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TIME-DELAYED PERONA-MALIK TYPE PROBLEMS

H. AMANN

Abstract. We propose time regularizations for ill posed evolution equations of the type of the Perona-Malik equation
of image processing, prove that they are well posed, and give numerical evidence for their superiority to the widely used
space regularizations.

1. Introduction

Nonlinear diffusion filters are used in image processing to simultaneously smoothen noisy pictures and enhance
sharp contrasts in brightness, This approach was initiated by the pioneering work of P. Perona and J. Malik [23].
These authors proposed a scale space technique based on the evolution problem{

∂tu−∇ ·
(
g(|∇u|2)∇u

)
= 0 on Ω× (0,∞),

u(·, 0) = u0 on Ω,
(1.1)

which has to be complemented by boundary conditions, no-flux conditions being the most appropriate choice.
Here u0 is the grey level distribution of a given (distorted) picture occupying a bounded domain Ω in Rn (with
n ≤ 3 in most applications) and boundary Γ. For increasing values of t the functions u(·, t) are interpreted as
successively restored and coarsened versions of u0. The diffusion coefficient g(|∇u|2) is designed to be very small
near ‘edge points’, that is, points at which the spacial gradient ∇u is large, whereas it is relatively big at points
in whose neighborhood u varies only slightly. Thus it is to be expected that small disturbances, represented by
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small values of |∇u|, are smoothed out since in the vicinity of such a point (1.1) is essentially a heat equation
with strong smoothing effects. On the other hand, g(|∇u|2) is almost zero near edge points so that the diffusion
flux is practically stopped and sharp edges are preserved. Typical examples for an ‘edge stopping function’ g,
which, in fact, have been used by Perona and Malik, are

g(s) = 1/(1 + s), g(s) = e−s, s ≥ 0.(1.2)

Parameter dependent versions defined by gλ(s) := g(s/λ) are also employed, λ > 0 being a measure for the
steepness of an edge to be preserved. Striking numerical experiments show (visually) that the desired effect is
obtained: for small positive t the function u(·, t) is a sharper image than u0, and sharp edges are preserved rather
well for large t.

Unfortunately, with the choice (1.2) for the edge stopping function, the Perona-Malik problem (1.1) is ill posed,
in general. To see this, suppose that S := S(t) is a regular level set of an appropriately smooth solution u(·, t) at
some time instant t ≥ 0. Then, near S,

∇ ·
(
g(|∇u|2)∇u

)
= g(|∇u|2)∆u + 2g′(|∇u|2)D2u∇u · ∇u

= g(|∇u|2)∆Su + h(|∇u|2)∂2
ξu,

(1.3)

where D2u is the Hessian of u, ∆S is the Laplace-Beltrami operator of S, the vector field ξ := −∇u/|∇u| gives
the direction of steepest descent of u, and

h(s) := g(s) + 2sg′(s), s ≥ 0.(1.4)

Note that h(0) = 1 and h changes sign precisely once, namely at s = 1. Thus if |∇u(x, t)| > 1, then (1.1) is not
parabolic near (x, t) but gives rise to a backward heat flow perpendicular to S, although it is a forward, hence
smoothing, heat flow along S itself. Backward heat flows are well known to be highly unstable and smooth initial
data may lead to singularities in arbitrarily short time. Even if u0 is twice differentiable, then (1.1) may not have
any weak solution al all [19].
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Despite of this discouraging analytical facts, Perona and Malik, and many others, found that numerical ap-
proximations of (1.1) do not exhibit significant instabilities. Even better: if computations are carried on for a
sufficiently large time interval, the approximations seem to produce piecewise constant solutions giving a simplified
image of u0 preserving sharp boundaries of large brightness variation.

This numerical evidence triggered many attempts to replace (1.1) by nearby versions which, on the one hand
side, admit solid analytical foundations in terms of existence and uniqueness theorems, and, on the other hand
side, possess essentially the same numerical properties as (1.1), at least for small t > 0.

The first, and widely used approach is due to Catté, Lions, Morel, and Coll [9]. They employ a space
regularization by replacing ∇u in the argument of g by ∇uσ, where uσ := Gσ ? ũ, with ? denoting convolution
with respect to the space variables, Gσ is the Gaussian with variance σ > 0, and ũ is an appropriate extension
of u over Rn (by zero, for example). In [9] it is shown that the regularized Perona-Malik problem

∂tu−∇ ·
(
g(|∇uσ|2)∇u

)
= 0 in Ω× (0,∞),

∂νu = 0 on Γ× (0,∞),

u(·, 0) = u0 on Ω

(1.5)

possesses for each u0 ∈ L2 := L2(Ω) a unique global weak solution satisfying

u ∈ C ([0, T ], L2) ∩ L2

(
(0, T ),H1

)
for every T > 0. (This solution is more regular on Ω× (0,∞), but this is of no importance for our purposes.
Thus we do not give details, neither here nor in similar situations.) It depends Lipschitz continuously on u0.
Furthermore,

essmin u0 ≤ u(·, t) ≤ essmaxu0, t ≥ 0,(1.6)

and
u(·, t) → −

∫
Ω

u0 dx :=
1
|Ω|

∫
Ω

u0 dx(1.7)
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exponentially fast in L2 (in fact, in Lp for 1 < p < ∞) as t →∞ (cf. [28, Section 2.4]). Whereas (1.6) is a
desirable feature in image processing, (1.7) is not since it means that, in the long run, one obtains a ‘picture’
being uniformly grey and thus containing no information at all. Variants of (1.5) have been proposed and analyzed
by many authors (e.g., [12], [28], [15], [16], and the references therein).

At the same time Alvarez, Lions, and Morel [2] investigated the degenerate diffusion equation

∂tu− g(|∇uσ|) |∇u|div
(
∇u

|∇u|

)
= 0.(1.8)

Note that
|∇u|div

(
∇u

|∇u|

)
= ∆u− ∇u

|∇u|
·D2u

∇u

|∇u|
= ∆Su.(1.9)

Thus in (1.8) there is only diffusion along S and no diffusion perpendicular to it. By comparing (1.3) to (1.9) the
relationship between (1.5) and (1.8) is obvious. The regularized edge stopping function g(|∇uσ|) is introduced
in (1.8) in order to prevent shrinking of the level sets, known to occur for the standard mean curvature flow
(obtained for g = 1). It is shown in [2] that (1.8) possesses a unique global viscosity solution depending Lipschitz
continuously on u0 and satisfying (1.6). For various variants and modifications of (1.8) we refer to [1], [24], [26],
and the references therein.

