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SOME RESULTS FOR ONE CLASS OF DISCONTINUOUS
OPERATORS WITH FIXED POINTS

R. MORALES and E. ROJAS

Abstract. In 1986, L. Nova ([11]) defined a class of operators with fixed points

called D(a, b) which includes many classic operators with fixed points. In this paper

we give a compilation about existing results in this class. In addition we will prove
some results for sequences of operators of class D(a, b), and we will give conditions

for this operator class to be closed under sum and composition (or product).

Introduction

Let A be an arbitrary set and T : A −→ A a map. The fixed point theory
consists of finding conditions for A and/or T such that there is at least one point
a ∈ A such that Ta = a. If this point exists it is called fixed point of T .
We consider convenient to indicate some results that have made history in the
fixed point theory. The topological version of this theory was given in 1912 by
L. Brouwer (see, [8]) who proved the following result:

Let f : B[a, r] ⊂ Rn −→ B[a, r] be a continuous function,
then there exists z ∈ B[a, r] such that f(z) = z where
B[a, r] is the closed ball with center in a and radius r > 0.

The Brouwer’s Theorem in the one dimensional case is the Cauchy-Bolzano’s
Theorem, that states the following:

Let f : [a, b] −→ [a, b] be a continuous function, then there exists
x0 ∈ [a, b] such that:

f(x0) = x0.

The Brouwer’s Theorem was generalized for Banach spaces of infinite dimen-
sional by S. Schauder (see, [8]) in the following way:

Let (E, ‖.‖) be a Banach space, K ⊂ E a compact and convex subset
of E and T : K −→ K a continuous map. Then there exists z ∈ K
such that Tz = z.

The following result corresponds to the metric version of the Schauder’s Theo-
rem.
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Let (M,d) be a complete metric space and T : M −→ M a map.
Then T has a fixed point in M if it satisfies any of the following
conditions:

C1. (Banach, 1922, see [8]) T is an α-contraction or Banach contraction, this is:

d(Tx, Ty) ≤ α d(x, y) ∀x, y ∈ M, 0 ≤ α < 1.

C2. (Kannan, 1969, 1971, [9, 10]) T satisfies: there is α ∈ [0, 1
2 ) such that

d(Tx, Ty) ≤ α(d(x, Tx) + d(y, Ty)) ∀x, y ∈ M.

C3. (Chatterge, 1972, [2]) T satisfies the following condition: there is α ∈ [0, 1
2 )

such that

d(Tx, Ty) ≤ α(d(x, Ty) + d(y, Tx)) ∀x, y ∈ M.

C4. (Reich, 1971, [14, 15]) T satisfies:

d(Tx, Ty) ≤ a1d(x, y) + a2d(x, Tx) + a3d(y, Ty)
∀x, y ∈ M, 0 ≤ a1 + a2 + a3 < 1.

C5. T satisfies:
d(Tx, Ty) ≤ a1d(x, y) + a2d(x, Ty) + a3d(y, Tx)

∀x, y ∈ M, 0 ≤ a1 + a2 + a3 < 1.

C6. (Hardy-Rogers, 1973, [6]) ∀x, y ∈ M , T satisfies: there are ai ≥ 0 such that

A =
5∑

i=1

ai < 1 and

d(Tx, Ty) ≤ a1d(x, y) + a2d(x, Tx) + a3d(y, Ty) + a4d(x, Ty) + a5d(y, Tx).

In addition, K. Goebel et al [5] extended this result to the case A ≤ 1
for continuous mapping of a nonempty bounded and convex subset K of a
uniformly convex Banach space into itself. And J. Lopez-Gomez [12] proved
that T has a unique fixed point excluding the hypothesis T continuous.

The above conditions are independent among each other in the following sense:
1. All map C1. is a continuous map.
2. There is a function that satisfies the condition C2. but not the condition

C1.

T : [0, 1] −→ R Tx =


x

4
, x ∈

[
0,

1
2

)
x

5
, x ∈

[
1
2
, 1

]
.

Then T is discontinuous, and therefore, T is not C1. and it is easy to see
that it satisfies C2.

3. There is a function that satisfies C1. but not C2.

T : [0, 1] −→ [0, 1] Tx =
x

3
.
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It is clear that T is continuous. To see that it is not C2. take y = 0,
x = 1/3.

