LP-THEORY OF THE NAVIER-STOKES FLOW IN THE EXTERIOR
OF A MOVING OR ROTATING OBSTACLE

M. GEISSERT aAnD M. HIEBER

ABSTRACT. In this paper we describe two recent approaches for the LP-theory of the Navier-Stokes flow in the exterior
of a moving or rotating obstacle.

1. INTRODUCTION

Consider a compact set O C R", the obstacle, with boundary I' := 9O of class C*!. Set © := R"\O. For t > 0
and a real n X n-matrix M we set

Q) == {y@t) = Mz, € Q} and T'(t) := {y(t) = eMz,z € T}.

Then the motion past the moving obstacle O is governed by the equations of Navier-Stokes given by

ow—Aw+w-Vw+Vqg = 0, in Q(t) x Ry,
(1) V-w = 0, in Q(t) x Ry,
w(y,t) = My, on I'(t) x Ry,

w(y,0) = wo(y), in Q.
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Here w = w(y, t) and ¢(y, t) denote the velocity and the pressure of the fluid, respectively. The boundary condition
on I'(¢) is the usual no-slip boundary condition. Quite a few articles recently dealt with the equation above, see
2], (31, [4], [51, [6], [8], [10], [11], [15], [16].

In this paper, we describe two approaches to the above equations for the LP-setting where 1 < p < co. The
basic idea for both approaches is to transfer the problem given on a domain (¢) depending on ¢ to a fixed domain.
The first transformation described in the following Section 2 yields additional terms in the equations which are of

Ornstein-Uhlenbeck type. We shortly describe the techniques used in [15] and [12] in order to construct a local
mild solution of (1).
In contrast to the first transformation, the second one, inspired by [17] and [6], allows to invoke maximal

LP-estimates for the classical Stokes operator in exterior domains and like this we obtain a unique strong solution
to (1). This approach is described in section 3.

2. MILD SOLUTIONS

In this section we construct mild solutions to the Navier-Stokes problem (1). To do this we first transform the
equations (1) to a fixed domain. Let Q, Q(¢) and I'(¢) be as in the introduction and suppose that M is unitary.
Then by the change of variables z = e"*™y and by setting v(z,t) = e "™Mw(e™z,t) and p(x,t) = q(eMx,t) we
obtain the following set of equations defined on the fixed domain :

Ov—Av+v-Vvo— Mz -Vo+ Mv+Vp = 0, in 2 xRy,
2) V.o = 0, in Q xR,
v(z,t) = Muz, on ' x Ry,

v(z,0) = wp(x), in Q.

Note that the coefficient of the convection term Mz - Vu is unbounded, which implies that this term cannot be
treated as a perturbation of the Stokes operator.
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This problem was first considered by Hishida in L2(Q2) for Q C R? and Mz = w x z with w = (0,0,1)7 in [15]
and [16]. The LP-theory was developed by Heck and the authors in [12] even for general M.

We will construct mild solutions for wy € L2(2), p > n, to the problem (2) with Kato’s iteration (see [18]).

The starting point is the linear problem

Oou —Au — Mz -Vu+ Mu+b-Vu+u-Vb+Vp = 0, in Q xRy,
3) V-u = 0, in 2 xRy,
u = 0, on ' xR,

u(z,0) = wp(z), inQ,

where b € C2°(Q). The additional term b- Vu + u - Vb simplifies the treatment of the Navier-Stokes problem (see
(11) below). We will first show that the solution of (3) is governed by a Cy-semigroup on L2 (). More precisely,
let Lo, be defined by

LQ’b’U, = Pgﬁbu
D(Layp) = {ueW?*P(Q)NW,P(Q)NLE(Q) : Mz - Vu € LP(Q)},

where Lyu := Au+ Mz - Vu— Mu+b-Vu+ - Vb. Then the following theorem is proved in [12].

Theorem 2.1. Let 1 < p < oo and let Q@ C R" be an exterior domain with CY-boundary. Assume that
tr M =0 and b € C°(Q). Then the operator Lg generates a Co-semigroup Tap, on LE ().

