ON GENERALIZATIONS OF INJECTIVITY
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ABSTRACT. A ring R is called right GP-injective if for every nonzero element a in R, there exists a positive integer n
such that a™ # 0 and any right R-homomorphism of a™ R into R can be extended to one of R into R. A ring R is called
right FSG if every finitely generated cofaithful right R-module is a generator in Mod-R. In this paper, we give some
characterizations of PF rings, QF rings via GP-injective rings, FSG rings.

1. INTRODUCTION

Throughout this paper, R is an associative ring with identity 1 # 0 and all modules considered are unitary
modules. We write Mg (resp. rM) to denote that M is a right (resp. left) R-module. The category of right
(resp. left) R-module is denoted by Mod-R (resp. R-Mod). Unless otherwise mentioned, by a module we will
mean a right R-module.

We recall some concepts and notations will be used in this paper. Let M be an R-module, we denote the Jacob-
son radical of M (resp. injective envelope, singular submodule and socle) of M by Rad(M) (resp. E(M), Z(M)
and Soc(M)). When M = Rp, we write Rad(Rgr) = J (= Rad(gR)). If A is a submodule of M (resp. proper
submodule), we denote by A < M (resp. A < M). Moreover, we write A <° M to denote that A is an essential
submodule of M. The right and left annihilators of a subset X of a ring R are denoted by r(X) and I(X),
respectively.
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A module M is called uniform if M # 0 and every non-zero submodule of M is essential in M. M has finite
Goldie dimension n (finite uniform dimension) if there is a direct sum of n uniform submodules of M which is
essential in M, or equivalently, there is a monomorphism from a direct sum of n uniform submodules of M to M
such that its image is essential in M. We write udim(M) = n and call udim(M) to be finite Goldie dimension of
M.

A ring R is called quasi-Frobenius (briefly, QF ring) if it is left and right artinian and left and right self-injective;
or equivalently, if R has the ACC on right or left annihilators and is right or left self-injective. A ring R is called
right pseudo-Frobenius (briefly, right PF) ring if every faithful right R-module is a generator; or equivalently, R is
a semiperfect, right self-injective ring with essential right socle. A ring R is called right finitely pseudo-Frobenius
(briefly, right FPF) ring if every finitely generated faithful right R-module is a generator.

We will consider a generalization of the concept of injectivity. Let M be an R-module and I a right ideal of
R. We take an R-homomorphism f of I to M. Consider the following diagram.

0 1 R

M

If there exists h € Hom g(R, M) for every principal (minimal, resp.) right ideal I in R and any f €
Hom r(I, M), then we say that M is P-injective (mininjective, resp.); or equivalently, f = m- is left multi-
plication by some element m of M. If for every 0 # a € R, there exists a positive integer n such that a™ # 0
and any right R-homomorphism of a¢"™R into M can be extended to one of R into M, then M is called right
GP-injective. A ring R is called right mininjective (resp. P-injective, GP-injective) if Rp is mininjective (resp.
P-injective, GP-injective). A ring R is called a right minannihilator ring if every minimal right ideal H of R is an
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annihilator, equivalently, if rl(H) = H and called a left minsymmetric ring if Rk is simple, k¥ € R, implies that
kR is simple. For example, any left mininjective ring is left minsymmetric.

For the concepts and results are not shown in this paper, we will refer to Anderson and Fuller [1], Dung,
Huynh, Smith and Wisbauer [3], Faith [4] and Wisbauer [19].

2.  GP-INJECTIVE RINGS WITH ESSENTIAL SOCLES

Proposition 2.1. The following conditions are equivalent for a right R-module M.
(i) M is GP-injective.
(ii) For each element 0 # a € R, there exists n € N* with a™ # 0, Iy (rr(a™)) = Ma™.

Proof. By [15, Lemma 1.3]. O

A ring R is called right generalized pseudo-Frobenius ring (briefly, GPF-ring) if R is semiperfect, right P-
injective and Soc (Rp) is essential as a right ideal. For convenience, we call a ring R SGPE-ring if R is semiperfect,
right G P-injective and Soc (Rg) is essential as a right ideal. The following properties of a SGPE ring can be
extended from properties of a GPF ring in [12], [13]. Some following properties were obtained in [2].