4. There is a function that is neither C1. nor C2. but that is C4.

T : [0, 1] −→ [0, 1] Tx =


7
20

x, x ∈
[
0,

1
2

)
3
10

x, x ∈
[
1
2
, 1

]
.

It is clear that T is discontinuous, and therefore is not C1. to see that it is
not C2. take x = 0, y = 1/4.

5. There is a function that satisfies C2. but that does not satisfy C3.

T : R −→ R Tx = −x

2
To see that T is not C3. take x = 2 and y = −2.

6. There is a function that satisfies C3. but not C2.

T : [0, 1] −→ [0, 1] Tx =


x

2
, x ∈ [0, 1)

0, x = 1.

Take x = 1/2 and y = 0 to see that T is not C2.
In [3], W. R. Derrick and L. Nova defined the following operator classes:
Let (E, ‖.‖) be a Banach space, K ⊂ E closed and T : K −→ K an arbitrary

operator that satisfies one of the following conditions, for a, b ≥ 0 and any x, y ∈ K.

‖(Tx− Ty)− b [(x− Tx) + (y − Ty)] ‖ ≤ a‖x− y‖,(A)

‖(Tx− Ty)− b(x− Tx)‖ ≤ a‖x− y‖+ b‖y − Ty‖,(B)

‖(Tx− Ty)− a(x− y)‖ ≤ [‖x− Tx‖+ ‖y − Ty‖] ,(C)

‖Tx− Ty‖ ≤ a‖x− y‖+ b [‖x− Tx‖+ ‖y − Ty‖] .(D)

We shall say T belongs or is of class A(a, b) (respectively B(a, b), C(a, b), D(a, b)),
when T satisfies the condition (A) (respectively (B), (C), (D)).

Let’s note that a mapping satisfying any of the above conditions is a contraction
map (C1.) when b = 0 and 0 < a < 1. In addition a map C(0, b) is a Kannan’s
map; this is, (C2.).

Kannan proved that T has a unique fixed point if 0 < b < 1
2 , he proved the

uniqueness of fixed points with b = 1
2 in uniformly convex spaces under certain

restrictions.
Let’s see the similarities and contrast these four classes. One similarity is that

if T has a fixed point, it is unique whenever 0 ≤ a < 1. Observe, using the triangle
inequality, that any map of class A(a, b), B(a, b) or C(a, b) is of class D(a, b).

Moreover, we can notice that no continuity conditions have ever been put on
T , therefore, these classes do not exclude discontinuous operators.

In particular, class D(1, 1) contains all operators from E onto itself, since

‖Tx− Ty‖ ≤ ‖Tx− x‖+ ‖x− y‖+ ‖y − Ty‖.
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Which is a trivial application of the triangle inequality. Since the three first
classes are included in the fourth class, of the above, we will restrict our attention
on class D(a, b).

The following example due to L. Nova [11] show that this class in not empty.

Example 1. Let’s consider the following discontinuous operator.

Tx =


γx, 0 ≤ x <

1
2
,

ρx,
1
2
≤ x ≤ 1,

with 0 < γ, ρ < 1, γ 6= ρ.
Let’s remember that class D(a, b) satisfies:

‖Tx− Ty‖ ≤ a‖x− y‖+ b [‖x− Tx‖+ ‖y − Ty‖] .

Let’s see that T ∈ D(0, µ/(1− µ)) where µ = max{γ, ρ}.
∀x ∈ [0, 1/2) we have that

Txi = γxi =⇒ xi − Txi = −xiγ + xi

=⇒ xi − Txi = xi(1− γ)

=⇒ γ

1− γ
(xi − Txi) = γxi.

From which follows

|Tx1 − Tx2| ≤ γ(x1 + x2) =
γ

1− γ
{|x1 − Tx1|+ |x2 − Tx2|}

≤ µ

1− µ
{|x1 − Tx1|+ |x2 − Tx2|} .