Sketch of the proof. The proof is devided into several steps. First it is shown that Lqp is the generator of an
Co-semigroup Tq p on L2(f2). Then a-priori LP-estimates for Tq,» are proved. Once we have shown this we can
easily define a consistent family of semigroups T on L2(Q) for 1 < p < co. In the last step the generator of
Tqp on LP(Q) is identified to be Lq p.
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We start by showing that Lq is the generator of a Cp-semigroup on LZ(Q). Choose R > 0 such that
suppb U Q° C Br(0) = {x € R : |z| < R}. We then set

D = QﬁBR+5(O),
Ki = {ze€Q:R<|z|<R+3},
Ky, = {z€Q:R+2<|z|] <R+ 5}

Denote by B; for i € {1,2} Bogovskii’s operator (see [1], [9, Chapter II1.3], [13]) associated to the domain K;
and choose cut-off functions ¢, n € C*°(R™) such that 0 < ¢, n < 1 and

0, lz]| < R+ 1, 1, |z] < R+ 3,
A= { . jo|>R+2 &d @)= { 0, |z|>R+4.
For f € L?(2) we denote by f the extension of f by 0 to all of R™. Then, since C2%(Q) is dense in L (%),
ff € L2(R™). Furthermore, we set f2 = nf — Ba((Vn)f). Since sz (Vn)f =0 it follows from [9, Chapter IIIL.3]
that fP € L2(D).
By the perturbation theorem for analytic semigroups there exists w; > 0 such that for A > w; there exist
functions v and p¥ satisfying the equations

A= Lp)uR +Vp? = fP, in D x Ry,
(4) V-ul = 0, in D xRy,
ul = 0, on 0D x R,.
Moreover, by [14, Lemma 3.3 and Prop. 3.4], there exists wy > 0 such that for A > wy there exists a function uf\%
satisfying
5) (A= Lo)ul = fE, in R x Ry,
Voull =0, in R® x Ry.
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For A > max{w;, wa} we now define the operator Uy : L2(Q2) — LP(Q) by

(6) Unf = puy + (1= @)uy + Bi(Ve(ul —uy),
where uf! and uf are the functions given above, depending of course on f. By definition, we have
(7) Urf € {ve W?P(Q)NnW,*(Q) NLE(Q) : Mz - Vo € L2(Q)}.
Setting Py f = (1 — )p¥, we verify that (U, f, P\f) satisfies
AN=Ly)Urf+VP\f = [f+Tnf, inQxRy,
V-Uxf = 0, in Q xR,
Unf = 0, on 9 X Ry,
where T is given by
Df = =2(Ve)V(ui —u3) = (Ap + Mz - (Vo)) (uf — uX) + (Ve)py
+ (A=A —Mz-V+M)B (Vo) (ull —u?)).

It follows from [12, Lemma 4.4] that for « € (0, 2;,) where 1 -+ i, = 1, there exists a strongly continuous function
H :(0,00) — L(LP()) satisfying
(8) IH (Ol 22z @) < Ct* 1, ¢>0

for some @ > 0 and C > 0 such that A — PnT) is the Laplace Transform of H. We thus easily calculate
IPoTallzpz () < CAT% A > w.
Therefore, Ry := Uy Z;‘;O(PQT,\)j exists for \ large enough and (A — Ly)Ryf = f for f € L2(2). Since Lq is

dissipative in L2 (1), Lq  generates a Cy-semigroup T, on L2(£2). Moreover, we have the representation
oo

(9) Tou(t)f =D Ta(t)f, f€LIUQ),

n=0
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where T, (t) := fg Th—1(t — s)H(s) ds for n € N and

To(t) = eTr(t) [ + (1 = @) Tp ()P + Bi(Ve) (Tr() [ = Tpu(t)fP)), t>0.
Here Tr denotes the semigroup on L2 (R™) generated by Lg» ¢ and Tp , denotes the semigroup on L2 (D) generated
by Lpp. Note that A — Uy is the Laplace Transform of Tp. Since the right hand side of the representation (9)
is well defined and exponentially bounded in L2(€2) by [12, Lemma 4.6], we can define a family of consistent
semigroups Tq , on LP(Q) for 1 < p < co. Finally, the generator of Tq ;, on LP(R2) is Lg , which can be proved by
using duality arguments (cf. [12, Theorem 4.1]). O

Remark 2.2. (a) The semigroup Tq is not expected to be analytic since, by [16, Proposition 3.7], the
semigroup Tgs in R? is not analytic.
(b) As the cut-off function ¢ is used for the localization argument similarly to [15] the purpose of 7 is to

ensure that fp € L2(€2). This is essential to establish a decay property in A for the pressure PP (cf. [12,
Lemma 3.5]) and T}.
(c) The crucial point for a-priori LP-estimates for T, on L2() is the existence of H satisfying (8).

