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OVERDETERMINED PROBLEMS AND THE p-LAPLACIAN

B. KAWOHL

Abstract. In this lecture I report on essentially two results for overdetermined
boundary value problems and the p-Laplace operator. The first one is joint work
with H. Shahgholian on Bernoulli type free boundary problems that model for in-
stance galvanization processes. For this family of problems the limits p → ∞ and
p → 1 lead to interesting analytical and surprising geometric questions. In partic-
ular for the case p → 1 I add more recent results, that are not contained in [12].
The second one is joint work with F. Gazzola and I. Fragalá [6]. It provides an al-
ternative and more geometric proof of Serrin’s seminal symmetry result for positive
solutions to overdetermined boundary value problems. As a byproduct I give an
analytical proof for the geometric statement that a closed plane curve of curvature
not exceeding K must enclose a disk of radius 1/K.

1. Bernoulli problems

It is well-known that minimizing the functional

Ep(v) =
∫

Rn

1
p

( |∇v|
a

)p

+
p − 1

p
χ{v>0} dx

on the set {v ∈ W 1,p(Rn); v ≡ 1 on K} leads to the following Euler-Lagrange
equation with overdetermined Bernoulli-type boundary condition

∆pup = div(|∇up|p−2∇up) = 0 in {up > 0} \ K,(1.1)
up = 1 on ∂K,(1.2)

up = 0 and |∇up| = a on ∂{up > 0}.(1.3)

In the first part of my lecture I report on a study of up as p → ∞ or p → 1, that
was done with H. Shahgholian in [12]. For convex K the level sets of up are convex
and up is monotone increasing in p. In this case the limits were identified in [13]
as u∞ = {1 − adist(x, ∂K)}+ and u1 = χK(x). What happens for nonconvex K?
In that case the family of functionals Ep(u) is monotone increasing in p. Therefore
it is only natural to study the limits of these functionals: Fortunately there is the
theory of Γ convergence available, see [4]. To apply it, the different functionals
Ep must be redefined on a common domain of definition. From a priori estimates
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on the support of up one knows that it fits into a sufficiently large ball B. This
justifies the choice of Xq and Y in the following subsections.

1.1. The case p → ∞
For some q > n set Xq = {v ∈ W 1,q

0 (B); v ≡ 1 on K} and define Ep as

Ep(u) =

{ ∫
B

{
1
p

(
|∇u|

a

)p

+ p−1
p χ{u>0}

}
dx if u ∈ W 1,p

0 (B) ∩ Xq,

+∞ if u ∈ Xq \ W 1,p
0 (B).

(1.4)

Then the proof of the first statement in the following is fairly straightforward.

Theorem 1.1. As p → ∞, the functionals Ep Γ-converge on Xq to

E∞(u) :=
∫
B

{
I[0,a](|∇u(x)|) + χ{u>0}(x)

}
dx(1.5)

and, after possibly passing to a subsequence, up converges uniformly to a minimizer
U∞ of the limit functional E∞. Moreover, U∞ satisfies the differential equation
∆∞u = ∇uD2u∇u = 0 in the viscosity sense in {U∞ > 0} \ K.

Here IB(y) is the indicator function of B, which vanishes in B and equals +∞ off
B. Therefore minimizers of E∞ try to minimize the volume of their support under
the side constraint |∇u| ≤ a. One possible minimizer is u∞ = {1−adist(x, ∂K)}+,
but in general u∞ �= U∞. Let us demonstrate this with an example where K is
the union of two disjoint disks at distance d ∈ ( 1

a , 2
a ) apart from each other.

Figure 1.1. Graph of the function U∞(x).

In this case u∞ is the minimum of two cones, but U∞ is infinity-harmonic and
(due to a recent result of Savin [15]) must be of class C1 in {U∞ > 0}\K. One can
think of the shape that is depicted in Figure 1.1 as the lower part of two merging
sandpiles. In general, dry sandpiles have constant slope, but when they merge,
they behave differently.
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1.2. The case p → 1

This time we set Y = {v ∈ L1(B); v ≡ 1 on K} and define Ep as

Ep(u) =

{ ∫
B

{
1
p

(
|∇u|

a

)p

+ p−1
p χ{u>0}

}
dx if u ∈ W 1,p

0 (B) ∩ Y,

+∞ if u ∈ Y \ W 1,p
0 (B).

(1.6)

Theorem 1.2. As p → 1, the functionals Ep Γ-converge on Y to

E1(u) :=
{

1
a

∫
B

|Du|dx if u ∈ BV (B) ∩ Y,
+∞ if u ∈ Y \ BV (B).(1.7)

and, after possibly passing to a subsequence, up converges in L1 to a minimizer U1

of the limit functional E1.

