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SOME COMMENTS ON INJECTIVITY AND P-INJECTIVITY

R. YUE CHI MING

Abstract. A generalization of injective modules (noted GI-modules), distinct from

p-injective modules, is introduced. Rings whose p-injective modules are GI are

characterized. If M is a left GI-module, E = End(AM), then E/J(E) is von
Neumann regular, where J(E) is the Jacobson radical of the ring E. A is semi-

simple Artinian if, and only if, every left A-module is GI. If A is a left p. p., left

GI-ring such that every non-zero complement left ideal of A contains a non-zero
ideal of A, then A is strongly regular. Sufficient conditions are given for a ring

to be either von Neumann regular or quasi-Frobenius. Quasi-Frobenius and von

Neumann regular rings are characterized. Kasch rings are also considered.

Throughout, A denotes an associative ring with identity and A-modules are
unital. J , Z, Y will stand respectively for the Jacobson radical, the left singular
ideal and the right singular ideal of A. A is called semi-primitive or semi-simple
(resp. (a) left non-singular; (b) right non-singular) if J = (0) (resp. (a) Z = (0);
(b) Y = (0)). An ideal of A will always mean a two-sided ideal of A. A is called
left (resp. right) quasi-duo if every maximal left (resp. right) ideal of A is an ideal
of A. It well-known that J , Z, Y are ideals of A. A left (right) ideal of A is called
reduced if it contains no non-zero nilpotent elements.

Following C. Faith, write “A is VNR” if A is a von Neumann regular ring [8].
A is called fully (resp. (1) fully left; (2) fully right) idempotent if every ideal
(resp.(1) left ideal ; (2) right ideal) of A is idempotent.

It is well-known that A is VNR if and only if every left (right) A-module is
flat (Harada ((1956); Auslander (1957)). Also, A is VNR if and only if every left
(right) A-module is p-injective ([2], [4], [12], [22], [23]). Note that the Harada-
-Auslander’s characterization may be weakened as follows: A is VNR if and only
if every singular right A-module is flat (cf. [38, p. 147]).

Recall that a left A-module M is p-injective if, for any principal left ideal P
of A, every left A-homomorphism of P into M extends to one of A into M ([8,
p. 122], [20, p. 577], [21, p. 340], [26]). A is called a left p-injective ring if AA
is p-injective. P-injectivity is similarly defined on the right side. A generalization
of p-injectivity, noted YJ-injectivity, is introduced in [29](cf. also [22], [39]).
YJ-injectivity is also called GP-injectivity by other authors (cf. [4], [6], [15]).
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AM is called YJ-injective if, for any 0 6= a ∈ A, there exists a positive integer
n such that an 6= 0 and every left A-homomorphism of Aan into M extends to
one of A into M [29]. A is called a left YJ-injective ring if AA is YJ-injective.
YJ-injectivity is similarly defined on the right side.

Note that A is left YJ-injective if and only if for every 0 6= a ∈ A, there exists
a positive integer n such that anA is a non-zero right annihilator [29, Lemma 3].

Also, if A is right YJ-injective, then Y = J [28, Proposition 1] (this is the origin
of the notation). In recent years, p-injectivity and YJ-injectivity have drawn the
attention of many authors ([2], [4], [6], [8, Theorem 6.4], [11], [15], [16], [17],
[20], [22], [23], [40]).

We have consider the following generalization of injective modules.

Definition 1. A left A-module M is called GI (generalized injective) if, given
any left submodule C of M which is isomorphic to a non-zero complement left
submodule of M , any monomorphisms g, f of C into M , there exists a left
A-homomorphism h : M → M such that hf = g. Write “A is a left GI-ring”
if AA is GI.

Note that any simple left A-module is GI. Consequently, GI-modules generalize
effectively injective modules.

GI-modules need not be p-injective (otherwise, any arbitrary ring would be fully
left and right idempotent!).

The converse is not true either, as shown by the following result.

Theorem 1. The following conditions are equivalent:
(1) A is a left Noetherian ring whose p-injective left modules are injective;
(2) Every p-injective left A-module is GI.

Proof. (1) implies (2) evidently.
Assume (2). Let M be a p-injective left A-module, E the injective hull of AM .

