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ON THE VOLUME OF THE TRAJECTORY SURFACES UNDER
THE HOMOTHETIC MOTIONS

M. DULDUL anp N. KURUOGLU

ABSTRACT. The volumes of the surfaces of 3-dimensional Euclidean Space which
are traced by a fixed point as a trajectory surface during 3-parametric motions are
given by H. R. Miiller [3], [4], [5] and W. Blaschke [1].

In this paper, the volumes of the trajectory surfaces of fixed points under
3-parametric homothetic motions are computed. Also, using a certain pseudo-Eucli-
dean metric we generalized the well-known classical Holditch Theorem, [2], to the
trajectory surfaces.

1. INTRODUCTION

Let R and R’ be moving and fixed spaces and {O; ey, es,e3} and {O';e1’,es,e3'}

be their orthonormal coordinate systems, respectively. If e; = e;(t1,t2,%3) and

u = u(ty, ta,t3), then a 3-parameter motion Bz of R with respect to R’ is defined,
—

where u = O’O and t1,t3,t3 are the real parameters. For the rotation part of
Bs, we have the anti-symmetric system of differentiation equations (Ableitungs-
gleichungen)

de; = exw; — ejwy, 1,7,k =1,2,3 (cyclic)
with the conditions of integration (Integrierbarkeitsbedingungen)
dw; = wj A wg,

where “d” is the exterior derivative and “A” is the wedge product of the differential
forms. For the translation part of Bs

dO'—O> =0 = 01€1 + 0283 + 03€3,
where the conditions of integration are
do; = 0 Awi, — o A\ wj.
During Bs, w; and o; are the linear differential forms with respect to t1,to,t3. We

assume that w;, ¢ = 1,2, 3 are linear independent, i.e., wy A wa A ws # 0.
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2. THE VOLUME OF THE TRAJECTORY SURFACE
UNDER THE HOMOTHETIC MOTIONS

Now, let us consider the 3-parametric homothetic motion of the fixed point
X = (x;) with respect to arbitrary moving Euclidean space. We may write

T =u+ hx,

where £ and z’ are the position vectors of the point X with respect to the moving
and fixed coordinate systems, respectively, and h = h(t1,ts,t3) is the homothetic
scale of the motion. Then, we get

dz’ = o +zdh + hz x w,

where w = > w;e; is the rotation vector and “ x ” denotes the vector product.
If we write de’ = > 7;e;, we get

(1) 7 = 0 + x;dh + h(zjw, — TRw;).

The volume element of the trajectory surface of X is
(2) dJX:Tl /\7'2/\7'3.

Thus, the integration of the volume element over the region G of the parameter
space yields the volume of the trajectory surface, i.e., Jx = fG dJx. Let T be the
closed and orientated edge surface of G.

If we replace (1) in (2), for the volume of the trajectory surface of X we get

3 3 3 3
=1 ] i=1 i=1 i=1

where

L
\

7/ (h?0; Awj Awy + hdh A oj Aw; + hdh A oy, A wy,)
(4) ¢

= 5/ (hchj N wj Jrhzdk/\wk),
T

/(hdhAwi/\aj+hdh/\wjAai+h20j/\wj/\wk+h2amwk/\wi)
G
1
:7/(h2wi/\aj+h2wj/\ai),
2)r
Bi:/ (hai/\ok/\wk—&—dh/\aj/\ak—l—hoi/\aj/\wj):/haj/\ak,

G r

1

C'iz/hzdh/\wj/\wsz/hg‘u)j/\w;C

G 3 Jr

and Jp = fG 01 A o2 A o3 is the volume of the trajectory surface of the origin
point O.
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Let us suppose that o; Aw;, ¢ = 1,2, 3, have the same sign when integrated over
any consistently orientated simplex from I'. Then, using the mean-value theorem
for double integrals, we obtain

(5) /hQO'i/\wi :h2(ui,vi)/ai/\wi, 1=1,2,3,
r r
where u; and v; are the parameters. If we assume that
hz(ul,vl) = hQ(UQ,UQ) = hz(u?,, 1}3),

then using (4) and (5) we can find the parameters ug and vy such that

3 3
JX = JO + h2(’LL(), U(]) Z AZZL'? + Z Aijxix]— + Z Bzxz
i=1 i#£] i=1
(6) ’ ; ;
i=1 i=1
1

Aizf/(O'j/\qu-i-U]c/\(Uk).
2 Jr

Now, let us consider the plane P : Chix 4+ Cyy + C3z = 0. The volumes of the
trajectory surfaces of points on P are quadratic polynomial with respect to z;. If
we choose the moving coordinate system such that the coefficients of the mixture
quadratic terms vanish, i.e. A;; =0, then we get for a point X € P

where

3 3
(7) Jx = Jo +h*(ug,v0) Y Aiw? + > B

i=1 i=1

Hence, we may give the following theorem:

Theorem 1. All the fized points of P whose trajectory surfaces have equal
volume during the homothetic motion lie on the same quadric.