M. Nitzberg and T. Shiota [21] were the first to propose a space and time regularized version of (1.1). They
report, in particular, numerical experiments for the system{

∂tu−∇ · (g(v)∇u) = 0,

∂tv + ωv = ωGσ ? |∇u|2,
(1.10)

where ω > 0 is a (relaxation) parameter. Note that the second equation implies that

v(·, t) = e−ωtv0 + ω

∫ t

0

e−ω(t−τ)Gσ ? |∇u(·, τ)|2 dτ, t ≥ 0.
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Set ϑω(t) := ωe−ωt for t ≥ 0 and note that
∫∞
0

ϑω(t) dt = 1. Denoting by ∗ convolution with respect to t ≥ 0,
it follows that

v =
1
ω

ϑωv0 + ϑω ∗ (Gσ ? |∇u|2).

Nitzberg and Shiota consider the limiting case σ = 0 also, where G0 := δ0, the Dirac measure supported in zero.
In this case, setting v0 = 0 as well, (1.10) reduces to

∂tu−∇ ·
(
g(ϑω ∗ |∇u|2)∇u

)
= 0.(1.11)

Thus in this case (1.10) is equivalent to a delay-differential equation obtained from (1.1) by replacing |∇u|2 by
its weighted average ϑω ∗ |∇u|2 which, at time t > 0, takes account of the whole history of |∇u|2 back to t = 0.
There is no mathematical justification of (1.10) in [21].

A variant of (1.10) of the form {
∂tu−∇ · (L∇u) = 0,

∂tL + L = F (∇uσ),
(1.12)

with F a positive semidefinite n× n matrix valued function has been studied by Cottet and El Ayyadi [11].
Imposing the strong restriction that F be uniformly bounded in the C1 norm, the global well posedness of (1.12)
is shown in the sense that

u ∈ L2

(
(0, T ),H1

)
∩ L∞ ((0, T ), L∞) , T > 0.

It is essential that σ > 0.
Y. Chen and P. Bose [10] consider nonlinear diffusion filters based on ∂tu− g(v) |∇u|div

(
∇u

|∇u|

)
−∇g(v) · ∇u = λ |∇u| (u− u0),

∂tv + ωv = ω |∇uσ|.
(1.13)
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They prove that (1.13), complemented by no-flux boundary conditions, possesses a unique global viscosity solution
depending Lipschitz continuously on u0 and satisfying (1.6). Again the assumption that σ > 0 is crucial.

The space regularizations ∇uσ and Gσ ? |∇u|2, employed to replace the ill posed Perona-Malik model by a
mathematical sound one, produce an undesirable smoothing of sharp edges which, in principle, are supposed to be
enhanced by the filters. This is due to the fact that ∇uσ = Gσ ?∇u and Gσ ∗ |∇u|2 are weighted averages of ∇u
and |∇u|2, respectively. Even if a small value of σ is chosen so that most of the mass of Gσ is concentrated near 0,
for the evaluation of the convolution integral Gσ ?∇u the behavior of ∇u in a full neighborhood of a given point x
is taken into account. Thus if x is a point on a sharp edge, where |∇u| varies relatively abruptly from small size
on one side of the edge to large values on the other side, this variation is diminished by replacing |∇u|2 by |∇uσ|2.
Thus, on the average, the diffusion coefficient g(|∇uσ|2) is bigger than g(|∇u|2), the one of the Perona-Malik
model, resulting in faster diffusion, hence stronger smoothing.

It is clear that this smoothing effect has to occur also in numerical approximations based on space regularized
models. Indeed, any discretization of the convolution term ∇uσ has to be a weighted average of (the corresponding
discretization of) ∇u. Thus large variations of ∇u are leveled out in the discrete case as well. This is illustrated
by numerical experiments where a noisy picture of a cameraman (Figures 1 and 2) has been processed by a
Catté-Lions-Morel-Coll (henceforth abbreviated by CLMC) filter (1.5) (see Figures 3 and 4).

In Figures 2 and 4 three-dimensional plots of the corresponding grey level distributions u(·, 0) and u(·, 0.05)
are shown, where the value 1 of u corresponds to white and 0 to black. The smoothing of the edges is particulary
well seen in the center part of Figure 4. (We refer to Section 2 for details on the numerical implementation.) For
the purpose of illustration we have chosen a relatively large value of σ. It is clear that the smoothing effect is less
pronounced for smaller values of σ. But due to the very nature of weighted space averaging, it cannot be avoided
completely (see Section 2 below).

As explained above, similar effects have to occur necessarily in the modified mean curvature flow (1.8). There
the strong smoothing effect of the usual mean curvature flow is further enhanced by the space convolution
smoothing ∇uσ employed in the edge stopping function.
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Fig. 1 Fig. 2

Fig. 3 Fig. 4
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For these reasons it is desirable to avoid spatial smoothing at all and look for other regularizations of the
Perona-Malik equations. A first step in this direction has been made by A. Belahmidi [7] and Belahmidi and
Chambolle [8] who were concerned with the Nitzberg-Shiota model (1.10) in the limit case σ = 0. More precisely,
these authors study the system {

∂tu−∇ · (g(v)∇u) = 0,

∂tv + v = F (|∇u|2)
(1.14)

with no-flux boundary conditions. In [7] it is shown that, given α ∈ (0, 1) and any initial datum

(u0, v0) ∈ C2+α(Ω)× C1+α(Ω), v0 ≥ 0,

there exists a unique maximal solution (u, v) of (1.14) such that u, ∇u, D2u, ut, v, and∇v are α Hölder continuous
with respect to the standard parabolic metric of Ω× [0, Tmax). Of course, Ω has to be of class C2+α and F is
supposed to satisfy F (0) = 0 and to belong to C3-(R+, R+), where, in general, C(k+1)- is the space of all k times
continuously differentiable functions whose k-th derivatives are (locally) Lipschitz continuous. Thus F (s) := s is
admissible for s ≥ 0, in which case (1.14) reduces to the Nitzberg-Shiota model (1.10) with σ = 0. In [8] it is
shown that (1.14) has a global weak solution (there is no uniqueness proof)

(u, v) ∈
(
H1(QT ) ∩ L∞(QT )

)2
, T > 0,

where QT := Ω× (0, T ), given the strong hypotheses that F be uniformly bounded and n = 2 (which is essential
for the proof and rules out the Nitzberg-Shiota model).