Write Q =A M ⊕AE and S = {(y, o); y ∈ M}. Then AS is a direct summand
of AQ and AS ≈A M . If i : M → E is the inclusion map: j : M → Q and
k : E → Q the canonical injections, since AQ is the direct sum of two p-injective
left A-modules, then Q is p-injective and by hypothesis, AQ is GI. There exists a
left A-homomorphism h : Q → Q such that hki = j. If p : Q → M is the canonical
projection, then v = phk : E → M such that vi = pj = identity map on M .
Therefore AM is a direct summand of AE which yields M = E is injective. We
have shown that every p-injective left A-module is injective. Since any direct sum
of p-injective left A-modules is p-injective, then every direct sum of injective left
A-modules is injective which implies that A is left Noetherian [7, Theorem 20.1].
Thus (2) implies (1). �

As usual, A is called a left IF-ring if every injective left A-module is flat. The
next theorem is motivated by [38, Proposition 6].

Theorem 2. The following conditions are equivalent:
(1) A is quasi-Frobenius;
(2) A is a left IF-ring whose flat modules are GI;
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(3) The direct sum of any injective and any projective left A-modules is GI.

Proof. Assume (1). Since A is left perfect, any flat left A-module F is projective.
Now F is injective by [7, Theorem 24.20], hence GI. Therefore (1) implies (2).

Assume (2). Let Q be a direct sum of an injective and a projective left
A-modules. Then Q is the direct sum of two flat left A-modules which is therefore
flat. By hypothesis, AQ is GI and therefore (2) implies (3).

Assume (3). Let P be a non-zero projective left A-module, E the injective hull
of AP . Write Q =A P ⊕AE and S = {(y, 0); y ∈ P}. Then AS ≈AP and AS is a
direct summand of AQ. By hypothesis, AQ is GI. The proof of Theorem 1 then
shows that AP must be injective. By [7, Theorem 24.20], A is quasi-Frobenius
and (3) implies (1). �

Corollary 2.1. If flat left A-modules coincide with GI left A-modules, then A
is quasi-Frobenius.

Proof. By hypothesis, A is a left IF-ring. The corollary then follows from
Theorem 2 (2). �

The proof of Theorem 1 shows that if the direct sum of any two GI left
A-modules is GI, then every GI left A-module is injective. The next proposition
then follows.

Proposition 3. A is semi-simple Artinian if and only if every left A-module
is GI.

Given a left A-module M , End(M) denotes, as usual, the ring of endomor-
phisms of AM . We now turn to an analogous result of a well-known theorem [7,
Theorem 19.27].

Theorem 4. Let M be a GI left A-module. If E = End(M), J(E) is Jacobson
radical of E, then E/ J(E) is VNR and J(E) = {f ∈ E/ ker f is essential in AM}.

Proof. Write E = End(M), J(E) the Jacobson radical of E. Set V = {f ∈
E/ ker f is essential in AM}. It is well-known that V is an ideal of E. We first
show that V ⊆ J(E).

For any f ∈ V , d ∈ E, since ker f ∩ ker(1− df) = 0, then ker(1− df) = 0. With
u = 1− df , u is an isomorphism of M onto uM . Let v : uM → M be the inverse
isomorphism of u. Since AM is GI, with j : uM → M the inclusion map, there
exists an endomorphism h of AM such that hj = v.

Then
hu(m) = hj(u(m)) = v(u(m)) = m for all m ∈ M

which implies that hu is the identity map on M . Therefore 1− df is left invertible
in E for every d ∈ E, proving that f ∈ J(E).

Now, let 0 6= g ∈ E/ J(E), g ∈ E. Then g /∈ V (because V ⊆ J(E)). By
Zorn’s Lemma, there exists a non-zero complement submodule K of M such that
ker g⊕K is an essential submodule of AM . If r : K → M is the restriction of g to
K, then r is a monomorphism and consequently r : K → r(K) is an isomorphism.
Let s : r(K) → K be the inverse isomorphism. Then sr = identity map on K.
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Since K is a non-zero complement submodule of M , if i : K → M is the
canonical injection, then is : r(K) → M and is extends to an endomorphism t of
AM . For any k ∈ K,

t(g(k)) = t(r(k)) = isr(k) = k

which implies that K + ker g ⊆ ker(gtg − g) and hence gtg − g ∈ V ⊆ J(E).
Therefore gtg = g ∈ E/ J(E) which proves that E/ J(E) is VNR.