1I.
Let X and Y be two fixed points on P and Z be another point on the line
segment XY, that is,

zi = A\x; + pyi, A4p=1
Using (7), we get
(8) Jz = NJx 4+ 2 udxy + 2 Jy,

where

3 3
1
Jxy = Jyx = Jo + h*(ug,vo) E Aiziy; + 3 E Bi(xi + ;)
i1 im1
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is called the mixture trajectory surface volume. It is clearly seen that Jxx = Jx.
Since

3
(9) Tx = 2Jxy + Jy = h*(uo,v0) Y Ailwi — vi)®,
i=1
we can rewrite (8) as follows:
3
(10) Jz = N x + pdy —h2(u0,v0)/\uZAi(a:i — )%
i=1

We will define the distance D(X,Y) between the points X,Y of P by
3
(11) D*X,Y) =Y Ai(wi—w)?  e==£1, [4].
i=1

By the orientation of the line XY we will distinguish D(X,Y) = —D(Y, X).
Therefore, from (10) we have

(12) Jz = M x + pJy — eh*(ug, vo) A\uD?*(X,Y).
Since X,Y and Z are collinear, we may write
D(X,Z)+D(Z,Y)=D(X,Y).

Thus, if we denote

\_ Dzy) DX, 2)
“ DY)y FTbhxyy
from (12) we get
w7 ﬁ ID(Z,Y)Jx + D(X,Z)Jy]

— eh*(ug,v0)D(X, Z)D(Z,Y).

Now, we consider that the points X and Y trace the same trajectory surface.
In this case, we get Jx = Jy. Then, from (13) we obtain

(14) Jx — Jz = eh*(up,v0)D(X, Z)D(Z,Y)

which is the generalization of Holditch’s result, [2], for trajectory surfaces during
the homothetic motions. (14) is also equivalent to the result given by [6]. We may
give the following theorem:

Theorem 2. Let XY be a line segment with the constant length on P and the
endpoints of this line segment have the same trajectory surface. Then, the point Z
on this line segment traces another trajectory surface. The volume between these
trajectory surfaces depends on the distances (in the sense of (11)) of Z from the
endpoints and the homothetic scale h.

Special case: In the case of h = 1, we have the result given by H. R. Miiller, [3].
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II1.
Let X1 = (x;), X2 = (y;) and X3 = (2;), i=1,2,3 be noncollinear points on P
and @ = (¢;) be another point on P (Fig. 1). Then, we may write

¢ = Mx; + Aoy + A3z, A+ A2+ A3 =1.

Xo ¢ ° X3

@
Figure 1.

If we use (7), we obtain
JQ = )\%JX1 + /\%sz =+ /\%JX3 =+ 2)\1)\2JX1X2 + 2/\1)\3JX1X3 + 2/\2/\3JX2X3-
After eliminating the mixture trajectory surface volumes by using (9), we get

Jo =MJx, + Adx, + As3dx, — h2(u077}0)
(15)
ez A D?* (X1, Xa) 4+ e13M A3 D? (X1, X3) + €23A2 A3 D (X2, X3) } .

On the other hand, if we consider the point Q1 = (a;), we may write
a; = p1Y; + P2z, Qi = P3Ti + paa, pi+ po = p3+pg = 1.
Thus, we have Ay = 3, Ao = p1pg, A3 = pgpyq ie.

Ay = D(Qle) Ao = D(leQ)D(Q17X3) A2 = D(XlaQ)D(XQan)
1 2 3

- D(X1, Q1) ~ D(X1,Q1)D(Xa, X3)’ ~ D(X1,Q1)D(X2, X3)
Similarly, considering the points QJ3 and @3, respectively, we find
_ D@, Qi) _ D(X;,Q)D(Xy, Q)
- D(Xi,Qi)  D(X;,Q;)D(Xk, X)
_ D(Xy,Q)D(Qr, X;)
-~ D(Xy, Qr)D(X;, X;)
Then, from (15) the generalization of (12) is found as

D(Q, Qi) 2 D(X,Q) )
= ——— " Jx,—h i | =————= ) D(Qk, X,;)D(X;, .
To= 2 pix gy M \ iz, g ) D@ XD Q)

If X4, Xo, X3 trace the same trajectory surface, then the difference between the
volumes is

JX1 — JQ = hQ(’U,O,’Uo)ZEij (

g

i,7,k =1,2,3 (cyclic).

D(X1, Q) \° o
D(Xkan)) D(Qr, X;)D(X;, Q).
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Then, we can give the following theorem:

Theorem 3. Let us consider a triangle on the plane P. If the vertices of this
triangle trace the same trajectory surface, then a different point on P traces another
surface. The volume between these trajectory surfaces depends on the distances (in
the sense of (11)) of the moving triangle and the homothetic scale h.
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