Since LP-L9 smoothing estimates for Tr and Tp follow from [14, Lemma 3.3 and Prop. 3.4] and [12, Prop.
3.2], the representation of the semigroup T p given by (9) and estimates for sums of convolutions of this type (cf.
[12, Lemma 4.6]) yield the following proposition.

Proposition 2.3. Let 1 < p < q < oo and let @ C R" be an exterior domain with CY-boundary. Assume
that tr M =0 and b € C°(2). Then there exist constants C > 0,w > 0 such that for f € LP(Q)

n 1

_n(1_1
(8) [ Tan® ey < Ct=2G-8 e fllny, >0,

(b) IVTap(t) fllzr@) < Ct*éem\\fHLg(Q), t>0.
Moreover, for f € LP(2)

n(l_ 1 4
162 G T, () flzaey + 18} VT fllzo@ = 0, for t—0.
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In order to construct a mild solution to (2) choose ¢ € C°(R™) with 0 < ¢ <1 and ¢ = 1 near I'. Further let
K C R” be a domain such that supp V{ C K. We then define b : R™ — R” by

(10) b(z) := (Mo — Bie((V€) M),

where B is Bogovskii’s operator associated to the domain K. Then divb = 0 and b(x) = Mz on I'. Setting
u :=v — b, it follows that u satisfies

ou—Lyu+Vp = F in Q x (0,7,
(11) V-u = 0 in Qx (0,7),
u = 0 onI' x (0,7,

u(z,0) = wo(x)—b(x), inQ,

with V- (ug—b) =0in Q and F = —Ab— Mz -Vb+ Mb+b- Vb, provided u satisfies (2). Applying the Helmholtz
projection Py to (11), we may rewrite (11) as an evolution equation in LP(2):

w —Loyu+ Po(u-Vu) = PoF, 0<t<T,

02) u(0) = wg—b.

Note that we need the compatibility condition ug(z) - n = Mz - n on 99 to obtain ug — b € LP(2). In the
following, given 0 < T' < oo, we call a function v € C([0,T); L2(2)) a mild solution of (12) if u satisfies the
integral equation for 0 <t < T

t ]

u(t) = Tap(t)(uo — b) — /Tg,b(t —s)Pa(u-Vu)(s) ds + /Tg’b(t — s)PoF(s) ds.
0 0

Then the main result of [12] is the following theorem.
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Theorem 2.4. Letn > z, n<p<qg<ooandlet Q C R™ be an exterior domain with CY'-boundary. Assume
that tr M =0 and b € C°(Q2) and ug — b € LE(QY). Then there exist To > 0 and a unique mild solution u of (12)
such that

t e t2G-Du(t) € € ([0, Tol ; L)),
t 332 vu(t) € O ([0, To) ; LI(R)) -
3. STRONG SOLUTIONS

In this section we construct strong solutions to problem (1) for £ € R”, n > 2 and trM = 0. The main
difference to the method presented in the previous section is another change of variables. Indeed, we construct a
change of variables which coincides with a simple rotation in a neighborhood of the rotating body but it equals
to the identity operator far away from the rotating body. More precisely, let X (-,¢) : R® — R™ denote the time
dependent vector field satisfying

0X
E(:%t) = _b(X(ya t))v ye Rn7 t> 07
X(y,O) = Y y € R™,

where b is as in (10). Similarly to [6, Lemma 3.2], the vector field X (-,¢) is a C'°°-diffeomorphism form 2 onto
Q(t) and X € C*°([0,00) x R™). Let us denote the inverse of X(-,%) by Y (-,¢). Then, ¥ € C*([0,00) x R™).
Moreover, it can be shown that for any 7" > 0 and |a| + k > 0 there exists C o, > 0 such that

ok o ok 9>

1 == X(y,t -
( 3) Sup atk 8ya (yﬂ ) atk ama

yERM ,0<t<T

a4 sup
zER™,0<t<T

Y(IE, t)‘ S Ok,a,To-

Setting
U(]},t) = JX(Y(a:,t),t)w(Y(x,t),t), S Q: t> 07
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where Jx denotes the Jacobian of X (-,¢) and