Now suppose there exists w ∈ J(E) such that w /∈ V . Then the above proof
shows that there exists z ∈ E such that y = w−wzw ∈ V . But there exists q ∈ E
such that (1− zw)q = 1. Therefore y = w(1− zw) yields yq = w · 1 = w, whence
w ∈ V (since V is an ideal of E), which is a contradiction! Therefore J(E) ⊆ V
and finally, J(E) = V = {f ∈ E/ ker f is essential in AM}. �

Proposition 5. If A is a left GI-ring, then every non-zero-divisor of A is in-
vertible in A. Consequently, A coincides with its classical left (and right) quotient
ring.

Proof. Let c be a non-zero divisor of A. Define f : Ac → A by f(ac) = a for all
a ∈ A. Then f is a well-defined left A-homomorphism which is a monomorphism.
Now AAc ≈AA and if Ac → A is the inclusion map, since AA is GI, there exists a
left A-homomorphism h : A → A such that hi = f . If h(1) = u ∈ A, then

1 = f(c) = hi(c) = h(c) = ch(1) = cu.

Then c = cuc which yields c(1−uc) = 0, whence uc = 1. Therefore c is invertible in
A and consequently, A coincides with its classical left (and right) quotient ring. �

Call A a left TC-ring if every non-zero complement left ideal of A contains a
non-zero ideal of A.

Corollary 5.1. If A is a left TC, left p.p., left GI-ring, then A is strongly
regular.

Proof. Since A is left non-singular, left TC, then A is reduced by [34, Lemma 1].
Now A is a reduced left p.p. ring which implies that every element a of A is of the
form a = ce, where c is a non-zero-divisor and e is a central idempotent in A [30,
Theorem 2]. By Proposition 5, c is invertible in A. Then

a = ce = cec−1c = cec−1ce (since e is central)

which yields a = ac−1a. Therefore A is VNR and since A is reduced, then A is
strongly regular. �

In [17, Example 2.4], the given ring A has the following property: for every
y ∈ J , the Jacobson radical of A, l(y) = r(y). This motivates the next result.

Proposition 6. The following conditions are equivalent:
(1) A is strongly regular;
(2) A is a left quasi-duo ring whose simple left modules are either YJ-injective

or flat and for every u ∈ J , l(u) = r(u).
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Proof. (1) implies (2) evidently.
Assume (2). Suppose there exists 0 6= v ∈ J such that v2 = 0. If I = AvA+l(v),

suppose that I 6= A. Let M be a maximal left ideal of A containing I. If AA/M
is YJ-injective, since v2 = 0, every left A-homomorphism of Av into A/M extends
to one of A into A/M .

Define

g : Av → A/M by g(av) = a + M for all a ∈ A.

Then
1 + M = g(v) = vy + M for some y ∈ A.

Since vy ∈ J ⊆ M , then 1 ∈ M , which contradicts M 6= A.
If AA/M is flat, then v ∈ I ⊆ M implies that v = vd for some d ∈ M [3,

p. 458]. Now (1−d) ∈ r(v) = l(v) ⊆ M which yields 1 ∈ M , again a contradiction!
Therefore I = A. Then 1 = s+ t, s ∈ AvA, t ∈ l(v) and v = sv. Since s ∈ J , 1− s
is left invertible in A which yields v = 0, contradicting our original hypothesis.
We have shown that J must be a reduced ideal of A.

Now suppose that J 6= 0. If 0 6= w ∈ J , since J is reduced, for any positive
integer m,

l(wm) = l(w) = r(w) = r(wm).

Set W = AwA + l(w). If W 6= A, let N be a maximal left ideal of A containing
W . If AA/N is YJ-injective, there exists a positive integer n such that every left
A-homomorphism of Awn into A/N extends to one of A into A/N . We may define
a left A-homomorphism

h : Awn → A/N by h(awn) = a + N for all a ∈ A.

Then
1 + N = h(wn) = wnz + N for some z ∈ A.

Now wnz ∈ J ⊆ N implies that 1 ∈ N , contradicting N 6= A. If AA/N is flat,
w = wc for some c ∈ N .

Now 1 − c ∈ r(w) = l(w) ⊆ N implies that 1 ∈ N , again a contradiction!
Therefore W = A and 1 = p + q, p ∈ AwA, q ∈ l(w), whence w = pw.