Numerical experiments reported in [7], [8], as well as in [21] indicate that sharp edges are well preserved over
rather long time intervals. The same is even more true for numerical experiments with the original Perona-Malik
equations.

Why does the Perona-Malik model – though mathematically ill posed – produce extremely convincing numerical
results with an ‘unreasonable effectiveness’ [17]? A hint for the understanding of this fact comes from the
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numerical implementations of (1.1). For this we write (1.1) formally as a quasilinear evolution equation

u̇ + A(u)u = 0 in (0,∞), u(0) = u0.(1.15)

In all numerical calculations we are aware of, an implicit Euler scheme (of step-size δ) is used to approximate the
time derivative. Setting uk := u(kδ) for k ∈ N, we end up with a semidiscrete scheme of the form

uk+1 − uk + δA(uk)uk+1 = 0, k ∈ N.(1.16)

The crucial observation is now the fact that, instead of the natural expression A(uk+1)uk+1, the linearized
version A(uk)uk+1 is used. In other words, a memory effect of the nonlinear term is built into the time discretized
equations. Since, due to the ill posedness of (1.1), it cannot be expected that a limiting argument, as δ → 0, will
produce a solution smooth enough to write down (1.1) in its natural weak form, it may as well be the case that
(1.16) corresponds to a (non linearized) time discretization of a time-delayed Perona-Malik problem

∂tu−∇ ·
(
g(θ ∗ |∇u|2)∇u

)
= 0 on Ω× (0,∞),

∂νu = 0 on Γ× (0,∞),

u = u0 on Ω× (−S, 0].

(1.17)

In fact, set S := 2δ and θ := χ(0,S)/S, where χ(0,S) is the characteristic function of the interval (0, S). Then

θ ∗ |∇u|2 (t) = −
∫ t

t−S

|∇u(τ)|2 dτ , t ≥ 0.(1.18)

Thus, by discretizing this integral by the midpoint rule, we see that

θ ∗ |∇u|2 ((k + 1)δ) ∼ |∇uk|2,

so that we arrive at (1.16) in this case also. In other words, by looking at (1.16), it cannot be decided whether this
system results from a discretization of the local equation (1.15) or of the time-delayed problem.
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It should be observed that in the convolution integral (1.18) no space averaging occurs. At a given point (x, t)
only values of |∇u|2 at earlier time instances τ ∈ [t− T, t], but at the same space point x, are taken into account.
Thus it is to be expected that, as times increases, the diffusion coefficient g(θ ∗ |∇u|2) will vary only slowly due
to the diffusive motion of u. This will produce only little smoothing of sharp edges, much less than the space
averaging process. It is also clear that the diffusive effects on the ‘edge stopping function’ g can be made small
if the support of θ is small and most weight is put near zero, so that θ is a close approximation of the Dirac
measure δ0 (see Section 2 for numerical experiments).

By these considerations we are led to study time-delayed Perona-Malik equations of the form (1.17). In order
to present our main result we first introduce some notation. We set JT := [0, T ) for 0 < T ≤ ∞ and

H2
q,∂ν

:= {u ∈ H2
q ; ∂νu = 0 }, 1 < q < ∞,

where H2
q := H2

q (Ω), etc. Furthermore,
H(QT ) := H2,1

q,p,∂ν
(QT ) := Lp(JT ,H2

q,∂ν
) ∩H1

p

(
J̊T , Lq

)
, p, q ∈ (1,∞).

Then we assume that {
Ω is of class C2;

2/p + n/q < 1.
(1.19)

It follows (see (3.4)) that

H(QT ) ↪→ C
(
JT , C1(Ω)

)
, 0 < T < ∞.(1.20)

Theorem 1.1. Let assumption (1.19) be satisfied and suppose that g belongs to C2- (R+, (0,∞)). Also suppose
that θ ∈ Ls(JS , R+) for some s > 1 and 0 < S < ∞, and that u0 ∈ H2

q,∂ν
. Then:

(i) There exists a maximal T ∗ ∈ (0,∞] such that (1.17) possesses a unique solution u∗ on JT∗ such that
u ∈ H(QT ) for 0 < T < T ∗.

(ii) If T ∗ < ∞, then u∗ /∈ H(QT∗).
(iii) If supp(θ) ⊂ [σ, S] for some σ ∈ (0, S), then T ∗ = ∞.
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(iv) Fix T ∈ (0, T ∗) and let (u0
j , θj , gj) be a sequence in

H2
q,∂ν

× Ls(JS , R+)× C2-
(
R+, (0,∞)

)
(1.21)

converging towards (u0, θ, g). Denote by u∗j the unique maximal solution of (1.17) with (u0, θ, g) replaced
by (u0

j , θj , gj), and let T ∗j be the corresponding maximal existence time. Then T ∗j > T for all sufficiently
large j, and u∗j → u∗ in H(QT ) as j →∞.

(v) For 0 ≤ t < T ∗,
minu0 ≤ u∗(·, t) ≤ max u0.

(vi) For 0 ≤ t < T ∗,

−
∫

Ω

u∗(x, t) dx = −
∫

Ω

u0(x) dx.

(vii) For 0 ≤ t < T ∗ and 2 ≤ s ≤ ∞,∥∥∥u∗(·, t)− −
∫

Ω

u0 dx
∥∥∥

Ls

≤
∥∥∥u0 − −

∫
Ω

u0 dx
∥∥∥

Ls

.

The proof of this theorem is given in Section 5.

Remarks 1.2. (a) Of course, (1.21) is endowed with the obvious topology such that convergence of gj

towards g means that
‖gj − g‖L∞(B) + ‖∇gj −∇g‖L∞(B) + [∇gj −∇g]B → 0

for every bounded interval B in R+, where [·]B is the Lipschitz seminorm on B.
(b) It follows from (ii) and (v) that

lim sup
t↑T∗

(
‖∇u∗(·, t)‖Lq

+ ‖D2u∗(·, t)‖Lq
+ ‖u̇∗(·, t)‖Lq

)
= ∞

if T ∗ < ∞, whereas u∗ stays uniformly bounded. We expect that, in fact, the gradient of u∗ blows up if T ∗ < ∞,
at least if (1.17) is a close approximation of (1.1), that is, if θ is a good approximation of the Dirac measure δ0.
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This conjecture is supported by a result of Kawohl and Kutev [18] who showed, in the one-dimensional case, that
there are initial values satisfying |∇u0(x)| > 1 on a sufficiently large subset of Ω such that (1.1) has no global
weak C1 solution.