Proposition 2.2. Let R be a right SGPE ring. Then the following statements hold:

(i) R is right and left Kasch.
(ii) Soc(Rg) = Soc(rR) = S is essential in both Rr and grR.
(iil) R s left finitely cogenerated.
(iv) I(S)=Jd=7r(S) and I(J) =S =r(J).
(v) J=2Z(Rr)=Z(rR).
vi) Soc(Re) = Se is simple and essential in Re for every local idempotent e € R.
(vii) Soc (eR) is homogeneous and essential in eR for every local idempotent e € R.
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(viii) The map K — r(K) and T — I(T) are mutually inverse lattice isomorphisms between the simple left ideals

K and the mazximal right ideals T'.
(ix) If{e1,...,en} is a basic set of local idempotents, there exists elements ki, ...,k, in R and a permutation

o of {1,2,...,n} such that the following hold for alli=1,2,...,n:
(a) k;R C e;R and Rk; C Reg;.
(b) ]ﬁR = eo'iR/eo'iJ and Rk‘l = Rez/,]el
(¢) {k1R,...,kyR} and {Rkx,..., Rk,} are complete sets of distinct representatives of the simple right
and left R-modules, respectively.
(d) Soc(Rey;) = Rk; = Seqs; = Re;/Je; is simple and essential in Rey; for each i.
(e) Soc(e;R) # 0 is homogeneous and essential in e; R with each simple submodule isomorphic to
egiR/egiJ-
The following lemma is useful to prove the main result of this section.
Lemma 2.3. [16, Theorem 8], Let R be a right artinian ring. The following conditions are equivalent:
(i) R is a quasi-Frobenius ring.
(ii) (a) R is a QF-2 ring.
(b) Soc(RR) < Soc (rR).
(i) (a) Soc(eR) is a minimal right ideal and Soc (Re) is a minimal left ideal for every local idempotent e € R.
(b) Soc(Rgr) < Soc(rR).
Now we give some characterizations of a QF-ring via GP-injective rings.

Theorem 2.4. The following conditions are equivalent for a ring R:

(i) R is a quasi-Frobenius ring.

(i1) R is a right minannihilator, right GP-injective ring and R has ACC on right annihilators.
(iil) R is a left mininjective, right GP-injective ring and R has ACC on right annihilators.
(iv) R is a left minsymmetric, right GP-injective ring and R has ACC on right annihilators.
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(v) R is a right GP-injective ring, Soc (eR) is simple for every local e € R and R has ACC on right annihilators.

Proof. (i) = (ii) is clear.

(ii) = (iii)). We note that, if R is a right GP-injective ring satisfying ACC on right annihilators then R is
left artinian by [2, Theorem 3.7]. Then R is a right SGPE ring. It follows from Propostion 2.2 that Soc (Rg) =
Soc (gR) = S is essential in both Rr and gR. By [14, Corollary 2.5], R is a left mininjective ring.

(iii) = (iv). Since R is left mininjective, R is left minsymmetric by [14, Theorem 1.14].

(iv) = (v). Same argument of (ii) = (iii), the ring R is left artinian, right and left Kasch and Soc (Re) is simple
for every local idempotent e € R. Since R is minsymmetric, Soc (eR) is also simple for every local idempotent
e € R.

(v) = (i). Same argument of (ii) = (iii), the ring R is left artinian. So R is a right SGPE ring and then by
Proposition 2.2, Soc (Rr) = Soc (rR) = S, Soc (Re) is simple for every local idempotent e € R. By assumption,
Soc (eR) is simple for every local idempotent e € R. Applying Lemma 2.3, R is QF. O

3. FSG, GP-INJECTIVE RINGS AND THE KASCH CONDITION

A ring R is called right finitely subgenerator generator (briefly, right FSG) if every finitely generated cofaithfull
right R-module is a generator. FSG rings was introduced and investigated in [18]. It is well known that a ring
R is right self-injective if and only if every cofaithful right R-module is a gennerator and a cofaithful module
is faithful. Thus, right FSG ring is a generalization of both right FPF ring and right self-injective ring. For
example, the ring of intergers Z is FSG and is not self-injective. Let D be a division ring (e.g. D = R) and
S = End p(V), where V is an infinite dimensional vector space over D (e.g. V = R(™)). Then S is right FSG
because of self-injectivity of S. Now, let R = Z & S. Then R is a right FSG ring which is neither self-injective
nor FPF.

Lemma 3.1. [18, Corollary 5.10] For a local ring R, the following conditions are equivalent:
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(i) R is right FSG ring such that its Jacobson radical consists of zero divisors.
(ii) R is a right self-injective ring.

