ON PRESIC TYPE GENERALIZATION
OF THE BANACH CONTRACTION MAPPING PRINCIPLE

L. B. CIRIC anp S. B. PRESIC

ABSTRACT. Let (X,d) be a metric space, k a positive integer and T' a mapping of XF* into X. In this paper we proved
that if T satisfies conditions (2.1) and (2.2) below, then there exists a unique  in X such that T(z,z,...,z) = =.
This result generalizes the corresponding theorems of the second author [4], [5] and the theorem of Dhage [3].

1. INTRODUCTION

The well known Banach contraction mapping principle states that if (X,d) is a complete metric space and
T:X — X is a self mapping such that
d(Tz, Ty) < Ad(z,y)

for all z,y € X, where 0 < A <1, then there exists a unique = € X such that 7'(z) = . In recent years many
generalizations of this principle have appeared ([1], [2], [6]). A special type generalization was introduced by the
second author [4], [5].

Considering the convergence of ceratin sequences Presi¢ proved the following result.

Theorem 1. Let (X,d) be a complete metric space, k a positive integer and T : X¥ — X a mapping
satisfying the following contractive type condition

(1.1) d(T(z1,22,23,...,2k), T(x2, 23, .., 2Tk, Lpt1)) < ud(z1,22) + qad(22, 23) + . .. + qud(Tk, Tit1),
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for every x1,..., 2541 n X, where q1,q2,...,q, are non-negative constants such that ¢ +qa+...+qr < 1.
Then there exists a unique point x in X such that T(x,x,...,x) = x. Moreover, if x1,%2,x3,...,x are arbitrary
points in X and for n € N,

Ttk = T(XTny Trt1y - -« Tnk—1),
then the sequence {x,}5°; is convergent and
limz, = T(limz,,limz,,...,limz,).
Remark that condition (1.1) in the case k = 1 reduces to the well-known Banach contraction mapping principle.
So, Theorem 1 is a generalization of the Banach fixed point theorem.

2. MAIN THEOREM

Inspired with the results in Theorem 1 we shall prove the following theorem.

Theorem 2. Let (X,d) be a complete metric space, k a positive integer and T : X* — X a mapping satisfying
the following contractive type condition

(2.1) d(T(z1,22,. .., 2k), T (2o, ..., 2k, Tpr1)) < dmax{d(x;, z;y1) : 1 <1 <k},

where X\ € (0,1) s constant and x1,...,xxy1 are arbitrary elements in X. Then there exists a point = in
X such that T(z,...,x) =x. Moreover, if x1,22,23,. ..,k are arbitrary points in X and for n € N,

Ttk = T(Tpy Tt 1y« -+ Tpk—1),
then the sequence {x,}5° ; is convergent and
limz, = T(limx,,imz,, ..., limz,).
If in addition we suppose that on diagonal A C XF,
(2.2) d(T(u,...,u),T(,...,v)) < d(u,v)

oFirst ®Prev ®Next ®last ®Go Back ®Full Screen ®Close ®Quit



holds for all u,v € X, with w # v, then x is the unique point in X with T(z,x,...,x) = x.
Proof. Let x1,...,x, be k arbitrary points in X. Using these points define a sequence {z,} as follows:
Ttk = T (s Tt 1y -+ s T ko1 (n=1,2,...).
For simplicity set «,, = d(z, nt+1). We shall prove by induction that for each n € N:
(2.3) oy, < KO (where 6 = \V* K = max{a1/6, /6%, ..., a/0%}).
According to the definition of K we see that (2.3) is true for n = 1,..., k. Now let the following k inequalities:
an < KO, apyy < KO aniro1 < Kontk-1
be the induction hypotheses. Then we have:
Wtk = A(Tntk, Tntk+1)
AT (T, Trt1s - s Tntk—1)s L(@Tnt1, Tnt2y« -« Tntk))
Amax{an,, Qni1y-- - Unik—1} (by (2.1) and the definition of «;)
Amax{K@", K"+ . . Ko TF-1} (by the induction hypotheses)
AKO" (as 0<6<1)
KOk (as 0 = AV/F)

and the inductive proof of (2.3) is complete. Next using (2.3) for any n, p € N we have the following argument:

IA A

A(Tny Tnt1) + ATnt1, Tng2) + oo+ ATrgp—1,Tnip)
Ko™+ Ko™ + ..+ Kot
KO"(1+646%+...)