(c) For each T ∈ (0, T ∗) there exists α = α(T ) > 0 such that∥∥∥u∗(·, t)− −
∫

Ω

u0 dx
∥∥∥

L2

≤ e−αt
∥∥∥u0 − −

∫
Ω

u0 dx
∥∥∥

L2

, 0 ≤ t ≤ T.

If

g (θ ∗ |∇u∗| (t)) ≥ β > 0, 0 ≤ t < T ∗,(1.22)

then α can be chosen to be independent of T ∈ (0, T ∗). Thus if T ∗ = ∞ and (1.22) holds, which is true, in
particular, if g(ξ) ≥ β > 0 for ξ ∈ R+, then u∗(·, t) converges to the constant value −

∫
Ω

u0 dx as t →∞. Of course,
this is an undesirable case for image processing since it means, as noted earlier, that in the long run a uniformly
grey image is obtained. �

2. Numerical experiments

To illustrate the potential power of the proposed time-delayed approach we describe numerical experiments
carried out with the noisy image of the cameraman (Figures 1 and 2; the rectangular shape of the image should be
considered as an approximation of a smooth domain, of course. Similarly, the smooth initial values of Theorem 1.1
are to be considered as being approximations for piece-wise constant functions. The problem of error estimates
is not addressed in this paper). In all these calculations a continuous piecewise affine finite element method has
been applied for space discretization. For this each side of the picture has been subdivided into 172 equal intervals
and the resulting rectangular net has been triangulated by the first diagonal.

In Figures 3 and 4 time-step δ = 10−2 and variance σ = 0.361 have been used and k = 5 time-steps were
carried out, applying, as usual, iteration method (1.16). Following [9], the convolution uσ = Gσ ? u has been
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approximated by a finite element solution of the heat equation at time σ2/2 with initial value ũ(·, t), where ũ is
the extension of u(·, t) by reflection. Since t = k · δ = 5 · 10−2 ∼ σ2/2, the criterion suggested in [9] for relating σ
and k is satisfied.

We repeat that the relatively large value of σ is chosen for demonstrating clearly the smoothing effect of space
convolution. Of course, in concrete situations a smaller σ is appropriate (e.g., [20], [28]). Below (see Fig. 13) we
use a much smaller, more realistic value for σ in order to compare the CLMC space regularization method with
the proposed time regularization technique.

For the choice of θ in the time-delayed method we introduced, besides of the time-step δ, a parameter α ≥ 0
and set

θ(t) := θα,δ(t) := ϑα(t/δ)/δ, 0 ≤ t ≤ δ,

where ϑα is defined by
ϑα(t) := 2(1 + α− αt)/(2 + α), 0 ≤ t ≤ 1.

Hence θ ∈ L∞(0, δ), satisfies θ ≥ 0 and
∫

θ dt = 1, and approaches the Dirac distribution as δ → 0. With this
choice the convolution integral

θ ∗ |∇u|2(t) =
∫ t

t−δ

θ(t− τ) |∇u(τ)|2 dτ(2.1)

has been approximated by the one-step trapezoidal rule resulting in the weighted mean
(1 + α) |∇u(t)|2 + |∇u(t− δ)|2

2 + α
.(2.2)

All computations described below used time discretization δ = 10−3.
In Figures 5–10 we exhibit numerical results obtained by choosing α = 10 and carrying out k = 1 (in Figures

5 and 6), k = 2 (in Figures 7 and 8), and k = 50 (in Figures 9 and 10) iteration steps.
Since t = 50 · 10−3 = 5 · 10−2, Figures 9 and 10 can be compared to Figures 3 and 4. This comparison shows

clearly that the time-delayed approach preserves sharp edges much better than the space convolution technique.
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Fig. 5 Fig. 6

Fig. 7 Fig. 8
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Fig. 9 Fig. 10

To increase the value of α means to use
a better approximation of the Dirac dis-
tribution, thus to be closer to the original
Perona-Malik model. From (2.2) one sees
that a large value of α places a high weight
on the value of |∇u|2 at time t, the actual
level of computation, and only a very small
one on |∇u(t− δ)|2. Thus it is to be ex-
pected that, using a larger value of α, fewer
steps will lead to a sharp image. This is
seen by comparing Figures 6 and 11, where
in the latter the result of the computation
with α = 100 and k = 1 is plotted. Fig. 11

Figure 12 shows the numerical finding for the case α = 100 and k = 3.
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This should be compared to Figure 13 where the outcome CLMC method with k = 3 and σ = 0.00003162 is
depicted. The small value of σ has been chosen in order that ∇uσ be a good approximation of ∇u, so that the
model is close to the Perona-Malik system as well.

Figure 13 shows again the undesirable smoothing of the edges (in the center part of the figure) due to space
convolution. This is seen even better in Figure 14, where the one-dimensional section along the dark line in
Figure 15 has been plotted for α = 100 (‘time’) versus the CLMC model (‘space’), after k = 5 steps for each.

Fig. 12 Fig. 13

In Figure 16 the one-dimensional sections for α = 100 and k = 1 and 3 are given in order to illustrate the fact
that by our method the positions of the sharp edges are rather stable.
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Fig. 14 Fig. 15

Fig. 16
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Figure 17 illustrates the fact that higher values of α lead faster to sharper images than smaller ones. One-
dimensional sections are plotted for the values α = 0 and α = 100 with k = 1.

Fig. 17

In all the numerical computations described above, based on the time-delayed model, at each step k there has
to be solved a nonlinear discrete equation of the form

uk+1 + δM(uk+1, uk)uk+1 = uk(2.3)
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for uk+1 which is obtained by using (2.2) as an approximation for (2.1) and, in addition, a (finite element) space
discretization. In the reported calculations, (2.3) has been approximately solved by a standard Banach fixed point
iteration carrying out 3 iteration steps (by which the discrete `2 norm of the difference between the second and
the third approximation became smaller than 10−3).

Solving at each time-step k a nonlinear equation of the form (2.3) can be avoided if (2.2) is replaced by

(1 + α) |∇u(t− δ)|2 + α |∇u(t− 2δ)|2

2 + α
.(2.4)

This amounts to shifting θ by δ to the right, that is, by replacing θ by t 7→ θ(t− δ). In this case (2.3) has to be
replaced by the linear equation

uk+1 + δM(uk, uk−1)uk+1 = uk

for uk+1. Besides of simplifying the numerical computations, this method has the additional advantage that
Theorem 1.1 guarantees the solution of (1.17) to exist globally, since condition (iii) is now satisfied with σ := δ
and S := 2δ. However, it is to be expected that this method will not produce results of the same quality as the
one using (2.2) since the ‘past’ plays now a much more important role.