Lemma 3.2. [18, Theorem 5.8] Any semiperfect right FSG ring with nil Jacobson radical is right self-injective.

Note 3.3. Let R be a semiperfect ring, and let {eq, ..., e,} be a set of orthogonal primitive idempotents of R.
Then Rr = e1R® - - - ® e, R. Renumber idempotents if necessary so that e; R/e1J, ..., e;R/e;J (t < n) constitute
the isomorphism classes of simple right R-module. Thus, every simple right R-module is isomorphic to some
e;R/e;J with i < t. The right ideal B =e; R® - -- @ e R is called the basic module of R, eg = €1 + - - -+ €; is then
called the basic idempotent. We will keep the above notations up to the end of this paper.

Proposition 3.4. Let R be a local ring. Then the following conditions are equivalent:

(i) R is right self-injective.

(ii) R is right P-injective, right FSG.

Proof. (i) = (ii) is clear.

(ii) = (i). Let R be a right P-injective, right FSG ring. We will prove that for every x of R, r(x) = 0 if and
only if there exists y of R such that xy = 1 (or yz = 1 because a local ring is directly finite). Let 2 be an element
of R such that r(z) = 0, then r(Rz) = 0. It follows that [r(Rz) = R. However R is a right P-injective ring,
Ir(Rz) = Rz, hence Rx = R. Thus there exists y of R such that yx = 1.

Conversely, let 2 € R such that there exists y of R satisfying zy = 1 and hence yz = 1. If z € r(x), then zz
= 0 and yzz = 0 hence z = 0. Thus r(x) = 0.

This establishes the previous claim.

Now, since R is a local ring, the Jacobson radical J of R consists of x such that x is not invertible. Thus J
consists of zero divisors.

By Lemma 3.1, R is a right self-injective ring. ]

Proposition 3.5. The following conditions are equivalent for a ring R:
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(i) R is a QF ring.

(ii) R is a right GP-injective, right FSG ring such that R has ACC on right annihilators.

(iii) R is a semiperfect right GP-injective, right FSG ring such that R/ Soc (Rg) is right Goldie.
(iv) R is a semiperfect right GP-injective, right FSG ring such that R/ Soc (RR) is left Goldie.

Proof. (i) = (ii), (iil) and (iv) are easy.
(ii) = (i). Assume (ii). Then R is left artinian by [2, Theorem 3.7]. Then J(R) is nilpotent. By Lemma 3.2,
R is right self-injective.

(iii) = (i). By [15, Corollary 2.11], J(R) is nilpotent. By Lemma 3.2, R is right self-injective. Hence R is QF
by [5, Theorem 4.1].

(iv) = (i). Same argument of (iii) = (i). O
Motivated by [21, Theorem 1], we obtain the following result.

Theorem 3.6. Let R be a semiperfect, right FSG ring. Then R is right self-injective if and only if J(R) =
Z(RR).

Proof. Suppose J(R) = Z(Rg) and let {ey,...,e,} be a set of orthogonal primitive idempotents of R and the
basic idempotent eg = e; + - - - 4+ e;. To prove R is right self-injective, it is suffice to show that e; R is injective for
every 1 =1,...,1.

Let By = E(e1R) be an injective hull of e; R and y be any element of E;, we prove that y € e; R and e1 R is
then injective. Proofs of injectivity of e;R (j = 2,...,t) are similar.

By [18, Theorem 5.4], e; R is uniform. Hence (yR + e; R) is uniform. Let

M:(yR+61R)@€2R@@€tR

is a finitely generated right R-module. Since Ry is always embedded in M! (I = n —t¢+ 1), hence M is a finitely
generated cofaithfull right R-module. Since R is right FSG, hence M is a generator. Thus M Ze;R@---$e, RS
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Xp for some module Xg. By Krull-Schmidt Theorem, since Endg(e1R) is local and e;R 2 e1R (j =2,...,¢t), it

follows that (yR+e1R) = e; R ® Tg for some module Tx. Since yR + e; R is uniform, yR + e; R = e; R and hence

yR + e1 R is a local module. Let o be an R-isomorphism between yR + e; R and e R. If e; R # yR + e1 R, then
etR < J(yR+ e1R) and o(erR) < J(e1R) = e1J(R) = e1Z(RR) < Z(RR).

