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ASCOLI’S THEOREM
IN ALMOST QUIET QUASI-UNIFORM SPACE

S. GANGULY and R. SEN

Abstract. In this paper we have generalized Ascoli’s theorem on almost quiet

quasi-uniform space. We have also discussed some properties of the collection of all
δ-continuous functions and the collection of all δ-equicontinuous functions.

1. Introduction

In [1] it is shown that Doitchinov’s concept of quietness is sufficient to extend some
classical results regarding uniform spaces to the much broader setting of quasi-
uniform spaces. In [2] almost quiet quasi-uniform space has been introduced and
it has been shown that a topological space is almost quiet quasi uniformizable if
and only if it is almost regular.

In this paper, endeavour has been made to generalize Ascoli’s theorem in almost
quiet quasi-uniform spaces.

Throughout this paper, for int(cl (A)) where A ⊂ X (where X is a topological
space), we shall use the notation Ȧ.

A quasi-uniformity on a set X is a filter U on X×X such that (a) each member
of U contains the diagonal of X × X and (b) if U ∈ U , then V◦V ⊂ U for some
V ∈ U . The pair (X,U) is called a quasi-uniform space. U generates a topology
τ(U) containing all subsets G of X such that for each x ∈ G, there exists U ∈ U
such that U [x] ⊂ G.

Definition 1.1. [2] A topological space (X, τ) is said to be almost quiet quasi-
uniformizable iff there exists a compatible quasi-uniformity U with the following
properties: for U ∈ U and x ∈ X, there exists Vx ∈ U for which the following
conditions hold: if {xα : α ∈ A} & {yβ : β ∈ B} be two nets such that (x, xα) ∈ Vx

for α ∈ A, (yβ , y) ∈ Vx (for some y ∈ X), for β ∈ B, and (yβ , xα) → 0 ( i.e., for
any V ∈ U , ∃ βV & αV belonging to B and A respectively such that (yβ , xα) ∈ V

for β ≥ βV & α ≥ αV ), then y ∈ ˙
U [x], where the closure and the interior of U [x]
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and U [x] respectively are taken under the topology τ ; we call Vx subordinated to
U with respect to x.

Definition 1.2. [6] A topological space (X, τ) is almost regular if for every
point x ∈ X and each neighbourhood M of x, there exists an open set U such that
x ∈ U ⊂ U ⊂ Ṁ , where M = cl (M) and Ṁ = int(cl M).

Definition 1.3. [5] Let X be a topological space. A subset S ⊂ X is said
to be regular open (respectively, regular closed) if int (cl S) = S (respectively,
cl (int S) = S). A point x ∈ S is said to be a δ-cluster point of S if S ∩ U 6= ∅,
for every regular open set U containing x. The set of all δ-cluster points of S is
called the δ-closure of S and is denoted by [S]δ. If [S]δ = S, then S is said to be
δ-closed. The complement of a δ-closed set is called a δ-open set.

For every topological space (X, τ), the collection of all δ-open sets forms a
topology for X, which is weaker than τ . This topology τ∗ has a base consisting of
all regular open sets in (X, τ).

Definition 1.4. [5] A function f : X → Y is said to be δ-continuous at a
point x ∈ X, if for every regular open neighbourhood V of f(x) in Y , ∃ a δ-open
neighbourhood U of x such that f(U) ⊆ V .

The collection of all δ-continuous functions from X to Y is denoted by D(X, Y ).

Definition 1.5. [2] Let F be a family of functions from a topological space X
to a quasi-uniform space (Y,U). Then F is called δ-equicontinuous at x ∈ X, if
for V ∈ U , there exists a regular open neighbourhood N of x such that f(N) ⊂

˙
V [f(x)], for every f ∈ F .

Definition 1.6. [7] A set A ⊂ (X, τ) is said to be N-closed in X or simply
N-closed, if for any cover of A by τ -open sets, there exists a finite subcollection
the interiors of the closures of which cover A; interiors and closures are of course
w.r.t. τ .

A set (X, τ) is said to be nearly compact iff it is N-closed in X.