Indeed, this is illustrated by Figures 18–21, where we have chosen k = 1 (Figures 18 and 19) and k = 3 (Figures
20 and 21). Figures 18 and 20 have been computed by using (2.2), and Figures 19 and 21 by employing (2.4),
setting α = 100 in either case.
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Fig. 18 Fig. 19

Fig. 20 Fig. 21
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3. Preliminaries

Throughout this section we suppose that{
assumption (1.19) holds;

Γ = Γ0 ∪ Γ1 with Γ0 ∩ Γ1 = ∅ and Γ0 being open and closed in Γ.
(3.1)

Note that either Γ0 or Γ1 may be empty. We denote by χ the characteristic function of Γ1, by γ the trace operator,
and set B := χ∂ν + (1− χ)γ. Then we put

H2
q,B := { v ∈ H2

q ; Bv = 0 }.

We write I for an interval containing more than one point and set

H(Ω× I) := H2,1
q,p,B(Ω× I) := Lp(I,H2

q,B) ∩H1
p

(
I̊ , Lq

)
.

Furthermore, Bs
q,p := Bs

q,p(Ω) are the usual Besov spaces of order s ∈ (0, 2), and

B
2−2/p
q,p,B := { v ∈ B2−2/p

q,p ; Bv = 0 }.

Then, except for equivalent norms,

(Lq,H
2
q,B)1/p′,p = B

2−2/p
q,p,B ,(3.2)

with (·, ·)θ,p denoting the real interpolation functor of exponent θ ∈ (0, 1) and parameter p (cf. [3, Theorem 5.2]).
Observe that

Hs1
q,B

d
↪→ B

2−2/p
q,p,B

d
↪→ Hs0

q,B, 1 + 1/q < s0 < 2− 2/p < s1 ≤ 2,(3.3)

where Hs
q are the usual Bessel potential spaces of order s ∈ [0, 2] over Ω (so that H0

q = Lq), and

Hs
q,B = { v ∈ Hs

q ; Bv = 0 }, 1 + 1/q < s ≤ 2.
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Since 2− 2/p > 1+n/q, a well known Sobolev type embedding theorem guarantees that, setting ρ := 1− 2/p− n/q,

B
2−2/p
q,p,B ↪→ C1+ρ

B (Ω) :=
{

v ∈ C1+ρ(Ω) ; Bv = 0
}
.

Thus (3.2) and the trace theorem imply (cf. [4, Theorem III.4.10.2]) that

H(Ω× I) ↪→ C0

(
I,B

2−2/p
q,p,B

)
↪→ C0

(
I, C1+ρ(Ω)

)
↪→ C0

(
I, C1(Ω)

)
,(3.4)

where C0 is the space of continuous functions vanishing at infinity.
Suppose that 1 ≤ s ≤ ∞ and E is a Banach space. Then we identify Ls(I, E) with a closed linear subspace

of Ls(R, E) by identifying v ∈ Ls(I, E) with its extension by zero outside I, its trivial extension. Consequently,
given ω ∈ Ls(R+) and v ∈ Lp(I, E), the convolution product ω ∗ v is well defined and given by

ω ∗ v(t) =
∫

I∩[τ≤t]

ω(t− τ)v(τ) dτ =
∫

(t−I)∩R+
ω(τ)v(t− τ) dτ, t ∈ R.

From Young’s inequality and well known properties of convolutions we infer that (ω, v) 7→ ω ∗ v defines continuous
bilinear maps

Ls(R+)× Ls′(I, E) → C0(R, E)(3.5)

and

Ls(R+)× Lp(I, E) → Lr(R, E),(3.6)

provided
1
s

+
1
p

= 1 +
1
r
.(3.7)

Given a second Banach space F , we denote by C1-(E,F ) the Fréchet space of all maps from E into F being
uniformly Lipschitz continuous on bounded sets, endowed with its natural topology of uniform convergence on
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bounded sets of the functions and their difference quotients. Note that C1-(E,F ) = C1-(E,F ) if E is finite
dimensional.

Henceforth, we suppose that
k, m ∈ N× := N\{0} and α ∈ C2-(Rn, Rm);

1 ≤ s ≤ p′, 0 < S ≤ ∞;

ω ∈ L1 ∩ Ls

(
JS ,L(Rm, Rk)

)
;

r is defined by (3.7).

(3.8)

We fix T > 0 and put
J := −JS ∪ JT = (−S, T ).

Given u : −JS → E and u : JT → E, we define u⊕ u : J → E by

u⊕ u(t) :=

{
u(t), −S < t < 0,

u(t), 0 ≤ t < T.

We also define the history space H− by
H− := H (Ω× (−JS))

and set H := H(Ω× JT ). It follows easily from (3.4) and H(Ω× I) ↪→ Lp(I, H2
q,B) that

((u, u) 7→ u⊕ u) ∈ C1-
(
H− ×H, L∞

(
J,C1+ρ(Ω)

)
∩ Lp(J,H2

q,B)
)
.(3.9)

In fact, since u⊕ u− v ⊕ v = (u− v)⊕ (u− v), we see that (3.9) is even globally Lipschitz continuous.
Put

A(u, u) := ω ∗ α(∇u⊕∇u), (u, u) ∈ H− ×H.

It is a consequence of (3.4)–(3.9) that

∂jA(u, u) = ω ∗ (∂α(∇u⊕∇u)(∇∂ju⊕∇∂ju)) , 1 ≤ j ≤ n,
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and

A ∈ C1-
(
H− ×H, C0

(
J,C(Ω, Rk)

)
∩ Lr

(
J,H1

q (Ω, Rk)
))

(3.10)

for (u, u) ∈ H− ×H.
Finally, we assume that

a ∈ C2-
(
Ω× R× Rk, (0,∞)

)
(3.11)

and put
a(u, u) := a (·, u,A(u, u)) , (u, u) ∈ H− ×H.