Now r(e1) = r(o(e1)) which is right essential in Rp, a contradiction. Thus y € e; R. This complete the proof. [

Corollary 3.7. Let R be a semiperfect ring. Then the following conditions are equivalent:
(i) R is QF.

(ii) R is a right FSG ring, J(R) = Z(Rg) and R has ACC on right or left annihilators.

(iii) R is a right FSG, right P-ring and R has ACC on right or left annihilators.

(iv) R is a right FSG ring, J(R) = Z(Rg) and R has DCC on essential right or left ideals.
(v) R is a right FSG, right P-ring and R has DCC on essential right or left ideals.

(vi) R is a right FSG ring, J(R) = Z(Rg) and R has ACC on essential right or left ideals.

(vii) R is a right FSG, right P-ring and R has ACC on essential right or left ideals.

(viii) R is a right FSG ring, J(R) = Z(Rgr) and R/ Soc(RR) is right Goldie.

(ix) R is a right FSG, right P-ring and R/ Soc(Rpg) is right Goldie.

(x) R is a right FSG ring, J(R) = Z(Rr) and R/ Soc(Rpg) is left Goldie.

(xi) R is a right FSG, right P-ring and R/ Soc(Rpg) is left Goldie.

Proof. By Proposition 3.4, Theorem 3.6 and [5, Theorem 4.1]. |
The following result extends [6, Lemma 5.2]

Theorem 3.8. The following conditions are equivalent for a ring R:
(i) R is right PF.

(ii) R is a semiperfect, right FPF ring with essential right socle.

(iil) R is a semiperfect, right FSG ring with essential right socle.
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Proof. (i) = (iii) is clear and (ii) < (i) is [6, Lemma 5.2].

(iii) = (ii). Let {e1,...,en} be a set of orthogonal primitive idempotents of R. Since R is semiperfect right
FSG, by [18, Theorem 5.4], R = @I ,e; R, each e; R is uniform. From this and the fact that R has essential right
socle, it follows that Soc(Rpg) is finitely generated. Now let Mg be any finitely generated faithful right R-module,
by the Beachy’s Theorem (see [4, Theorem 19.13A], My, is cofaithful. So My, is a generator, and R is then a right
FPF ring. 0

Corollary 3.9. [18, Theorem 5.11] For a left perfect ring R, the following conditions are equivalent:
(i) R is right PF.

(ii) R is right FPF.

(iii) R is right FSG.

Proof. Given (iii). Let {ej,...,e,} be a set of orthogonal primitive idempotents of R, by [18, Theorem 5.4],
R =@ ,e;R, each e;R is uniform. By the Bass’s Theorem (see [4, 18.27.3]), it implies that R has essential right
socle, and (i) follows from Theorem 3.8. O

The following result extends [18, Corollary 5.13].
Corollary 3.10. A right PF ring R is left PF if and only if R is left FSG.

Proof. Since R is right PF ring, it’s right SGPE, and hence Soc(gR) <° gR by Proposition 2.2. Thus R is
left PF by Theorem 3.8. |

The following result extends [5, Corollary 2.3 and 2.7].
Corollary 3.11. A left (or right) perfect, right and left FSG ring R is QF.

Proof. Since R is left perfect, right FSG, it follows from Corollary 3.9 that R is right PF. In addition, since R
is left FSG, R is PF by Corollary 3.10. Thus R is QF by [5, Theorem 2.3] O
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The following result extends [10, Proposition 14].

Theorem 3.12. The following conditions are equivalent for a ring R:

(i) R is right PF.

(i1) R is a right SGPE, right FSG ring.
(iil) R is a semiperfect, right FSG ring, and satisfies Soc(Rgr) <¢ Soc(RRg).
(iv) R is a semiperfect, right FSG, left and right P-injective, left Kasch ring.
(v) R is a semiperfect, right FSG, left GP-injective, left Kasch ring.

Proof. (i) = (ii) =(iii), (iv) = (v) are clear.

(iii) = (i). By Theorem 3.8.

(i) = (iv). Given (i). Then all conditions in (iv) are satisfied immediately exception for R being left P-injective,
and it is satisfied by [12, Lemma 5.21].

(iv) = (iii). Since R is left GP-injective, left Kasch ring, it follows that Soc(Rr) <¢ Rg by [2, Theorem
2.3]. O

4. GOLDIE DIMENSION AND SOME APPLICATION TO FSG RINGS

Lemma 4.1. Let Ng < Mg be R-modules. Then:

(i) If M has finite Goldie dimension, then N has finite Golodie dimension and udim(N) < udim(M).