Definition 1.7. [3] The N-R topology on Y X denoted by N< is generated by
the sets of the form {T (C,U) : C is N-closed in X and U is regular open in Y },
where T (C,U) = {f ∈ Y X : f(C) ⊆ U}.

Theorem 1.8. [3] Let Z ⊂ Y X be endowed with the N-R topology N<. Then
T (x,U) is δ-open in (Z,N<), where U is regular open in Y and Y is almost regular.

Definition 1.9. [3] Let Z ⊂ Y X ; if τ is such a topology on Z such that
P : Z×X → Y : (f, x) → f(x) is δ-continuous, then we say that τ is δ-admissible.

For a topological space X and a quasi-uniform space (Y,U), the quasi-uniformity
Q of quasi-uniform convergence on Y X is defined by the collection {LV : V ∈
U} where LV = {(f, g) ∈ Y X × Y X : (f(x), g(x)) ∈ V, for each x ∈ X}; the
topology τ(Q) generated by Q is called the topology of quasi-uniform convergence.
The basic τ(Q) neighbourhood of an arbitrary f ∈ Y X is of the form LV [f ] =
{g ∈ Y X : (f, g) ∈ LV }.
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Another quasi-uniformity on Y X can be constructed by considering quasi-
uniform convergence on each member of a family ℘ of subsets of the domain
space. Explicitly, if F is a family of functions on a set X to a quasi-uniform space
(Y,U) and ℘ is a family of subsets of X, then the quasi-uniformity of quasi-uniform
convergence on members of ℘ abbreviated as U|℘ has for a subbase, the family of
all sets of the form {(f, g) : (f(x), g(x)) ∈ V for all x ∈ A;V ∈ U , A ∈ ℘}. We
denote it by LA

V .

Lemma 1.10. [3] If F ⊂ Y X be endowed with a topology ℘ where the subbase
for ℘ is {T (x,U) : x ∈ X, U is regular open in Y }, then each T (x, U) is δ-open in
℘ if Y is almost regular.

Note 1.11 ([2]). If W ∈ U is a regular open surrounding in a uniform space
(X,U) then W [x] is a regular open subset of X.

2. Main Results

Proposition 2.1. [3] Let X be a topological space and let (Y,U) be an almost
quiet quasi-uniform space. If H is a δ-equicontinuous collection of functions, then
its closure H℘

relative to the topology ℘ is also δ-equicontinuous.

Lemma 2.2. [4] Let H be an N-closed subset of an almost quiet quasi-uniform
space (X,U). Then for some regular open set U of X, ∃ a surrounding D ∈ U
such that D[H] ⊂ U .

Theorem 2.3. [5] The image of an N-closed set under a δ-continuous map is
N-closed.

Proposition 2.4. Let X be a topological space and let (Y,U) be an almost quiet
quasi-uniform space. Then the topology of quasi-uniform convergence on N-closed
sets coincides with the N-R topology on D(X, Y ).

Proof. Let τ denotes the topology of quasi-uniform convergence on N-closed
sets and σ denotes the N-R topology on D(X, Y ). Consider T (K, U) ∈ σ and let
f ∈ T (K, U), then f(K) ⊂ U . Since f(K) is N-closed and U is regular open in
(Y,U), by Lemma 2.2 there exists a surrounding V ∈ U such that V [f(K)] ⊂ U .
Choose

LK
V = {(f, g) : (f(x), g(x)) ∈ V, ∀x ∈ K}.

Then LK
V ∈ U|∞ (where ∞ is the collection of all N-closed sets in X). We show

that for any f ∈ T (K, U), f ∈ LK
V [f ] ⊂ T (K, U) showing that T (K, U) ∈ τ , i.e.,

σ ⊂ τ : in fact, let g ∈ LK
V [f ]; then (f, g) ∈ LK

V , i.e., (f(x), g(x)) ∈ V for all x in
K which implies that g(x) ∈ V [f(x)] for all x in K, i.e., g(K) ⊂ V [f(K)] ⊂ U .
Thus g ∈ T (K, U).