It follows from (3.4), (3.10), and (3.11) that

a(u, ·) ∈ C1-
(
H, C

(
JT , C(Ω)

)
∩ Lr(JT ,H1

q )
)

(3.12)

for u ∈ H−, since
∂ja(u, u) = ∂ja (·, u,A(u, u)) + ∂n+1a (·, u,A(u, u)) ∂ju

+ D3a (·, u,A(u, u)) ∂jA(u, u)

for j = 1, . . . , n and u ∈ H, with D3a(x, ξ, η) ∈ L(Rk, R) being the derivative of a(x, ξ, ·) ∈ C1(Rk, R) at η ∈ Rk

for (x, ξ) ∈ Ω× R. Consequently, setting

F0(u, u) := −∇a(u, u) · ∇u, (u, u) ∈ H− ×H,

and employing (3.4) once more, we see that

F0(u, ·) ∈ C1- (H, Lr(JT , Lq)) , u ∈ H−.(3.13)

By replacing H by H− in the preceding arguments it similarly follows that

a(·, u) ∈ C1-
(
H−, C

(
JT , C(Ω)

))



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

and

F0(·, u) ∈ C1-
(
H−, Lr(JT , Lq)

)
for u ∈ H.

Also note that the Hölder embedding in (3.4) implies that

a(u, u) ∈ C
(
JT , Cρ(Ω)

)
(3.14)

for u ∈ H− and u ∈ H(Ω× JT ).

4. Main theorems

Throughout this section we suppose that

• assumption (3.1) is satisfied.

We also suppose that 

• k,m ∈ N×, s ∈ (1,∞], S ∈ (0,∞];

• ω ∈ L1 ∩ Ls

(
JS ,L(Rm, Rk)

)
;

• α ∈ C2-(Rn, Rm);

• a ∈ C2-
(
Ω× R× Rk, (0,∞)

)
;

• f ∈ C1-(Ω× R× Rn);

• f0 ∈ Lp(R+, Lq).

(4.1)
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Then we consider the time-delayed evolution problem:

∂tu−∇ · (a (·, u, ω ∗ α(∇u))∇u)= f(·, u,∇u)+f0 on Ω× (0,∞),

u = 0 on Γ0 × (0,∞),

∂νu = 0 on Γ1 × (0,∞),

u(·, 0) = u0 on Ω,

u = u on Ω× (−S, 0),

(4.2)

where

(u0, u) ∈ B
2−2/p
q,p,B ×H (Ω× (−S, 0)) .(4.3)

By a solution, more precisely, an H2,1
q,p solution of (4.2) on JT , where 0 < T ≤ ∞, we mean a function

u : Ω× (−S, T ) → R
such that u |Ω× (−JS) = u, u(·, 0) = u0, u |Qτ ∈ H(Qτ ) for 0 < τ < T , and u satisfies (4.2) (in the obvious
strong sense). A solution u is maximal if there do not exist a T1 > T and a solution u1 on JT1 extending u. In
this case T is the maximal existence time of u.

Theorem 4.1. (i) Problem (4.2) has for each (u0, u) satisfying (4.3) exactly one maximal solution u∗.
(ii) If T ∗, the maximal existence time of u∗, is finite, then u∗ /∈ H2,1

q,p,B(QT∗).

Proof. Fix T > 0. Given v ∈ H(QT ), put

A(u, v)w := −a(u, v)∆w, w ∈ H2
q,B.

We claim that A(u, v) has the property of maximal Lp regularity on (0, τ) for 0 < τ ≤ T , meaning that the linear
parabolic problem

ẇ + A(u, v)w = g on (0, τ), w(0) = 0(4.4)
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has for each g ∈ Lp(Jτ , Lq) exactly one solution w ∈ H(Qτ ). To see this observe that, by (3.14),

a(u, v)(t) ∈ Cρ
(
Ω, (0,∞)

)
for each fixed t ∈ JT . Thus a result of Prüss and Sohr [25] guarantees that the (time constant) operator

(w 7→ A(u, v)(t)w + κw) ∈ L(H2
q,B, Lq)

possesses for each κ > 0 and each t ∈ JT bounded imaginary powers with a power angle less than π/2. Thus it
follows from the Dore-Venni theorem (cf. [4, Theorems III.4.5.2 and III.4.10.8]) that A(u, v)(t) has for each fixed
t ∈ JT the property of maximal Lp regularity. (Also see the much more general result [13, Theorem 8.2].) Now
assertion (4.4) is a consequence of [5, Theorem 7.1].

Note that (3.12) implies that

A(u, ·) ∈ C1-
(
H(QT ), L∞

(
JT ,L(H2

q,B, Lq)
))

.

Set
F (u, v) := F0(u, v) + f(·, v,∇v) + f0, v ∈ H(QT ).

From (3.4), (3.13), and (4.1) we easily infer that

F (u, ·)− f0 ∈ C1- (H(QT ), Lr(JT , Lq)) ,

where r > p, due to (3.7) and s > 1. (We can assume that s ≤ p′ since T < ∞.)
It is clear that problem (4.2) on JT is equivalent to

u̇ + A(u, u)u = F (u, u) + f0 on (0, T ), u(0) = u0.(4.5)

It is also clear that A(u, ·) and F (u, ·) are Volterra maps in the sense that

(A(u, v), F (u, v))
∣∣Jτ = (A(u, v |Jτ ), F (u, v |Jτ ))

for 0 < τ < T . Now the assertions of the theorem follow by applying [6, Theorem 2.1] to (4.5) for every T > 0. �
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Remark 4.2. In [6, (1.2)] there has to be added the hypothesis that A(v) |I has for every v ∈ H1
p(J) and every

perfect subinterval I of J the property of maximal Lp regularity. This assumption is needed in the proof of [5,
Lemma 4.1] which, in turn, is used in the proof of [6, Theorem 2.1]. In [5, Lemma 4.1] it has only been shown
that restrictions and translations of ∂ + A have bounded right inverses. The importance of that lemma lies in
the uniform bounds established there.

Our next theorem shows that u∗ depends continuously on all data. To make this precise we introduce the
parameter space

Ξ := L1 ∩ Ls

(
JS ,L(Rm, Rk)

)
× C2-(Rn, Rm)× C2-(Ω× R× Rk)

× C1-(Ω× R× Rn)× Lp(R+, Lq)×B
2−2/p
q,p,B ×H−,

endowed with its obvious Fréchet topology. Denoting by ξ := (ω, α, a, f, f0, u
0, u) its general point, we set

Ξ0 :=
{

ξ ∈ Ξ ; a(x, ξ, η) > 0 for (x, ξ, η) ∈ Ω× R× Rk
}
.

Note that Ξ0 is open in Ξ. It follows from Theorem 4.1 that, given any ξ ∈ Ξ0, problem (4.2) possesses a unique
maximal solution. We denote it by u(ξ) and write T (ξ) for its maximal existence time.

