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ON (k, l)-RADIUS OF RANDOM GRAPHS

M. HORVÁTHOVÁ

Abstract. We introduce the concept of (k, l)-radius of a graph and prove that for any fixed pair k, l the (k, l)-radius is

equal to 2
(k
2

)
−

(l
2

)
for almost all graphs. Since for k = 2 and l = 0 the (k, l)-radius is equal to the diameter, our result

is a generalization of the known fact that almost all graphs have diameter two.

All graphs in this note are finite, undirected and simple. As usual, by distance between two vertices in a graph
we mean the minimum length of a path connecting them. Then the diameter is the maximum distance between
two vertices. The transmission of the graph, also called a distance of the graph, is defined as the sum of distances
between all pairs of vertices (for general properties of the distance see [4]). The concepts of diameter and distance
were generalized by Goddard, Swart and Swart in [3] by introducing the k-diameter as follows. The distance
of k vertices dk(v1, v2, . . . , vk) is the sum of distances between all pairs of vertices from {v1, v2, . . . , vk}. The
k-diameter is the maximum distance of a set of k vertices. Hence the 2-diameter is the usual diameter and if n
is the order of the graph, the n-diameter is the distance of the graph.

In this note we use the definition of distance of a set of k vertices to define (k, l)-eccentricity and (k, l)-radius.
We study (k, l)-radius of random graphs and determine the value of this parameter for almost all graphs in a
probability space. We also discus the relationship between the (k, l)-radius and the k-diameter of a graph.
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Let S be a set of l vertices, 0 ≤ l ≤ k. We define (k, l)-eccentricity of S, ek,l(S), as the maximum distance of
k vertices u1, u2, . . . , uk, such that S ⊆ {u1, u2, . . . , uk}. In symbols,

ek,l(S) = max
T
{dk(T ), |T | = k, S ⊆ T ⊆ V (G)}.

The (k, l)-radius, radk,l(G), is the minimum (k, l)-eccentricity of a set of l vertices in G, that is

radk,l(G) = min
S

(ek,l(S)) = min
S

( max
S⊆T⊆V (G)

dk(T ))

where |S| = l, |T | = k.
We recall that the eccentricity e(v) of a vertex v is the maximum distance to another vertex, the radius rad(G)

is the minimum eccentricity, whereas the diameter diam(G) is the maximum eccentricity. From the definition of
(k, l)-radius it follows that rad2,1(G) is the usual radius and radk,0(G) is the k-diameter.

Now, consider the probability space in the following sense. Let p be a real number, 0 < p < 1, and let n be an
integer. By G(n, p) we denote a class of labelled random graphs on n vertices, in which the probability of an edge
equals p. More precisely, for every u, v ∈ V (G), we have P [uv ∈ E(G)] = p. Hence G(n, p) is a probability space
the elements of which are the 2(n

2) differently labelled graphs. We say that almost all graphs have property A if

lim
n→∞

P [G ∈ G(n, p) has propertyA] = 1.

The space of random graphs is one of the random structures studied in connection with the 0-1 law. This law
states that for many properties. The probability that a random structure satisfies the property is guaranteed to
approach either 0 or 1. The 0-1 law for graphs was proved by Glebskij [2] and later on by Fagin [1]. Fagin’s
method is based on considering the following properties.

Let r and s be nonnegative integers. By Ar,s we denote the property that for any disjoint sets of vertices X
and Y , such that |X| = r and |Y | = s, there exists a vertex z, z /∈ X ∪ Y such that z is adjacent to every vertex
of X and to no vertex of Y .

The following statements are well-known and their proofs can be found in the excellent survey by Winkler [5].
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Theorem 1. [5] For any fixed nonnegative integers r and s and a real number p, 0 < p < 1 we have

lim
n→∞

P [G ∈ G(n, p) has property Ar,s] = 1.

Theorem 2. [5] Let be T = {Ar1,s1 , Ar2,s2 , . . . , Ark,sk
} for some k ≥ 0. Then almost all graphs have all the

properties of T .