In the same way, the inequality is true if xi ∈ [1/2, 1]. Now, if x1 < 1
2 ≤ x2 we

have that:
γ

1− γ
(x1 − Tx1) = γx1,

ρ

1− ρ
(x2 − Tx2) = ρx2

and

|Tx1 − Tx2| ≤ γx1 + ρx2 ≤
µ

1− µ
{|x1 − Tx1|+ |x2 − Tx2|} .

1. It is clear that this map T has a fixed point.
2. The contraction map is an asymptotically regular operator for any point,

this is, ‖Tn−1x− Tnx‖ −→ 0 as n −→∞.
In fact:

γ

1− γ

(
Tnx− Tn+1x

)
= γTnx ≤ µn+1x.
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Since
Tx = γx or Tx = ρx
T 2x = T (Tγx) = γ2x or T 2x = ρ2x
T 3x = T 2(Tx) = γ3x or T 3x = ρ3x
...

...
Tnx = T (Tn−1x) = γnx or Tnx = ρnx.

Taking µ = max{γ, ρ}, in general we have that

γTnx ≤ µn+1x.

So, for n sufficiently large, x ∈ [0, 1] and 0 < µ < 1, we have that T is
asymptotically regular.

3. Finally we must see that the sequence xn = Tnx converges to a unique
fixed point; in fact, it is clear that {xn − Tnx}n −→ 0.

1. Some Known Results for D(a, b)

In this section we will show some results for class D(a, b). Let’s observe that some
results are consequences of the result of the value of a, while others depend only
on b. First we analyze the properties of the values of a.

Lemma 1 (1989, [4]). Let T : X −→ X be of class D(a, b) with 0 ≤ a < 1.
Then T has at the most one fixed point.

Lemma 2 (1989, [4]). Let T : K −→ K be of class D(a, b), 0 ≤ a < 1, and
suppose infk ‖x−Tx‖ = 0. Then there exists a convergent sequence {xn} of points
in K such that

‖xn − Txn‖ −→ 0 as n −→∞.

Now we will show three consequences of the condition 0 ≤ b < 1.

Lemma 3 (1989, [4]). Let T : K −→ K be of class D(a, b), 0 ≤ b < 1.
(i) If {xn} converges to a fixed point of T , then ‖xn−Txn‖ −→ 0 as n −→∞.
(ii) If {xn} converges and ‖xn − Txn‖ −→ 0 as n −→ ∞, then T has a fixed

point.
(iii) If T has a fixed point at p, then T is continuous at p.

Lemma 4 (1986, [11]). If T ∈ D(a, b), and a + 2b < 1, then

inf
x∈K

‖x− Tx‖ = 0.

Theorem 5 (1989, [4]). Let T : K −→ K be of class D(a, b) with 0 ≤ a, b < 1.
If infx∈K ‖x− Tx‖ = 0, then T has a unique fixed point in K.

Theorem 6 (1989, [4]). Let T : X −→ X, T ∈ D(a, b), with a, b ≥ 0, where
a + 2b < 1. Then

(i) T has a unique fixed point p ∈ X.
(ii) ‖Tx− p‖ < ‖x− p‖, ∀x ∈ X, x 6= p.
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L. Nova and W. Derryck give examples where they show that every one of the
conditions in the results above are necessary (see [3, 4, 11]).

Remark 1. From Lemmas 1, 2, 3 (ii) and 4 we can obtain the following adap-
tation for T ∈ D(a, b) of Theorem 2.1 given in [13] with c = 0 where 0 ≤ c < 1.

Let K be a closed subset of a Banach space X, and let T ∈ D(a, b) with a, b ≥ 0
where a + 2b < 1. Then for any x ∈ K, lim

n→∞
Tnx exists and this limit is the

unique fixed point of T .

2. Main Results

In this section we will give some results for operators of class D(a, b).

Theorem 7. Let {Tn}n be a sequence of maps of class D(a, b) defined in a Ba-
nach space X or some closed subset K ⊂ X into itself, such that {Tn}n converges
uniformly to T . Then T ∈ D(a, b), 0 ≤ a, b < 1, moreover the fixed point of T is
the limit of the fixed point of Tn.

Proof. Let T = lim
n→∞

Tn uniformly,

‖Tx− Ty‖ = ‖Tx− Tnx + Tnx + Tny − Tny + Ty‖
≤ ‖Tnx− Tny‖+ ‖Tnx− Tx‖+ ‖Ty − Tny‖
≤ a‖x− y‖+ b [‖x− Tnx‖+ ‖y − Tny‖] + ‖Tnx− Tx‖

+‖Ty − Tny‖.
For each n.