Theorem 4.3. Suppose that ξ ∈ Ξ0 and fix T ∈ (0, T (ξ)). Then, given any sequence (ξj), converging in Ξ0

towards ξ, there exists j0 ∈ N such that T (ξj) > T for j ≥ j0 and u(ξj) → u(ξ) in H2,1
q,p,B(QT ).

Proof. Using the continuity results (3.12) and (3.13) it is not difficult to see that the assertion follows from [6,
Theorem 3.1] applied to (4.5). �

5. Perona-Malik type equations

First we show that the theorems of the preceding section imply the validity of Theorem 1.1.
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Proof of Theorem 1.1. (i) and (ii): Set k := m := 1, ω := |θ|, and α(y) := |y|2 for y ∈ Rn, and denote by
g̃ ∈ C2- (R, (0,∞)) a fixed extension of g. Also put a(x, ξ, η) := g̃(η) for (x, ξ, η) ∈ Ω× R× R, and (f, f0) := (0, 0).
Then (4.1) is satisfied and (4.2), with Γ := Γ1, reduces to (1.17). Setting u(t) := u0 for −S ≤ t ≤ 0, it is obvious
that u ∈ H−. Hence (i) and (ii) follow from Theorem 4.1.

(iii) Since supp(θ) ⊂ [σ, S] for some σ ∈ (0, S),

ω ∗ |∇u|2 (t) =
∫ t−σ

t−S

ω(t− s) |∇u(s)|2 ds, t ≥ 0.(5.1)

Thus ω ∗ |∇u|2 (t) depends on the values of ∇u(s) for s ∈ [t− S, t− σ] only.
Suppose that ξ ≥ 0. If ξ = 0, then set u1 := u0. Otherwise, suppose that u1 ∈ H(Qξ) is a solution of (1.17)

on Jξ. Set ΣT := Γ× (0, T ) for T > 0 and

u1(t) := (u⊕ u1)(t + ξ), −S1 := −(S + ξ) ≤ t ≤ 0.

Consider 
∂tv −∇ ·

(
g(ω ∗ |∇u1|2)∇v

)
= 0 on Qσ,

∂νv = 0 on Σσ,

v(·, 0) = u1(ξ) on Ω.

(5.2)

By (5.1) this problem is well defined on Jσ. Since u1 ∈ H (Ω× (−S1, 0)), it follows from (3.12) and (3.14) that
the first equation of (5.2) can be written as

∂tv − a∆v +~b · ∇v = 0,

where a ∈ C
(
Jσ, Cρ(Ω)

)
with a(x, t) > 0 for (x, t) ∈ Qσ and

~b ∈ Lr (Jσ, Lq(Ω, Rn)) .(5.3)
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Set A(t)v := −a(t)∆v for v ∈ H2
q,∂ν

. Then we know from the proof of Theorem 4.1 that A(t) ∈ L(H2
q,∂ν

, Lq) has

for each t ∈ Jσ maximal Lp regularity, and A ∈ C
(
Jσ,L(H2

q,∂ν
, Lq)

)
. Put

B(t)v := ~b(t) · ∇v, v ∈ Hs
q,∂ν

,

where 1 + n/q < s < 2. Note that such s exist since 1 + n/q < 2− 2/p by (1.19). It is known (cf. [3, Theorem 5.2])
that Hs

q,∂ν
= [Lq,H

2
q,∂ν

]s/2, where [·, ·]ϑ denotes the complex interpolation functor of exponent ϑ. Since

Hs
q,∂ν

↪→ Hs
q ↪→ C1(Ω)

by a Sobolev embedding result (e.g., [27]), it follows from (5.3) that B belongs to Lr

(
Jσ,L(Hs

q,∂ν
, Lq)

)
. Thus

[5, Theorem 7.1] guarantees that A + B has maximal Lp regularity. (Alternatively we could invoke [14, Theo-
rem 2.1].) Observe that u1(ξ) ∈ B

2−2/p
q,p,∂ν

by (3.4). Thus it follows (e.g., [4, Theorem III.4.10.8]) that (5.2) possesses
a unique solution v1 ∈ H(Jσ). Set

u2(t) := (u1 ⊕ v1)(t− ξ), t ∈ Jξ+σ.

Then u2 ∈ H(Ωξ+σ) and it is a solution of (1.17), hence the unique one, on Qξ+σ. Thus by choosing successively
ξ = 0, ξ = σ, ξ = 2σ, . . . we see that (1.17) possesses a unique global solution.

(iv) follows from Theorem 4.3.
(v) Fix any T ∈ (0, T ∗). Since p > 2 and q > 2, it follows, in particular, that

u∗ ∈ L2(JT ,H1) ∩H1(JT ,H−1
∂ν

) =: H1,1(QT ),
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where H−1
∂ν

:= (H1)′ with respect to the duality pairing induced by the L2 inner product, and that u∗ is a weak
solution on QT of the linear problem

∂tu−∇ · (a∗∇u) = 0 on QT ,

a∗∂νu = 0 on ΣT ,

u(·, 0) = u0 on Ω,

(5.4)

where a∗ := g(ω ∗ |∇u∗|2) ∈ C
(
JT , Cρ(Ω)

)
with a∗(x, t) > 0 for (x, t) ∈ QT . Now this assertion is an immediate

consequence of the weak maximum principle.
(vi) The weak form of (5.4) implies that

(〈u∗,1〉). =
(
−
∫

Ω

u∗ dx

).
= 0 in D′(0, T ),

where 1 is the function being constantly equal to 1 on Ω, and D′(0, T ) is the space of distributions on (0, T ).
Since 〈u∗,1〉 ∈ C

(
JT

)
by u∗ ∈ C

(
JT , L2

)
, it follows that 〈u∗,1〉(t) = 〈u∗,1〉(0) = 〈u0,1〉 for 0 ≤ t ≤ T and any

T ∈ (0, T ∗).
(vii) Note that u∗ − 〈u∗,1〉 solves (5.4) with u0 replaced by u0 − 〈u0,1〉. Hence it suffices to prove that

‖u∗(s, t)‖Ls
≤ ‖u0‖Ls

, 0 ≤ t ≤ T, 2 ≤ s ≤ ∞,(5.5)

where T ∈ (0, T ∗) is arbitrarily fixed and

u0 ∈ B
2−2/p
q,p,∂ν

↪→ C(Ω) ↪→ L2

satisfies 〈u0,1〉 = 0. From the weak formulation of (5.4) it follows that

(‖u∗‖2
L2

). ≤ (‖u∗‖2
L2

). + 2〈a∗∇u∗,∇u∗〉 = 0 in D′(0, T ).