Now, let S ∈ τ and let f ∈ S where f ∈ D(X, Y ). Then there is a LK
V ∈ U|∞

(K ∈ ∞) such that f ∈ LK
V [f ] ⊂ S. We show that

n⋂
i=1

T (Ki, Ui), for N-closed sets

Ki ⊂ X; i = 1, 2, . . . , n and regular open sets Ui, i = 1, 2, . . . , n in Y contains
f and is contained in LK

V [f ]. Choose a regular open symmetric W ∈ U such
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that W ◦ W ◦ W ◦ W ⊂ V , K ⊂ X being N-closed, f(K) is N-closed in Y and
{W [f(x)] : x ∈ K} is a cover of f(K) and has a finite subcover say,

{W [f(xi)] : i = 1, 2, . . . , n}, xi ∈ K.(1)

Obviously, W [f(xi)] are regular open neighbourhoods of f(xi), i = 1, 2, . . . , n (by
Note 1.11); f : X → Y being δ-continuous, f−1[W [f(xi)]], i = 1, 2, . . . , n are
regular open neighbourhoods of xi in X, i = 1, 2, . . . , n. Choose, Ki = K ∩
f−1[W [f(xi)]]. Then Ki’s are N-closed in X.

Now,
W ⊂ W ◦W ◦W implies W ◦W ◦W ∈ U .

Choose, Ui = (W ◦ W ◦ W )[f(xi)]. We show that, for regular open W ,

(W ◦ W ◦ W )[x] is regular open. Let y ∈ ˙(W ◦W ◦W )[x] and we show that
W [x] × W [x] ⊂ W . Let (x, y) 6∈ (W ◦W ◦W ). Since W ⊂ (W ◦W ◦W ),
(x, y) 6∈ W . Then there exists neighbourhoods Ux and Uy of x and y respectively
such that

(Ux × Uy) ∩W = φ.

If t ∈ Uy, then (x, t) 6∈ W implies t 6∈ W [x], i.e., Uy ∩W [x] = φ, i.e., y 6∈ W [x].
Hence, (x, y) 6∈ W [x]×W [x]. Thus,

W [x]×W [x] ⊂ W,

i.e.,
(x, y) ∈ int (W ) = W ⊂ W ◦W ◦W,

i.e.,
y ∈ (W ◦W ◦W )[x].

Therefore,
˙(W ◦W ◦W )[x] ⊂ (W ◦W ◦W )[x].

Hence, (W ◦W ◦W )[x] is regular open. Thus, Ui’s are regular open in Y for

i = 1, 2, . . . , n. Let g ∈
n⋂

i=1

T (Ki, Ui), let x ∈ K. Then f(x) ∈ W [f(xi)] for some

i : 1 ≤ i ≤ n by (1), i.e., x ∈ f−1[W [f(xi)]], i.e., x ∈ Ki.
Now

g ∈ T (Ki, Ui) ⇒ g(Ki) ⊂ Ui ⇒ g(x) ∈ Ui

⇒ g(x) ∈ (W ◦W ◦W )[f(xi)]

⇒ (f(xi), g(x)) ∈ W ◦W ◦W.(2)

Also,

f(x) ∈ W [f(xi)] ⇒ (f(xi), f(x)) ∈ W.(3)

By (2) and (3),
(f(x), g(x)) ∈ W ◦W ◦W ◦W ⊂ V.
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Since x is any point of K, (f(x), g(x)) ∈ V for all

x ∈ K ⇒ (f, g) ∈ LK
V ⇒ g ∈ LK

V [f ] ⇒
n⋂

i=1

T (Ki, Ui) ⊂ LK
V [f ].

We now show that f ∈ T (Ki, Ui) for each i = 1, 2, . . . , n, i.e., f(Ki) ⊂ Ui for each
i = 1, 2, . . . , n.

Now, f(Ki) ⊂ W [f(xi)], i = 1, 2, . . . , n implies

f(Ki) ⊂ (W ◦W ◦W )[f(xi)] = Ui, i = 1, 2, . . . , n.

Hence
f ∈ T (Ki, Ui), for i = 1, 2, . . . , n.

Thus the proposition is proved. �

Lemma 2.5. Each jointly δ-continuous topology on N-closed sets is larger than
the N-R topology.