For n →∞
‖Tx− Ty‖ ≤ a‖x− y‖+ b [‖x− Tx‖+ ‖y − Ty‖]

where we have that T ∈ D(a, b).
Now, let’s see that the fixed point of T is the limit of the fixed point of {Tn}n.
Let xn = Tnxn and xm = Tmxm, m 6= n. The fixed points are unique because
0 ≤ a, b < 1; thus

‖xn − xm‖ = ‖Tnxn − Tmxm‖ < ε. Therefore {xn}n is a Cauchy sequence.

From which exists x̂ such that xn → x̂; let’s see that T x̂ = x̂.
Since ‖xn − x̂‖ → 0 then ‖Tnxn − x̂‖ → 0. So, as a consequence of Lemma 3 we
have that Tn is continuous at xn, thus

lim
n→∞

‖Tnxn − x̂‖ → 0 ⇒ ‖ lim
n→∞

Tnxn − x̂‖ → 0.

Which implies

‖Tn( lim
n→∞

xn)− x̂‖ → 0 ⇒ lim
n→∞

‖Tnx̂− x̂‖ → 0

and we conclude that ‖T x̂− x̂‖ = 0; therefore, T x̂ = x̂. �

Remark 2. If in the previous theorem we change the hypothesis 0 ≤ a, b < 1
by 0 ≤ a + 2b < 1, then from Lemma 4 and Theorem 5 we can to assure that the
fixed point to T is in K.
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An interesting question is: If T, S ∈ D(a, b). Is TS of class D(a, b)?
Let’s see the following example.

Example 2. Let’s define T : [0, 1] −→ [0, 1] as follows

Tx =


x

4
, 0 ≤ x <

1
2

x

8
,

1
2
≤ x ≤ 1.

From example (1) we have T ∈ D(0, 1
3 ), however

T 2x = T (Tx) =


x

16
, 0 ≤ x <

1
2

x

64
,

1
2
≤ x ≤ 1.

But, as a consequence of example (1) we have T 2 ∈ D(0, 1
15 ).

The above example shows that D(a, b) is not closed under composition, however
we will show that under certain conditions we can give any positive answer to the
previous question.

Definition 1 (see, [7]). A norm ‖·‖ on a Banach space is called strictly convex
if whenever ‖x‖ = ‖y‖ = 1 and ‖x + y‖ = 2 then necessarily x = y.

A Banach space X is said to be strictly convex if its norm is strictly convex.

The importance of the previous definition in the next results is that we can
assure ‖x + y‖ = ‖x‖+ ‖y‖ if x = λy, for any scalar λ.

Theorem 8. Let X be a strictly convex Banach space, and let S, T : X −→ X.
If the following conditions hold

(i) T ∈ D(a, b), b ≥ 1
(ii) x− Tx = r(Tx− STx), for any scalar r and every x ∈ X

then ST ∈ D(a, b).

Proof. Let x, y ∈ X and S, T : X −→ X

‖STx− STy‖ = ‖STx− Tx− STy + Ty + Tx− Ty‖
≤ ‖Tx− Ty‖+ ‖STx− Tx‖+ ‖STy − Ty‖
≤ a‖x− y‖+ b

[
‖x− Tx‖+ ‖y − Ty‖

]
+ ‖STx− Tx‖

+‖STy − Ty‖
≤ a‖x− y‖+ b

[
‖x− Tx‖+ ‖y − Ty‖

]
+ b[‖STx− Tx‖

+‖STy − Ty‖].

From condition (ii) and the fact that X is a strictly convex Banach space, we have
‖x− Tx‖+ ‖STx− Tx‖ = ‖x− STx‖ for all x ∈ X. So

‖STx− STy‖ ≤ a‖x− y‖+ b
[
‖x− STy‖+ ‖y − STy‖].

Therefore, ST ∈ D(a, b). �
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By Theorem 8 and mathematical induction for n ≥ 2, n ∈ N, we obtain the
following theorem.

