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ON BLOW-UP AT SPACE INFINITY
FOR SEMILINEAR HEAT EQUATIONS

Y. GIGA and N. UMEDA

We are interested in solutions of semilinear heat equations which blow up at space infinity.
In [7], we considered a nonnegative blowing up solution of

ut = ∆u+ up, x ∈ Rn, t > 0

with initial data u0 satisfying

0 ≤ u0(x) ≤M, u0 6≡M and lim
|x|→∞

u0(x) = M,

where p > 1 and M > 0 is a constant. We proved in [7] that the solution u blows up exactly at the blow-up time
for the spatially constant solution with initial data M . We moreover proved that u blows up only at the space
infinity. In this paper we would like to generalize this result in the following directions.

(i) (Initial data) We consider more general initial data u0 which may not converge to M for all directions of
x, for example u0 → M as |x| → ∞ only for x in some sector. It is convenient to introduce a notion of
blow up direction at the space infinity. We are able to give necessary and sufficient condition so that a
particular direction is a blow-up direction.
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(ii) (Nonlinear term) We extend the class of nonlinearities. It includes eu and up + uq for p, q > 1.
In [8] we consider solutions of the initial value problem for the equation{

ut = ∆u+ f(u), x ∈ Rn, t > 0,

u(x, 0) = u0(x), x ∈ Rn.
(1)

The nonlinear term f is assumed to be nonnegative and locally Lipschitz in R with the property that

lim inf
b≥b0, δ∈(δ0,1)

δpf(b)
f(δb)

> 0 for b0 > 0, δ0 ∈ (0, 1), p > 1.(2)

We take two constants M and N satisfying M +N > 0 and

f(M) > 0.(3)

The initial data u0 is assumed to be a measureable function in Rn satisfying

−N ≤ u0 ≤M a.e. and u0 6≡M a.e.(4)

We are interested in initial data such that u0 →M as |x| → ∞ for x in some sector of Rn. We assume that

essinfx∈B̃m
(u0(x)−Mm(x− xm)) ≥ 0 for m = 1, 2, . . . ,(5)

where

B̃m = Brm
(xm)(6)

with a sequence {rm} and a sequence of vectors {xm}∞m=1 and a sequence of functions {Mm(x)} satisfying

lim
m→∞

rm = ∞, Mm(x) ≤Mm+1(x) for m ≥ 1

lim
m→∞

inf
s∈[1,rm]

1
|Bs|

∫
Bs(0)

Mm(x) dx = M.
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Here Br(x) denotes the closed ball of radius r centered at x. (In fact, it follows from (4) that |xm| → ∞ as
m→∞.)

Problem (1) has a unique bounded solution at least locally in time. However, the solution may blow up in
finite time. For a given initial value u0 and nonlinear term f let T ∗ = T ∗(u0, f) be the maximal existence time
of the solution. If T ∗ = ∞, the solution exists globally in time. If T ∗ <∞, we say that the solution blows up in
finite time. It is well known that

lim sup
t→T∗

‖u(·, t)‖∞ = ∞,(7)

where ‖ · ‖∞ denotes the L∞-norm in space variables.
In this paper, we are interested in the behavior of a blowing up solution near space infinity as well as the

location of blow-up points defined below. A point xBU ∈ Rn is called a blow-up point (with value ±∞) if there
exists a sequence {(xm, tm)}∞m=1 such that

tm ↑ T ∗, xm → xBU and u(xm, tm) → ±∞ as m→∞.

If there exists a sequence {(xm, tm)}∞m=1 such that

tm ↑ T ∗, |xm| → ∞ and u(xm, tm) → ±∞ as m→∞,

then we we say that the solution blows up to ±∞ at space infinity.
A direction ψ ∈ Sn−1 is called a blow-up direction for the value ±∞ if there exists a sequence {(xm, tm)}∞m=1

with xm ∈ Rn and tm ∈ (0, T ∗) such that u(xm, tm) → ±∞ (as m→∞) and
xm

|xm|
→ ψ as m→∞.(8)

We consider the solution v(t) of an ordinary differential equation{
vt = f(v), t > 0,

v(0) = M.
(9)
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Let Tv = T ∗(M,f) be the maximal existence time of the solution of (9), i. e.,

Tv =
∫ ∞

M

ds
f(s)

.

We are now in position to state our main results.

Theorem 1. Assume that f is locally Lipschitz in R and satisfies (2) and (3). Let u0 be a continuous function
satisfying (4) and (5), and Tv ≤ T ∗(−N, f). Then there exists a subsequence of {xm}∞m=1 (still denoted by {xm},
independent of t) such that

lim
m→∞

u(xm, t) = v(t).

The convergence is uniform in every compact subset of {t : 0 ≤ t < Tv}. Moreover, the solution blows up at Tv.