From the fact that almost every graph has property A2,0 (the distance of every pair of vertices is at most 2)
and A0,1 (the graph is not complete) we have:

Corollary 3. For any fixed real p, 0 < p < 1, almost all graphs are connected and have diameter 2.

Now we are in a position to prove the main statement of this note.

Theorem 4. Let k, l be nonnegative integers, l ≤ k. For any fixed real p, 0 < p < 1, almost all graphs G have

radk,l(G) = 2
(

k

2

)
−

(
l

2

)
.

Proof. Let L be a set of l vertices in a graph G ∈ G(n, p). Let pn denote the probability P [G ∈ G(n, p) has
diameter 2]. Then with the same probability pn it holds

ek,l(L) ≤ dl(L) + 2l(k − l) + 2
(

k − l

2

)
.(1)

By Corollary 3 lim
n→∞

pn = 1, so that (1) holds for almost all graphs G ∈ G(n, p). Now we prove that for almost
all graphs

ek,l(L) ≥ dl(L) + 2l(k − l) + 2
(

k − l

2

)
.(2)
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To do this, it sufficies to prove that for almost all graphs there exist k− l vertices from V (G)\L that are mutually
nonadjacent and that are adjacent to no vertex of L. Let T = {A0,l, A0,l+1, . . . , A0,k−1}. By Theorem 2,
lim

n→∞
P [G ∈ G(n, p) has all properties of T ] = 1, i.e. almost all graphs G have all properties of T .

1. Let Ll = L. Property A0,l says that there exists a vertex zl+1 ∈ V (G) \ L that is adjacent to no vertex of
L.

2. For i = l + 1, l + 2, . . . , k − 1 we define Li inductively by Li = Li−1 ∪ zi. Then property A0,i impies that
there exists a vertex zi+1 that is adjacent to no vertex of Li.

Hence, we have k − l vertices zl+1, zl+2, . . . , zk that are mutually nonadjacent and are adjacent to no vertex of
Ll, which proves (2). Thus, from (1) and (2) we have that for almost all graphs

ek,l(L) = dl(L) + 2l(k − l) + 2
(

k − l

2

)
.(3)

Since radk,l(G) = min
L

ek,l(L), the radius is minimal whenever dl(L) is minimal, (see (3)). We show that in almost

all graphs G ∈ G(n, p) there exists a set L′ of l vertices, such that dl(L′) =
(

l
2

)
. In other words, we show that

there is a set L′ of l mutually adjacent vertices. Let T ′ = {A1,0, A2,0, . . . , Al−1,0}. Then almost all graphs have
all properties of T ′, since by Theorem 2 lim

n→∞
P [G ∈ G(n, p) has all properties of T ′] = 1.

1. Let L′1 be a set containing a single vertex of G, say L′1= {z′1}. Then |L′1|= 1 and A1,0 says that there
exists a vertex z′2 that is adjacent to z′1 .

2. For i = 2, 3, . . . l − 1 let L′i be a set of vertices, such that L′i = L′i−1 ∪ z′i. Then |L′i|= i and Ai,0 implies
that there exists a vertex z′i+1 that is adjacent to all vertices of L′i.
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In this way we obtain a set L′ = L′l of l vertices that are mutually adjacent, so that dl(L′) =
(

l
2

)
. Since dl(L)

cannot be less then
(

l
2

)
for any set of l vertices, we have

radk,l =
(

l

2

)
+ 2l(k − l) + 2

(
k − l

2

)
= 2

(
k

2

)
−

(
l

2

)
for almost all graphs G ∈ G(n, p), as required. �

Setting l = 0 in Theorem 2 we obtain:

Corollary 5. For any k ≥ 0 and for almost all graphs G we have

diamk(G) = k(k − 1).

It is obvious that Corollary 5 generalizes Corollary 3. Further, setting k = 2 and l = 1 we obtain:

Corollary 6. For almost all graphs G we have rad(G) = 2.
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