This implies (5.5) for s = 2. Assertion (5.5) for s = ∞ is a consequence of (v). Now the assertion follows from
the Riesz-Thorin interpolation theorem (e.g., [27]). �
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Proof of Remark 1.2(c). We can again assume that u0 has mean value zero. For each T ∈ (0, T ∗) there exists
β > 0 such that g

(
ω ∗ |∇u∗(t)|2

)
≥ β for t ∈ JT . Thus the weak form of (5.4) implies

(‖u∗‖2
L2

). + α ‖u∗‖2
L2
≤ (‖u∗‖2

L2
). + β ‖∇u∗‖2

L2

≤ (‖u∗‖2
L2

). + (a∗∇u∗,∇u∗) = 0

in D′(0, T ), where the existence of α = α(T, β) is a consequence of Poincaré’s inequality. Now the assertion
follows. �

Remarks 5.1. (a) Theorem 1.1 remains true if we modify (1.17) by replacing θ ∗ |∇u|2 by |θ ∗ ∇u|2, or, more
generally, by | θ∗∇u|2, where θ is a diagonal matrix with diagonal entries θj ∈ Ls(JS).

Proof. It suffices to put k := m := n as well as α(η) := η and a(x, ξ, η) := g(|η|2) for (x, ξ) ∈ Ω× R and η ∈ Rn.
�

(b) Assertion (iii) remains valid if the right-hand side of the first equation in (1.17) is replaced by f(x, u,∇u),
provided f is linearly bounded in u and ∇u.

Proof. In this case one has to solve, instead of (5.2), a semilinear equation with a linearly bounded right-hand
side. It is well known that such equations possess global solutions. �

(c) Suppose that v ∈ H(QT ). Then, given u0 ∈ B
2−2/p
q,p,B , the linearized Perona-Malik problem

∂tu−∇ ·
(
g(|∇v|2)∇u

)
= 0 on QT ,

∂νu = 0 on ΣT ,

u(·, 0) = u0 on Ω

possesses a unique solution u(v) ∈ H(QT ). However, we have not succeeded in establishing a fixed point of the
map v 7→ u(v) (for an appropriate T > 0) which would guarantee the existence of an H(QT ) solution of (1.1).
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Anyhow, this observation indicates that (1.1) is ‘on the borderline to parabolic equations’ and explains to some
extent why arbitrarily small time-delay perturbations of the Perona-Malik equation are well posed.

Proof. Set a := g(|∇v|2) and ~b := −2g′(|∇v|2)D2v∇v so that

−∇ ·
(
g(|∇v|2)∇u

)
= −a∆u +~b · ∇u

for u∈H(QT ) It follows from (3.4) that a∈C
(
J,C(Ω)

)
with a(x, t)>0 for (x, t)∈QT and ~b∈Lp (JT , Lq(Ω, Rn)).

Hence the assertion is implied by [14, Theorem 2.1], for example. �

6. Modifications

As discussed in the introduction, there are several possible modifications of the original Perona-Malik equation.
For simplicity, we restrict ourselves to one such class. For this we suppose that

(1.19) is satisfied;

g ∈ C2-
(
R+, (0,∞)

)
;

h ∈ C2-
(
Ω× R+, (0,∞)

)
;

f ∈ C1-(Ω× R× Rn);

θ ∈ Ls(JS , R+) for some s > 1 and S > 0;

u0 ∈ H2
q,∂ν

.

(6.1)

Then we consider the problem
∂tu−∇ ·

(
g(θ ∗ |∇u|2)h(·, u)∇u

)
= f(x, u,∇u) on Ω× (0,∞),

∂νu = 0 on Γ× (0,∞),

u(·, 0) = u0 on Ω× (−S, 0].

(6.2)
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In this model, besides of the edge enhancing function g, there is also a mechanism, namely the function h, which
can prevent certain details of the image from being destroyed by diffusion. In fact, diffusion is slowed down at
those points x in whose neighborhood h (·, u(·)) is small, even if g(θ ∗ |∇u|2) is large, that is, if (θ ∗ |∇u|2)1/2 is
below the threshold value of the original Perona-Malik model. Of course, in contrast to (1.1), in this case a priori
information on the (correct) image is needed in order to choose the control function h appropriately.

Such a model has been proposed and studied by Kačur and Mikula [15], [16]. These authors consider the
degenerate case also where h is allowed to vanish at some places. However, in contrast to our model (6.2), space
regularization of CLMC type is employed in those papers.

Furthermore, the function f can be used to force the solution of (6.2) to stay close to the initial image u0.
This is the case, for example, if

f(x, ξ, η) = ϕ
(
ξ − u0(x)

)
, (x, ξ, η) ∈ Ω× R× Rn,

with a decreasing function ϕ. Such right-hand sides have been used by Nordström [22] (with f(x, ξ, η)=u0(x)−ξ),
Kačur and Mikula [15] (with

f(x, ξ, η) = ϕ
(
β(x, ξ)− β

(
x, u0(x)

))
,

where β(x, ·) is increasing), and others (cf. [7]). Note, however, that in all those papers space convolution ∇uσ is
used instead of time convolution θ ∗ |∇u|2.

Theorem 6.1. Let assumptions (6.1) be satisfied. Then assertions (i) and (ii) of Theorem 1.1 hold for
(6.2) also. The solution depends continuously on u0, θ, g, h, and f , in a sense analogous to assertion (iv) of
Theorem 1.1.

Proof. Set k = m = 1, ω := |θ|, α(y) := |y|2 for y ∈ Rn, and

a(x, ξ, η) := g̃(η)h(x, ξ), (x, ξ, η) ∈ Ω× R× Rn.

Then the assertions follow from Theorems 4.1 and 4.3. �
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This theorem can be applied, in particular, to guarantee the well posedness of the Chen-Bose model (1.13)
with ∇uσ being replaced by the local term ∇u and the second order degenerate operator by the time regularized
Perona-Malik operator ∇ ·

(
g(θ ∗ |∇u|2)∇u

)
.
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5. , Maximal regularity for nonautonomous evolution equations. Adv. Nonl. Studies, 4 (2004), 417–430.
6. , Quasilinear parabolic problems via maximal regularity. Advances in Diff. Equ., 10 (2005), 1081–1110.
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