Theorem 9. Let X be a strictly convex Banach space, and let T1, . . . , Tn :
X −→ X such that the following conditions hold

(i) Tn ∈ D(a, b), b ≥ 1,
(ii) x− Tnx = r(Tnx− T1 · · ·Tnx) for any scalar r and every x ∈ X.

Then T1 · · ·Tn ∈ D(a, b).

Proposition 10. Let X be a strictly convex Banach space, and let S, T : X −→
X such that

(i) T ∈ D(a, b), b ≤ 1.
(ii) x− Tx = r(Tx− STx), for any scalar r and every x ∈ X.

Then, ST ∈ D(a, 1).

Proof. Let x, y ∈ X and S, T : X −→ X

‖STx− STy‖ = ‖STx− Tx− STy + Ty + Tx− Ty‖
≤ ‖Tx− Ty‖+ ‖STx− Tx‖+ ‖STy − Ty‖
≤ a‖x− y‖+ b

[
‖x− Tx‖+ ‖y − Ty‖

]
+ ‖STx− Tx‖

+‖STy − Ty‖
≤ a‖x− y‖+ ‖x− Tx‖+ ‖y − Ty‖+ ‖STx− Tx‖

+‖STy − Ty‖.
Condition (ii) and the fact that X is a strictly convex Banach space, allow
‖x− Tx‖+ ‖STx− Tx‖ = ‖x− STx‖ for every x ∈ X. So

‖STx− STy‖ ≤ a‖x− y‖+ ‖x− STy‖+ ‖y − STy‖.
Hence, ST ∈ D(a, 1). �

By Proposition 10 and mathematical induction for n ≥ 2, n ∈ N, we obtain the
following theorem.

Theorem 11. Let X be a strictly convex Banach space, and let T1, . . . , Tn :
X −→ X. If the following conditions hold

(i) Tn ∈ D(a, b), b ≤ 1,
(ii) x− Tnx = r(Tnx− T1 · · ·Tnx) for any scalar r and every x ∈ X.

then, T1 · · ·Tn ∈ D(a, 1).

Remark 3. (i) From Theorem 6 (i) let’s note that the uniqueness of the
fixed point can’t be sure in Theorems 8 and 9 because b > 1. And for Propo-
sition 10 and Theorem 11, T (Ti) can has a unique fixed point, however ST
(T1, . . . , Tn) no necessarily has a unique fixed point.

(ii) Let’s note that the operation given in Theorems 8, 9, 11, and Proposition
10 does not indicate composition of operators. Thus in the case of product
of operators defined in a strictly convex Banach algebra these results are
valid.
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Moreover, it is not necessary that the operators T, S (or T1, . . . , Tn) be
D(a, b), it’s enough that one of these operators belongs to D(a, b).

Another interesting question is: Let S, T : X −→ X S, T ∈ D(a, b), is S + T of
class D(a, b)? The following example shows that in general this is not true.

Example 3. Let X = [−1, 1] and let’s define the next maps of X into X of
class D(a, b) with 0 < a, b < 1 and a + 2b < 1.

S(x) =
|x|
2

and T (x) = −x

2
,

hence

(S + T )(x) =

{
−x, if x ∈ [−1, 0)

0, if x ∈ [0, 1].
Let’s see that (S + T ) /∈ D(a, b). This is, let’s prove that (S + T ) does not satisfy

‖Tx− Ty‖ ≤ a‖x− y‖+ b [‖x− Tx‖+ ‖y − Ty‖] .(1)

Let x ∈ (0, 1] and y = 0, and suppose that (1) is satisfied

| − x− 0| ≤ a|x− 0|+ b[| − x− x|+ |0− 0|] = a|x|+ b|2x|
= a|x|+ 2b|x| = |x|(a + 2b) < |x|.

Which is false, thus (S + T ) /∈ D(a, b).
Therefore D(a, b) is not closed under the sum.

However we prove the following.

Theorem 12. Let X be a strictly convex Banach space, and let S, T : BX −→
BX , where BX is the open unit ball of X. If the following conditions hold

(i) S, T ∈ D(a, b)
(ii) x− Tx = r(x− Sx) for any scalar r and every x ∈ BX

then S + T ∈ D(a, b) for a + b sufficiently small.