Proof. Suppose that a topology τ for Z ⊂ Y X is jointly δ-continuous on
N-closed sets, U is a regular open subset of Y , K is an N-closed subset of X
and P is the map such that P (f, x) = f(x). It must be shown that T (K, U) is
open to show that τ ⊃ N<.

The set V = (Z × K) ∩ P−1(U) is regular open in Z × K because P |Z×K is
δ-continuous for any N-closed K ⊂ X. If f ∈ T (K, U), then

f(K) ⊂ U, i.e., {f} ×K ⊂ P−1(U) i.e., {f} ×K ⊂ V.

Now {f} is N-closed in Z and K is so in X. Cover {f} × K by basis elements
U ×W lying in V . The space {f} ×K is N-closed, since it is δ-homeomorphic to
K. Therefore we can choose finitely many Ui, Wi, i = 1, 2, . . . , n such that

{f} ×K ⊂ U̇i × Ẇi.

Then int (cl (Ui)), i = 1, 2, . . . , n are open sets. Let N =
n⋂

i=1

U̇i. Thus N is open

and contains f . We assert that the sets U̇i × Ẇi, which were chosen to cover
{f} ×K actually cover N ×K. Let (g, y) ∈ N ×K. Consider (f, y) ∈ {f} ×K.
Then (f, y) ∈ U̇i × Ẇi for some i, i.e., y ∈ Ẇi. Because g ∈ N , g ∈ U̇i, for each
i = 1, 2, . . . , n. Therefore, (g, y) ∈ U̇i × Ẇi. Since all the sets U̇i × Ẇi lie in V
and cover N ×K, N ×K ⊂ V . Hence there exists a τ -neighbourhood N of f such
that N ×K ⊂ P−1(U). For each f ∈ N , f(K) ⊂ U , i.e., N ⊂ T (K, U). Thus

f ∈ N ⊂ T (K, U)

gives T (K, U) is open in τ and hence τ ⊃ N<. �

Proposition 2.6. Let X be a topological space and (Y,U) be an almost quiet
quasi-uniform space. If F is a δ-equicontinuous collection of functions, then the
N-R topology coincides with the topology ℘.
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Proof. We consider P : F ×X → Y : (f, x) → f(x). We show that if F has the
topology ℘, then P is δ-continuous. Let W ∈ U be regular open. Choose V ∈ U
such that V ◦ V ⊂ U . Consider the set

T = {h : h(x) ∈ V [f(x)]}.(4)

By Lemma 1.10 T is a neighbourhood of f in (F, ℘). F being δ-equicontinuous,
there exists a regular open neighbourhood U of x such that

f∗(U) ⊂ V [f∗(x)] for all f∗ ∈ F.(5)

Consider the neighbourhood T × U of (f, x) and let (g, y) ∈ T × U . Then
g(x) ∈ V [f(x)] by (4) and g(y) ∈ V [g(x)] by (5). Hence, (f(x), g(x)) ∈ V and
(g(x), g(y)) ∈ V giving (f(x), g(y)) ∈ V ◦ V ⊂ W , i.e., g(y) ∈ W [f(x)], i.e.,
P (g, y) ∈ W [f(x)], i.e.,

P (T × U) ⊂ W [f(x)].
Hence P is δ-continuous and thus joint δ-continuity of ℘ follows. Now each jointly
δ-continuous topology is larger than the N-R topology and the N-R topology co-
incides with the topology of quasi-uniform convergence on N-closed sets since
F ⊂ D(X, Y ).

Now we show that τ℘ ⊂ N<. For each x ∈ X, {x} is N-closed in X and thus

{T (x,U) : x ∈ X, U is regular open in Y }
⊂ {T (C,U) : C is N-closed in X and U is regular open in Y }

and thus τ℘ ⊂ N< in Z ⊂ Y X . Thus we can conclude that if F is a δ-equicontinuous
collection of functions, then the N-R topology coincides with the topology ℘. �

3. Ascoli’s theorem in almost quiet quasi-uniform space

In this section we generalize Ascoli’s theorem in almost quiet quasi-uniform space.

Theorem 3.1. Let X be a nearly compact topological space and (Y,U) be an
almost quiet quasi-uniform T2 space. Let τN denote the topology of quasi-uniform
convergence on N-closed sets. Then a subset H ⊂ D(X, Y ) is τN -compact iff

(a) H is τN -closed.