p(.’E,t) = Q(Y(xvt)at)a US Qu t> 0»

similarly to [6, Prop. 3.5] and [17], we obtain the following set of equations which are equivalent to (1).
ov—Lv+ Mv+Nv+Gp = 0, in Q xRy,
14) V.v = 0, in Q xRy,
v(z,t) = Mz, onT'x R,
v(z,0) = wo(z), in Q.
Here
L) ov; i Ov
L i = = jk Z Y ) lez el
(L) Z 0x; ( 8:ck>+ Z 7% O
7,k=1 7,k,l=1
- 9 i - mie
+ > (axk(gleﬂ) + ) gMTy; km> vj,
j,k, =1 m=1
n 8’1} n )
Nv); = Zvj (‘9x1- + %050k,
j=1 I k=1

S 0X; 0v; | N~ (g 0Xi  0X; 0%V
o = YT Y (T T ),
3 jk=1

with
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» 0X; 0X;
ij _
! kz; Oyr, Oyr’
1 - agl
k _ & 4
Ui = 2 = <8xj

39;‘1
8xi

Z Yy, 0Yy anl
dx; Ox;

391’;’
+ 2 )

The obvious advantage of this approach is that we do not have to deal with an unbounded drift term since all
coefficients appearing in £, N, M and G are smooth and bounded on finite time intervals by (13). However, we
have to consider a non-autonomous problem. Setting u = v—b, we obtain the following problem with homogeneous

boundary conditions which is equivalent to (14).

ou — Lu+ Mu+ Nu+ Bu+ Gp

V-u
(15) !
u(z,0)

Here,

Jj=1
Since g% is smooth and ¢,

(16) g™ (-,

z":( 0b; guz)

) — 0ijll Lo () — O,

F},7 in ) x R+,
0 in Q X R+,
0, onI' x Ry,
wo(z) — b(x), in Q.
+2 ) Thuibg, Fy=Lb— Mb—Nb.

jk=1

0) = d;; by definition, it follows from (13) that

t— 0.
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In other words, L is a small perturbation of A and G is a small perturbation of V for small times ¢. This motivates
to write (15) in the following form.

Ou—Au+Vp = F(u,p), in Q xRy,

YV-u = 0, in Q x Ry,

(17) = O, OHFXRJ’_,
(x,O) = wO(x) —b(l’), in Q,

where F(u,p) i= (L — A)u — Mu—Nu+ (V —G)p — Bu+ F,. We will use maximal LP-regularity of the Stokes
operator and a fixed point theorem to show the existence of a unique strong solution (u, p) of (15). More precisely,
let

XB .= WhP(0,T; LY(Q)) N LP(0,T; D(A,)) x LP(0,T; WhP(Q)),
where D(A,) := W29(Q)NWy%(Q)NLL(Q) is the domain of the Stokes operator. Then, by maximal LP-regularity

of the Stokes operator, Holder’s inequality and Sobolev’s embedding theorems ® : X2 — X9 ®((a,p)) := (u,p)
where (u,p) is the unique solution of

Oy —Au+Vp = F(a,p), in Qx (0,7)
V-u = 0, in Q x (0,7,
u = 0, on I’ x (0,7,

u(z,0) = wo(z)—b(z), in Q,

is well-defined for 1 < p,q < oo with J- —|— < 3 and T > 0. Here, the restriction on p and g comes from the
nonlinear term N

Finally, let X725 := {(u,p) € X7 : ||(u,p) — (@, 9)| xza < 0,u(0) = wo — b} with (4,p) = ©(2(0,0)). Then
by (16), Holder’s inequality and Sobolev’s embedding theorems, it can be shown that for small enough § > 0 and
T >0, \I/\X%ré is a contraction.
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We summarize our considerations in the next theorem which is proved in [7]. Note that the cases n = 2,3 and
p = q = 2 were already proved in [6].

and let Q C R™ be an exterior domain with

Theorem 3.1. Let 1 < p,g < oo such that % +% < %
(LL(Q), D(Ag))1-1 - Then there exist T > 0 and
B

CY-boundary. Assume that tr M = 0 and that wy — b €
a unique solution (u,p) € X2 of problem (15).
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