How can one identify minimizers u1 of E1? Because of the coarea formula

E1(u) =
1
a

1∫
t=0

Per{u > t; R
n} dt,(1.8)

so that minimizers of E1 try to minimize the perimeter of their support and of
almost all of its level sets under the side constraint that these level sets contain
K. For convex sets K this is achieved by u1(x) = χK(x). But in general the
perimeter minimizers are not unique. As an example for nonuniqueness consider
the case that K is the union of two disks of radius one, with their centers exactly
d apart. Then the circumference of the two disks is 4π, while the circumference of
their convex hull C, a stadium shaped domain, is 2π + 2d. (In three dimensions,
when K consists of two balls, one can construct a similar example using catenoids
instead of line segments as minimial surfaces that wrap around K.) For d < π the
stadium has less perimeter than K, so that U1(x) = χC(x) is the only minimizer
of E1. For d > π the two disks that make up K have smaller perimeter than
their convex hull, so that U1(x) = χK(x). But for d = π both the boundaries of
K and C have equal length, and so both u1(x) = χK(x) and v1 = χC(x) (and
even convex combinations thereof) are minimizers of E1, but at present we are
unable to identify the L1-limit U1 in this special case of Theorem 1.2. Since up is
p-harmonic, one might hope that U1 is 1-harmonic and satisfies

div
(

Du

|Du|
)

= 0 = κ({u = t}) in Ω \ K.(1.9)

At present, a proof of this does not seem to be easy. Notice that now up converges
only in L1 to U1, whereas in Section 1.1 up converges in Xq and thus uniformly
(to U∞). And stability theorems for viscosity solutions are usually of the type: If
up solves Fp(Du,D2u) = 0 and Fp(q,X) converges to F1(q,X) and up converges
uniformly to u1, then u1 solves F1(Du,D2u) = 0. Here the apparent lack of uni-
form convergence poses an obstacle to the proof. In addition, the precise meaning
of (1.9) is not clear in points where Du = 0. The interested reader might consult
[11] for suitable interpretations of (1.9).
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Let me stress the point that finding the support of U1 or the minimal surface
that wraps around K is an interesting geometric variational problem in itself.
Once the support of U1 is known, however, it can be shown as in [10] that U1 is
locally a function of least gradient, in the sense that for all C ⊂⊂ (Ω \K) and all
v ∈ BV (C) with v = U1 on ∂C

‖U1‖BV (C) ≤ ‖v‖BV (C).

Therefore, for nonconvex K the question of uniqueness and identifiability of
limp→1 up(x) remains in general an open problem.

2. Symmetry result

In the second half of my lecture I present a new and more geometric proof of the
following result:

Theorem 2.1. If the overdetermined elliptic boundary value problem

−div(A(|∇u|)∇u) = 1 in Ω(2.1)

u = 0, and |∇u| = a on ∂Ω(2.2)

has a solution in a simply connected bounded domain of class C2,α, then Ω is a
ball.

For classical solutions of strongly elliptic equations on sufficiently smooth do-
mains this is a celebrated result of Serrin [17]. To prove it, Serrin introduced the
PDE community to Alexandrov’s moving plane method, and the proof applied
to even more general equations with classical solutions. For A(|∇u|) ≡ 1 Wein-
berger provided a much simpler proof, and there have been several attempts ([8],
[5] and [2]) to extend Weinberger’s approach or Serrin’s result to more general
equations. In [6] F. Gazzola, I. Fragalá and I were able to provide a fairly simple
and geometric proof that applies to degenerate equations such as

−∆pu = 1 in Ω,(2.3)

for which A(|∇u|) = |∇u|p−2. However, we will have to pay a price in form of
an additional starshapedness assumption on Ω if n ≥ 3. In what follows, I will
outline the proof only for this equation in the range p ∈ (1,∞), because then
the individual steps will not be obscured by technicalities. For the benefit of the
reader, however, I should at least list the general assumptions on A that were
made in [6]:

A ∈ C1(0,+∞), lim
t→0+

tA(t) = 0 and (tA(t)
)′

> 0 for t > 0.

As explained in [6], these assumptions are less stringent than the ones in any of
[8], [5] and [2]. Here is the sketch of proof for the special case A(t) = tp−2 with
p ∈ (1,∞).

Step 1: An integration of the differential equation gives a relation between
perimeter and volume of Ω:

ap−1|∂Ω| = |Ω|.(2.4)
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Step 2: The function P (x) := 2(p−1)
p |∇u(x)|p + 2

nu(x) attains its maximum over
Ω on ∂Ω. This is shown by a Bernstein type argument.