(b) Πx(H) is compact for each x ∈ X and
(c) H is δ-equicontinuous.

Proof. Since H is δ-equicontinuous by Proposition 2.1, its τ℘ closure H
℘

is
also δ-equicontinuous. But H

℘
is a τ℘-closed subset of the τ℘-compact prod-

uct set Π{Πx(H) : x ∈ X} and thus H
℘

is itself τ℘-compact. Using Proposi-
tion 2.4 and Proposition 2.6 above we conclude that H

℘
is τN -compact. Now, the

τN -closed subset H of the τN -compact subset H
℘

is also τN -compact. Hence H is
τN -compact.

Conversely, let H ⊂ D(X, Y ) be τN -compact. Since Y is T2, we first show that
(D(X, Y ), τN ) is also so. Let f, g ∈ D(X, Y ) be such that f 6= g. Then ∃ x ∈ X
such that f(x) 6= g(x). Since Y is T2, there exists disjoint open neighbourhoods
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U and V such that f(x) ∈ U , g(x) ∈ V . Hence, f(x) ∈ U = int U ⊂ int (U) = U̇ .
Now,

U ∩ V = φ ⇒ U ∩ V = φ ⇒ U̇ ∩ V = φ ⇒ V ⊆ Y \ U̇ ,

i.e.,

V = int V ⊆ int (Y \ U̇) = M.

Then M is regular open and g(x) ∈ M with U̇ ∩M = φ. Now, {x} is N-closed in
X and f ∈ L

{x}
U̇

, g ∈ L
{x}
M with L

{x}
U̇

∩ L
{x}
M = φ. Hence (D(X, Y ), τN ) is T2. If

H is τN -compact, then H is τN -closed and Πx(H) is compact for each x ∈ X and
hence closed in Y . Thus Πx(H) is compact in Y for each x ∈ X.

Now if Z ⊂ Y X and P ⊂ X, then Z|P = {f |P : f ∈ Z}. Let C denote
the collection of all N-closed sets in X and let P ∈ C. We show that H|P is
δ-equicontinuous on P . Let x0 ∈ P and W ∈ U be regular open. Choose regular
open symmetric V ∈ U such that V ◦ V ◦ V ⊂ W . Then {LP

V [f ] : f ∈ H} is a
cover of H by neighbourhoods of members of H in the topology of quasi-uniform
convergence on N-closed sets and by the given condition of τN -compactness, there

exists fi, i = 1, 2, . . . , n (belonging to H) such that H ⊂
n⋃

i=1

LP
V [fi]. Let f ∈ H.

Then

f ∈ LP
V [fi] for some i.(6)

Since each fi|P is δ-continuous at x0, there is a regular open neighbourhood Ui of
x0 in P such that fi|P (Ui) ⊂ V [fi(x0)], i.e.

x ∈ Ui ⇒ (fi(x0), fi(x)) ∈ V.(7)

Let U =
n⋂

i=1

Ui. Obviously U is a regular open neighbourhood of x0 in P . We show

that f |P (U) ⊂ W (f(x0)) for all f ∈ H. Let f ∈ H. By (6), f ∈ LP
V [fi] for some

i, i.e., (fi(x), f(x)) ∈ V , for all x ∈ P and hence

(fi(x0), f(x0)) ∈ V [since x0 ∈ P ].(8)

Again

x ∈ U ⇒ x ∈ P ⇒ (fi(x), f(x)) ∈ V.(9)

From (7), (8) and (9) we get, x ∈ U ⇒ (f(x0), f(x)) ∈ V ◦ V ◦ V ⊂ W for each
f ∈ H ⇒ f(x) ∈ W [f(x0)] for all f ∈ H, i.e.,

f(U) ⊂ W [f(x0)] for all f ∈ H,

i.e.,
f |P (U) ⊂ W [f(x0)] for each f ∈ H.

Since X is nearly compact, X is N-closed in X. Hence f(U) ⊂ W [f(x0)] for all
f ∈ H, i.e., H is δ-equicontinuous. �
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