " vo) < K

Thus, for ps > 1, the function |Y ~1(#)] satisfies the inequality

Y i) < K (/th<s>ds);4,

or
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t
Denote Q(t) = / q(s)ds for t > 0. Thus, we have
0

Y=H(®)] < KJ* Q1) 7, t>0
Because
Q'(t) = q(t) = " (VK ' Q(t), t>0,
we have
Qt) > Q(1)efa Ji @ ()ds, £> 1.
It follows that
Y] < KIF Q) Fremeura ™ s (> 1

Because |[Y71(¢)| is a continuous function on [0,1], it follows that there exists a positive constant M, such that
[Y=1(t)| < M for t > 0.

Hence, the conclusion follows immediately from Theorem 3.1.

Finally, in the cases C1, C3 or Cy4, the proof is similarly.
The proof is now complete. O

Remark 3.1. The function ¢ can serve to weaken the required hypotheses on the fundamental matrix Y.

Theorem 3.3. If
1. the fundamental matriz Y (t) of the equation (2) satisfies

V()Y ~(s)| < K

for all 0 < s,t < +00, where K is constant,
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2. the function F satisfies the condition

1E(t,s,2) = F(t,5,y)[| < f(t, )]z —yll

for 0 < s <t < +4oo and for all z,y € R™, where f is a continuous nonnegative function on D such that

[e’e] i
M:/ / f(t,s)dsdt < K1,
o Jo

then, for all tg > 0, o € R™ and p > 0, there exists a unique solution of (1) on Ry such that x(tg) = x¢ and
lz(@®)]| < p for all t € [0,t0], if || 20|l is sufficiently small.

Proof. 1t is well-known that the problem

' =A(t)z +/0 F(t,s,z(s))ds, x(to) = xo

can be reduced by means of variation of constants to the nonlinear integral system

(5) z(t) = Y)Y (to)zo +/ Y ()Y 1(s) /S F(s,u,xz(u)) duds, t>0.

to 0

sup ||z(t)||, 7 > 0. Thus, convergence in C, is equivalent to the usual convergence over all compact intervals of
0<t<r
R;.
For ¢ty > 0 and p > 0, let 29 € R™ be such that ||zo|| < p(1 — KM)K~'. Let S, be the set

We introduce the Fréchet space C. of all continuous maps from Ry into R with the seminorms ||z|, =

Sy={z € Ces llely < p. llalls < pe™™ for 7 > to}.
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We consider the following operator 1" from S, into C. :

For z € S, and ¢ € [0, ¢], we have

(T2 < Kol + K / i / " sy ) ()] s

IN

to s
Kwo|| + K sup ||x(t)H/ / e ) s
0<t<to 0 0

< Kp(1—-KM)K~' + KpM = p.
For z € S, and ¢ > tp, using the same kind of arguments as above, we obtain
I(T) (@) < pe™™.
Thus, T'S, C S,,.
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Let z,y € S,. For t € [0, %], we have
I(T)(t) — (Ty) (@)

‘ Y ()Y (s) /S(F(s u,z(u)) — F(s,u,y(u))) duds

to
< /to ’/ |1F(s,u, x(u)) — F(s,u,y(u))| duds
< K/to/ f(s,u) |z(u) —y(u)|| duds
<

K sup |z(u ||/ / f(s,u)duds
0<u<ty
< KMllz =yl

Then,
1Tz — Tylle, < KMz — ylls,-

Similarly, for 7 > ty, we have

[Tz — Tyl < KM|z -yl
Hence, T is a contraction. By the Banach’s Theorem for Fréchet spaces [4], S, contains a unique fixed point

Z =Tz, i. e., the equation (1) has a unique solution Z(t) on Ry such that Z(tg) = z¢ and ||Z(¢)|| < p for all ¢
€ [0,t0] and ||Z(t)| < peXM for all t > 0, if ||zo| is sufficiently small.
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Now, we suppose that x(t) is a solution in C. of (5) such that ||z(¢)|| < p for t € [0,%0] and |zg]] <
p(1 — KM)K~'. For t >ty we have