Ko0™/(1—0)

d(zp, Tntp)

INIA A
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by which we conclude that {z,} is a Cauchy sequence. Since X is a complete space, there exists = in X such that

Then for any integer n we have

dz,T(z,...,z) < d(z,zn+r)+ d@nsr, T(z. ..., x))
= d(z,zpirk) +dT(@n, .- s Tptk-1), T(z,...,))
< d(x,zper) +d(T(x, ..., z,2),T(x,...,2,2,)) +
AT (z,...,x,xn), T(xy...,Tpn,Tpy1)) +
+ d(T(x, Ty Tyt 1y Trak—2)s T (T, Tty - - - Typk—1))
< d(x, Tpgr) + Ad(x, 2,) + Amax{d(z, ), d(Tn, Tpe1) + - .-
+Amax{d(z, zn), d(Tn, Tnt1 )s- -, AXnpk—2y Tntk—1) -

Taking the limit when n tends to infinity we obtain d(x, T (x,...,z)) <0, which implies T(z,...,z) = x. Thus
we proved that

limz, = T(limz,,limz,, ..., limz,).

Now suppose that (2.2) holds. To prove the uniqueness of the fixed point, let us assume that for some
y € X, y# x, we have T(y,...,y) = y. Then by (2.2), d(z,y) = d(T(x,...,x),T(y,...,y)) < d(x,y), which is a
contradiction. So, x is the unique point in X such that T'(z, z,...,x) = x. O

Remark 1. Theorem 2 is a generalization of Theorem 1, as the condition (1.1) implies the conditions (2.1)
and (2.2). Indeed, since

qud(21,72) + q2d(w2,23) + . .. + qrd(Tr, Trr1)
< (1 +q+...+ qp)max{d(z1,x2),d(x2,x3),...,d(Tk, Txt1)}
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and ¢; + @2+ ...+ g < 1, we conclude the implication (1.1) = (2.2). Next, for any u,v € X with w # v, from
(1.1) we have

d(T(u,u,...,u), T(v,v,...,v))
< d(T(uy...,u),T(u,...,u,0))+d(T(u,...,u,0),T(w,...,00,0))+...
+ d(T(u,v,...,v),T(v,v,...,0))

< de(u7 ’U) + Qk—ld(ua ”U) +...+ ‘hd(ua ”U)
= (gp+ -1+ ... +q)d(u,v) <d(u,v),
and consequently we conclude the implication (1.1) = (2.2).

The following example shows that the condition (2.2) in Theorem 2 can not be omitted.

Example 1. Let X = [0,1]U[2,3] and let T : X2 — X be a mapping defined by

T@y) =L, ifte,y) €0,1]x 0,1
T(wy) =1+ L, if(e,y) € [2,3] x [2,3),

Tty 1

4 2’
Then for any z,y € [0,1] we have T'(z,y) = z € [0,1] and for x,y € [2,3] we have T'(z,y) = z € [2, 3]. Thus, for
x,y € [0,1], or z,y € [2, 3], we have

d(T(z,y),T(y, 2)) = |

T(‘T7y) =

if (x,y) € 0,1] x [2,3], or (x,y) € [2,3] x [0,1].

x+y_y+z|:|ac—y y—z|

4 4 T
T—Yy Yy—= 1
< =1+ 1551 = g max{d(z, y), d(, 2)}-
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For (z,y) €[0,1] x [2,3], or (z,y) € [2,3] x [0,1] we have T'(x,y) = z € [0,1]. Therefore, if y € [2, 3], then

AT, ), Ty, ) = 17T = L22) < 2 max{d(e,v), d(y, )}

If y€0,1], then

1 y+z z—y 1 y—=z
2 4 =1 4 2t 4 |

d(T(z,y),T(y,2)) =

< _ =

<| -~ 2|+| 1 | < | 7 | + | 1 |
1

< 5 max{d(z,y), d(y,2)}.

Thus, T satisfies (2.1) with A =1/2, but for £ =0 and y =2 we have 7(0,0) =0 and 7'(2,2) = 2.
3.  APPLICATIONS

We shall illustrate an application of Theorem 2 to the convergence problem of real sequences.
Let {z,}5° be a real sequence, x1,...,2 be a given its k members and let x,,, for n > k + 1, be defined by a
recursive relation:

Ty, = P(Tn—ks Tkt 1s - - -y L1 )-

To investigate the convergence of {z,}5°, it suffices to substitute T for p in a recursive relation assuming earlier
that 7 : R — R. If we find that T satisfies (2.1), then the convergence of {z,,}$° will follow from Theorem 2.
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