Now 1 − p is left invertible in A which yields w = 0, contradicting our first
hypothesis. We have proved that J = 0. Since A is left quasi-duo, then A must be
a reduced ring (cf. the proof of “(2) implies (3)” in [27, Theorem 2.1]). Now A is
a left quasi-duo reduced ring whose simple left modules are either YJ-injective or
flat which yields A strongly regular by a result of Chen and Ding [5, Corollary 7].
Thus (2) implies (1). �

In the above proposition, the expression “l(u) = r(u)” is not superfluous as
shown by the following example.

Example. If A denotes the 2 × 2 upper triangular matrix ring over a field,
then A is a left and right quasi-duo, Artinian, hereditary ring whose simple one-
sided modules are either injective or projective but not semi-prime (indeed, the
Jacobson radical J of A is non-zero and J2 = 0).
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Singular modules play an important role in the theory of modules and rings.
It is well-known that A is a left non-singular ring if and only if A has a VNR
maximal left quotient ring Q. In that case, AQ is the injective hull of AA and
Q is a left self-injective ring. If A is left non-singular, then for any injective left
A-module M , the singular submodule Z(M) is injective [25, Theorem 4]. If A is
left self-injective regular, then for any essentially finitely generated left A-module
M , Z(M) is a direct summand of AM [39, Corollary 10]. The right singular ideal
will be crucial in the next result. Recall that M is a maximal right annihilator
ideal of A if M = r(S) for some non-zero subset S of A such that for any right
annihilator R which strictly contains M , R = A. In that case, M = r(s) for any
0 6= s ∈ S.

Proposition 7. Let A be right YJ-injective such that each finitely generated
right ideal is either a projective right annihilator or a maximal right annihilator.
Then A is either VNR or quasi-Frobenius.

Proof. First suppose that Y 6= 0. For any 0 6= y ∈ Y , since r(y) is an essential
right ideal of A, then yA cannot be a projective right annihilator. Therefore yA
is a maximal right annihilator.

If u /∈ yA, then yA + uA = A, whence Y = yA. We have just shown that Y
is a minimal right ideal of A. If a ∈ A, a /∈ Y , then aA + yA = A. This shows
that Y must be a maximal right ideal of A. Since Y cannot contain a non-zero
idempotent, then Y is an essential right ideal of A. For any non-zero proper right
ideal I of A, I ∩ Y 6= 0 which implies that I ∩ Y = Y by the minimality of Y .
Therefore Y ⊆ I which yields Y = I by the maximality of Y . We have proved
that Y is the unique non-zero proper right ideal of A. A is therefore right Artinian
local with J = Y .

Let V denote a minimal left ideal of A. If V = Av, v ∈ A, either V 2 = 0 or V
is a direct summand of AA. If v2 = 0, since A is right YJ-injective, Av is a left
annihilator by [29, Lemma 3]. If V is a direct summand of AA, then V is again
a left annihilator. We have shown that every minimal left ideal of A must be a
left annihilator. Since, by hypothesis, every finitely generated right ideal of A is a
right annihilator, then A is quasi-Frobenius by [18, Proposition 1].

Now suppose that Y = 0. If 0 6= b ∈ A such that bA is a maximal right
annihilator, since Y = 0, bA cannot be an essential right ideal of A. Therefore
bA ∩ cA = 0 for some 0 6= c ∈ A. Now bA ⊕ cA = A (bA being a maximal right
annihilator). Then every principal right ideal of A must be projective.

Now for any 0 6= d ∈ A, there exists a positive integer m such that Adm is a
non-zero left annihilator [29, Lemma 3]. Since dmA is a projective right A-module,
then r(dm) is a direct summand of AA. Therefore Adm = l(r(Adm)) = l(r(dm))
is a direct summand of AA. We have just proved that every left A-module must
be YJ-injective. By [40, Theorem 9], A is VNR. �

Proposition 8. The following conditions are equivalent for a ring A with cen-
tre C:

(1) A is VNR;
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(2) A is a semi-prime ring whose essential left ideals are idempotent and for
every maximal ideal M of C, A/AM is a VNR ring.

Proof. (1) implies (2) evidently.
Assume (2). If d ∈ C such that d2 = 0, then (Ad)2 = Ad2 = 0 implies that

d = 0. C is therefore a reduced ring. For any c ∈ C, let K be a complement
left ideal of A such that L = (Ac + l(c))⊕K is an essential left ideal of A. Then
Kc = cK ⊆ Ac ∩K = 0 implies that K ⊆ l(c), whence K ⊆ K ∩ (Ac + l(c)) = 0.
Therefore L = Ac + l(c) and by hypothesis, L = L2.