(ii) If N <°¢ M then M has finite Goldie dimension if and only if N has finite Goldie dimension, and in this
case udim(M) = udim(N).
Conversely, if M has finite Goldie dimension and udim(M) = udim(N), then N <¢ M.

Proof. (i) is easy, (ii) is a part of [3, 5.8]. O
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Lemma 4.2. Let R be a semiperfect, right FSG ring with set of orthogonal primitive idempotents {e1,...,en},
the basic idempotent eg = e1+---+e;. If R contain t non-isomorphic minimal right ideals, then udim(Soc(Rg)) =
n.

Proof. Note that, for every i = 1,...,n, Soc(e;R) is either simple or zero by [18, Theorem 5.4].

Firstly, we prove that Soc(e;R) is simple for every 1 < ¢ < ¢.

Assume on the contrary. Then there exists a positive integer i, 1 < ¢ < ¢, such that Soc(e;R) = 0. On the
other hand, for every k, t +1 < k < n. Since exR = ¢;R for some j € {1,...,t}, hence Soc(exR) = Soc(e;R).
This contradicts to the fact that R contain ¢ non-isomorphic minimal right ideals.

By the same argument, it implies that Soc(exR) is simple for every k, t+1 < k < n. Thus udim(Soc(Rg)) = n.

O

Lemma 4.3. Let R be a semiperfect, left mininjective ring. Then R is left Kasch if and only if eSoc(rR) is
simple for every local idempotent e in R.

Proof. Tt is straightforward from [12, Theorem 3.2]. O

Theorem 4.4. The following conditions are equivalent for a ring R:
(i) R is right PF.

(ii) R is a semiperfect, right FSG ring and Soc(Rg) <¢ Rg.

(iii) R is a semiperfect, right FSG, right Kasch ring.

(iv) R is a semiperfect, right FSG ring and Soc(Rg) <° gR.

(v) R is a semiperfect, right FSG, left Kasch, left mininjective ring.

Proof. Let {ej,...,en} be a set of orthogonal primitive idempotents and ey = e; + --- + e; is the basic
idempotent of R.
(i) = (iv), (v) by Theorem 3.12.
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(v) = (ii). Since R is a semiperfect, right FSG ring, each e; R is uniform, hence udim(Rg) = n > udim(Soc(RRg))
by Lemma 4.1. To prove Soc(Rgr) <° Rp, it’s suffice to show that udim(Soc(Rg)) = n. Indeed, since R is left
mininjective, Soc(grR) < Soc(Rpr) by [12, Theorem 2.21]. Since R is a semiperfect, left Kasch ring, e; Soc(rR)
is simple for every i = 1,...,n by Lemma 4.3. It follows that e; Soc(rR) # e; Soc(rR), (i # j) and hence
ei Soc(rR) NejSoc(rR) =0, (¢ # j). Then

udim(Soc(rR)) = udim((z ;) Soc(rR)) = n < udim(Soc(RR)).
i=1
Thus udim(Soc(Rg)) = n as desired.

(ii) = (i). By Theorem 3.8.

(iv) = (iii) By [12, Lemma 1.48].

(iii) = (ii). Since R is right Kasch, every simple right R-module isomorphic to a minimal right ideal of R.

Consider the following commutative diagram:

n

eiR/ei] < PlejR/e;J)

j=1
(*) Ji
N
Rp
in which j; is an embedding morphism and ¢; is a canonical embedding morphism for every ¢ € {1,...,n}.

From the fact that @?:1(ejR/ejJ ) contain ¢ non-isomorphic simple right R-module and the commutative
diagram (%), it follows that R contains ¢ non-isomorphic minimal right ideals. Thus udim Soc(Rr) = n by
Lemma 4.2 and hence Soc(Rg) <¢ Rr by Lemma 4.1. O
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Note. The conditions (ii), (iii) and (iv) of Theorem 4.4 are extensions of [6, Theorem 5.1]. Related to (v), we
have a question: Is a semiperfect right FSG, left Kasch ring necessarily right PF?

Corollary 4.5. The following conditions are equivalent for a ring R:

(i) R is PF.
(ii) R is a semiperfect, right and left FSG, right Kasch ring.
(iil) R is a semiperfect, right and left FSG, left Kasch ring.

Proof. (ii), (iii) = (i): By Theorem 4.4 and Corollary 3.10. O
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