S

Y ()Y 1(s) /0 F(s,u,z(u))duds||

t

le®)ll = Y)Y~ (to)z0 + /

to

IA

t S
Kllzol + K / / £(5,0)l|e(w) || du s
= Kol + K / / " f (5w ()| duds + K / / £(5,0) ()| dus ds

IN

t to t s
Klool + Ko [ [ sy duds+ & [ [ f(s,u)lotu)] duds
to J0O to Jto

IA

t s
Kp(l—KM)K_1+KpM+K/ f(s,uw)||z(u)| duds
to Jto

t s
- p+K/ / £(s,0) |2 (u) || duw ds.
to Jto

t s
It is easy to see that the function Q(t) = / / f(s,u)||z(u)|| duds is continuously differentiable and increasing
to Jto

on [tg, 00).
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For t > tg, we have
t

Q)= [ ftuwlz(w)du

to

< / £t 0)(p + KQ(u))du = p / F(tw)du + K / £, )@ (w)du.

Then,

/

t s
= ,u)dud
o K/to 5 f(s,u)duds

7K/ f(s,u)duds t
— e ot Q) - KQ) [ fit.ual
—K/t Sf(s,u)cluds -t ¢
< e to Jto P ) f(t7u)du+K ; f(t,u)(Q(u)—Q(t))du}
B s 7 s B t s 7 dud 0
< e K/to to f(s U) e P tf(t,u)du} = —,OK_le K‘/to to f(s U) he
L t(]
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By integrating from ¢y to ¢ > ¢y, we have

t s t s
-K f(s,u)duds K f(s,u)duds
Qe I ~ Q) < —pKte Juds oK

We deduce that
lz@®)|| < p+ KQ(t) for t > to,

and then
z(t)| < pefM for ¢ > to.

This shows that « € S, and then « = Z. Thus, for all t5 > 0, 2y € R" and p > 0, there exists a unique solution
of (1) on R such that x(tg) = xg and [|z(t)]] < p for all t € [0,tg], if ||xo|| is sufficiently small. The proof is
complete. 0

Theorem 3.4. If the hypotheses of Theorem 3.3 are satisfied, then the trivial solution of (1) is strongly stable
on R,.

Proof. Let ¢ > 0 be arbitrary and let §(¢) = e(1-KM)K te KM t5 > 0 and let zo € R™ satisfy ||zo|| < & (¢).

Applying Theorem 3.3, we deduce that there exists a unique solution z(¢) on Ry of (1) with z(¢g) = x¢ such
that x € S,;-e— KM, 1. €., ||3;‘(t)|| <efort>0.

This proves that the trivial solution of (1) is strongly stable on R,. The proof is complete. O

Example 3.1. Let a,b: R. — R be continuous and let the system (2) with
_ [ o) —b(t)
a0= (50 o6 )
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It is easy to see that

—cosf(t) —sinf(t)
Y(t) =r(t) ( 7(;?119(15) cos 0(t) ) ’

where
t t
r(t) = eJo a(w)du and 0(t) = / b(u)du,
0

is a fundamental matrix of (2).
We have

Y ()Y (s)] < el el for all t,s > 0.
In [3], it is proved that if there exists A > 0 such that

a(t) < =X for all ¢ > 0.

then the system (2) is uniformly asymptotically stable on R..
We remark that if there exist C' > 0 and A > 0 such that

t
/ a(u)du < C — At —s) forallt > s >0,

then we have the same conclusion.
In addition, if there exists L > 0 such that

t
|/ a(u)du| < L for all ¢,s > 0,

then the system (2) is strongly stable on R .
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Now, we consider

F(t,s,2) = e=ot+s sin x1 + t arctan xo
> ssinx, — arctan xo

where o € R.

It is easy to see that the function F' satisfies the conditions of Theorem 3.3 for « sufficiently large positive

number.

In these conditions for A(t) and F, for all ¢ty > 0, 9 € R™ and p > 0, there exists a unique solution z(t) of (1)

on Ry such that z(tg) = zo and ||z(¢)|| < p for all ¢ € [0, to], if ||zo] is sufficiently small.

In addition, the trivial solution of (1) is strongly stable on R, .
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