Now c =
n∑

i=1

(aic + ui)(bic + vi), ai, bi ∈ A, ui, vi ∈ l(c), and

c−
n∑

i=1

aicbic =
n∑

i=1

(aicvi + uibic + uivi) =
n∑

i=1

uivi,

since aicvi = aivic = 0, uibic = uicbi = 0. If w ∈ Ac ∩ l(c), w = dc, d ∈ A,
dc2 = wc = 0 and therefore cAdc = 0 which implies that (Adc)2 = 0. Since A is
semi-prime, Adc = 0 which yields w = dc = 0.

Now c−
n∑

i=1

aicbic =
n∑

i=1

uivi ∈ Ac ∩ l(c) = 0 which yields c =
n∑

i=1

aicbic = czc,

where z =
n∑

i=1

aibi ∈ A. Set y = c2z3. Then

cyc = (czc)zczc = (czc)zc = c and c2z = zc2 = czc = c.

For every b ∈ A,
zc2b = cb = bc = bc2z = c2bz

and hence z3c2b = c2bz3 which shows that

yb = c2z3b = z3c2b = c2bz3 = bc2z3 = by,

whence y ∈ C. Therefore C is VNR. Then (2) implies (1) by [1, Theorem 3]. �

Proposition 9. The following conditions are equivalent for a commutative
ring A:

(1) A is VNR;
(2) For each non-zero principal ideal P of A, there exists a positive integer n

such that Pn is generated by a non-zero idempotent;
(3) For each non-zero principal ideal P of A, there exists a positive integer n

such that Pn is a non-zero flat complement ideal of A.

Proof. It is clear that (1) implies (2) while (2) implies (3).
Assume (3). First suppose that A is not reduced. Then there exists 0 6= b ∈ A

such that b2 = 0. By hypothesis, Ab is a non-zero flat complement ideal of A.
Now Ab ≈ A/l(b) and since b ∈ l(b), then b = bd for some d ∈ l(b) [3, p. 458].
Therefore bd = db = 0 implies that b = 0, a contradiction! We have shown that A
must be reduced.

By [33, Proposition 1], every complement ideal of A is an annihilator. By
hypothesis, for any 0 6= a ∈ A, there exists a positive integer n such that Aan
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is a non-zero complement ideal of A and hence Aan is an annihilator. By [29,
Lemma 3], A is YJ-injective. Then (3) implies (1) by [29, Lemma 5]. �

Question. Is A VNR if every finitely generated right ideal of A is a flat
complement right ideal of A?

Recall that A is a right coherent ring if every finitely generated right ideal of A
is finitely presented. For example, VNR rings are coherent.

Proposition 10. If A is a commutative ring, then every factor ring of A is an
IF-ring if and only if every factor ring of A is a coherent p-injective ring.

Proof. Suppose that every factor ring B of A is a coherent p-injective ring.
Then every factor ring B is a self FP-injective ring by [35, Proposition 3]. By
[13, Corollary 2.5], every finitely generated ideal of B is an annihilator. Since
B is coherent, then B is an IF-ring by [9, Theorem 2.1]. The converse is well-
known. �

Proposition 11. The following conditions are equivalent:
(1) Every factor ring of A is QF;
(2) A has the following properties: (a) A satisfies the maximum condition on

left annihilators; (b) Every finitely generated left ideal of A is principal; (c)
A left A-module M is p-injective if and only if M is flat.

Proof. Assume (1). Then A is a principal left ideal ring which is QF [7, Propo-
sition 25.4.6B]. Now every p-injective left A-module M is injective, which implies
that M is flat [7, Theorem 24.12]. If AN is flat, since A is left perfect, then AN
is projective [21, p. 392] which implies that AN is injective [7, Theorem 24.20].
Therefore AN is p-injective and (1) implies (2).

Assume (2). Then A is a left p-injective ring. Since A is a left IF-ring by (c),
then A is right p-injective. �

Since A is left p-injective with maximum condition on left annihilators, then A
is right Artinian [22, p. 34]. Then (2) implies (1) by [18, Proposition 2] and [7,
Proposition 25.4.6B].

(Condition (a) is not superfluous since any VNR ring satisfies Conditions 2 (b),
(c).)
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