Remark. Our assumption Tv ≤ T ∗(−N, f) says that the solution does not blow up to minus infinity before it
blows up to plus infinity. From the condition (4), it follows that limm→∞ |xm| = ∞.

This result in particular implies that

sup
0<t<T∗

v−1(t)‖u(·, t)‖∞ <∞.(10)

When we set f(u) = |u|p−1u, such a blow-up rate estimate is known for subcritical p; see e.g. [3], [5], [6] for general
bounded initial data without assuming (4) and (5). However, for supercritical p such a blow-up rate estimate
(10) may not hold in general; see e.g. [1], [9]. If one considers only radial solutions of (1) for supercritical p less
than 1 + 4/(n− 4− 2(n− 1)1/2) or n ≤ 10, then the estimate (10) holds [11]. We would like to emphasize that
Theorem 1 does not require any restriction on p.

Our second main result is on the location of blow-up points.

Theorem 2. Assume the same hypotheses as in Theorem 1. Then the solution of (1) has no blow-up points
with +∞ in Rn. (It blows up only at space infinity.)
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There is a huge literature on location of blow-up points since the work of Weissler [13] and Friedman-McLeod
[2]. (We do not intend to list references exhaustively in this paper.) However, most results consider either
bounded domains or solutions decaying at space infinity; such a solution does not blow up at space infinity [4].

As far as the authors know, before the result of [7] the only paper discussing blow-up at space infinity is the
work of Lacey [10]. He considered the Dirichlet problem in a half line. He studied various nonlinear terms and
proved that a solution blows up only at space infinity.

In particular, his result implies that the solution of


ut = uxx + f(u), x > 0, t > 0,

u(0, t) = 1, t > 0,

u(x, 0) = u0(x) ≥ 1, x > 0

blows up only at space infinity, where u0 satisfies 0 ≤ u0 ≤M with M > 1, and f(s) = sp and es.
His method is based on construction of suitable subsolutions and supersolutions. However, the construction

heavily depends on the Dirichlet condition at x = 0 and does not apply to the Cauchy problem even for the case
n = 1.

As previously described, the authors [7] proved the statement of Theorems 1 and 2 assuming that u0(x) ≤M
for sufficiently large M for positive solutions of ut = ∆u+up. Later, Shimojyo [12] had the same results as in [7]
by relaxing the assumptions of initial data u0 ≥ 0 which is similar to that in the present paper. His approach is a
construction of a suitable supersolution which implies that a ∈ Rn is not a blow-up point. Although he restricted
himself to f(s) = sp, his idea works for our f under slightly stronger assumption on u0. Here we give a different
approach.

From Shimojyo’s results [12], there arises a problem of “blow-up direction” defined in (8). We next study this
“blow-up direction” for the value +∞. Our third result is on this blow-up direction. It is convenient to introduce
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the function Am defined by

Am(s) =
1

|Bs(ym)|

∫
Bs(ym)

u0(z) dz(11)

for a given sequence {ym}∞m=1. This Am(s) represents the mean value of u0 over the ball Bs(ym).

Theorem 3. Assume the same hypotheses as in Theorem 1 and let {sm}∞m=1 be a sequence diverging to ∞ in
R. For a given direction ψ ∈ Sn−1, the following alternatives hold.

(i) If there exists a sequence {ym}∞m=1 satisfying limm→∞ ym/|ym| = ψ it holds that

lim sup
m→∞

inf
s∈(1,sm)

Am(s) = M,

then ψ is a blow-up direction.
(ii) If for any sequence {ym}∞m=1 satisfying limm→∞ ym/|ym| = ψ there exists a constant c ∈ (1/(M +N),∞)

such that
lim sup
m→∞

inf
s∈(1,c)

Am(s) ≤M − 1
c
,

then ψ is not a blow-up direction.

This characterizes blow up directions by profiles of initial data. This is a new result even if f(u) = |u|p−1u or
n = 1.

Here are the main ideas of the proofs. To prove Theorem 1 we construct a suitable subsolution. To prove
Theorem 2 we derive a non blow-up criterion. We do not appeal any energy arguments for rescaled function as
is done in our previous paper [7]. Our argument consists of two parts. First we observe that

u(x, t) ≤ δv(t)

near a point a ∈ Rn with some δ ∈ (0, 1) when t is close to the blow-up time. By a bootstrap argument we derive
that u is actually bounded near a when t is close to the blow-up time. To prove Theorem 3 we use a comparison
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argument as in Theorems 1 and 2 and a non blow-up criterion as in the proof of Theorem 2. Moreover, we give
conditions on the direction ψ ∈ Sn−1 for being the blow-up direction or not cover all of Sn−1 exclusively.

The detailed proofs will be discussed in paper [8].
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