Step 3: The fact that Pν(x) ≥ 0 on ∂Ω follows from Step 2 and translates into
a mean curvature bound on ∂Ω:

H(x) ≤ 1
n

a1−p .(2.5)

Step 4: Minkowski’s identity, estimate (2.5) and integration by parts gives (for
Ω starshaped with respect to x0)

|∂Ω| =
∫

∂Ω

H(x)(x − x0, ν) ds ≤ 1
n

a1−p

∫
Ω

div(x − x0) dx ≤ a1−p|Ω|.(2.6)

Step 5: (2.6) and (2.4) imply equality in (2.5) everywhere on ∂Ω. So H = const.
and ∂Ω has constant mean curvature. But then by [1] Ω is necessarily a ball.1

Now I want to explain a few steps in more detail and point out how to get rid
of the starshapedness assumption for plane domains, i.e. if n = 2. (This was the
physically relevant case for which the symmetry of Ω was first conjectured.)

For Step 2 one wants to use a differential inequality for P , but this would u
require to be of class C3, while in fact solutions of (2.3) are in general not more
regular than C1,α. This technicality is overcome by a suitable regularization and
approximation argument.

How does one get the curvature bound in Step 3? Observe that

P =
2(p − 1)

p
|uν |p +

2
n

u(x)

so that a combination of

Pν = 2(p − 1)|uν |p−2uνuνν +
2
n

uν =
[
(p − 1)|uν |p−2uνν +

1
n

]
2uν ≥ 0 on ∂Ω

and
−∆pu = −(p − 1)|uν |p−2uνν − (n − 1)H|uν |p−2uν = 1 on ∂Ω,

lead to the bound (2.5) on H.
What if Ω is not starshaped? Then for n = 2 the curvature bound implies that

Ω contains a disc D of radius 2 ap−1. This simple geometric fact does not seem
to be so well-known, although it is recorded (without proof) for instance in [3]
Section 30.4.1, and the proofs in [16] and [9] are not so easily available. Therefore
I take the liberty of providing a more analytical proof here.

Lemma 2.2. If Ω ⊂ R
2 is a plane domain with boundary of class C2, and if

the boundary has curvature κ ≤ K, then Ω contains a disk of radius 1/K.

The proof is illustrated by Figure 2.1. Suppose the Lemma is false. Then there
is a point P ∈ ∂Ω at which a circle with radius 1/K touches ∂Ω tangentially and
another one, Q ∈ ∂Ω, where it intersects ∂Ω transversally. I denote the circular
arc (in clockwise direction) from P to Q by C, and the corresponding part of ∂Ω

1Meanwhile (2006) the starshapedness assumption in Step 4 of the proof of Theorem 2.1 could
be removed, see [7]
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∂Ω

P

Q

C
Γ

Figure 2.1. An impossible situation.

by Γ. Then DΓ :=
∫
Γ

κ dθ denotes the angular difference of tangents to ∂Ω in Q

and P , while DC :=
∫
C

K dθ denotes the angular difference of tangents to C in Q

and P . Clearly Γ has to bend more than C to reach Q, and therefore

DC < DΓ.(2.7)

So the range of θ over which Γ can be parametrized is larger than for C, and the
chain of inequalities DΓ =

∫
Γ

κ dθ ≤ ∫
Γ

K dθ <
∫

C
K dθ = DC contradicts (2.7).

This proves the Lemma.
With this Lemma at hand, we can now follow a “method of moving disks” D

of suitable radius 2ap−1. The radial solution v of

−∆pv = 1 in D,(2.8)

v = 0 on ∂D,(2.9)

happens to satisfy |∇v| = a. By moving discs (rather than moving planes) and
comparison arguments similar to the ones in [17] one can then show that Ω = D.

What did Weinberger do (for general n)? For p = 2 and n ≥ 3 he did not need
a starshapedness assumption on Ω. From Step 2 he concluded that either P is
constant, and then u is (fairly easily shown to be) radial, or

P (x) <
2(p − 1)

p
ap in Ω.(2.10)

In the second case, an integration of (2.10) over Ω gives a relation between
∫ |∇u|p,∫

u and |Ω|, while testing the PDE with u gives another relation of this nature,
namely

∫ |∇u|p =
∫

u. This and a relation between |Ω| and
∫

u (that seems to
work only for p = 2) led Weinberger to a contradiction.
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e-mail : kawohl@mi.uni-koeln.de