Proof. Let x, y ∈ BX .

‖Tx− Ty‖ ≤ a‖x− y‖+ b
[
‖x− Tx‖+ ‖y − Ty‖

]
‖Sx− Sy‖ ≤ a‖x− y‖+ b

[
‖x− Sx‖+ ‖y − Sy‖

]
.

Then,

‖Tx− Ty‖+ ‖Sx− Sy‖ ≤ 2a‖x− y‖+ b[‖x− Tx‖+ ‖y − Ty‖+ ‖x− Sx‖
+‖y − Sy‖]

‖Tx− Ty + Sx− Sy‖ ≤ 2a‖x− y‖+ b[‖x− Tx‖+ ‖y − Ty‖+ ‖x− Sx‖
+‖y − Sy‖]

‖(S + T )x− (S + T )y‖ ≤ 2a‖x− y‖+ b[‖x− Tx‖+ ‖y − Ty‖+ ‖x− Sx‖
+‖y − Sy‖].

Condition (ii) and the fact that X is a strictly convex Banach space, imply

‖x− Tx‖+ ‖x− Sx‖ = ‖2x− (T + S)x‖.
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From which,

‖(S + T )x− (S + T )y‖
≤ 2a‖x− y‖+ b

[
‖2x− Tx− Sx‖+ ‖2y − Ty − Sy‖

]
= 2a‖x− y‖+ b

[
‖2x− (T + S)x‖+ ‖2y − (S + T )y‖

]
≤ 2a‖x− y‖+ b

[
‖x− (S + T )x‖+ ‖x‖+ ‖y − (S + T )y‖+ ‖y‖

]
= 2a‖x− y‖+ b

[
‖x− (S + T )x‖+ ‖y − (S + T )y‖

]
+ b(‖x‖+ ‖y‖)

= a‖x− y‖+ b
[
‖x− (S + T )x‖+ ‖y − (S + T )y‖

]
+ a‖x− y‖+ b(‖x‖+ ‖y‖)

≤ a‖x− y‖+ b
[
‖x− (S + T )x‖+ ‖y − (S + T )y‖

]
+ (a + b)‖x‖+ (a + b)‖y‖

< a‖x− y‖+ b
[
‖x− (S + T )x‖+ ‖y − (S + T )y‖

]
+ 2(a + b).

Since a + b can be as small as we please, and using fact that for each a, b ∈ R,
a < b + ε for all ε > 0, then a ≤ b. (See [1]). We have

‖(S + T )x− (S + T )y‖ ≤ a‖x− y‖+ b
[
‖x− (S + T )x‖+ ‖y − (S + T )y‖].

Hence S + T ∈ D(a, b). �

Proposition 13. Let X be a strictly convex Banach space, and suppose that
the series

∑∞
i=1 Ti, where Ti : BX −→ BX , for each i ∈ N, converges. If the

following conditions hold

(i) Ti ∈ D(a, b) for each i ∈ N
(ii) x−Tix = r(x−Tjx) for each i 6= j, and moreover x−Tix = r(x−

∑n
i=1 Tix)

for all i = 1, . . . n, and each value of n > 1, r scalar and every x ∈ BX

then,
∑∞

i=1 Ti ∈ D(a, b) for a + b sufficiently small.

Proof. Let x, y ∈ BX and Ti as in the hypothesis. For n > 1 fixed we take
(a + b) = 1

(n−1)2n+1 ; so

‖
n∑

i=1

(Tix−Tiy)‖ ≤
n∑

i=1

‖Tix−Tiy‖ ≤ na‖x−y‖+b
[ n∑

i=1

(
‖x−Tix‖+‖y−Tiy‖

)]
.

The above is deduced from assuming that each Ti ∈ D(a, b) and from the sum of
these operators n times.

Again, from condition (ii), from the fact that X is a strictly convex Banach
space, and applying the reasoning of the previous Theorem we obtain

n∑
i=1

‖x− Tix‖ = ‖nx−
n∑

i=1

Tix‖.
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Hence,

‖
n∑

i=1

(Tix− Tiy)‖ ≤ na‖x− y‖+ b
[
‖nx−

n∑
i=1

Tix‖+ ‖ny −
n∑

i=1

Tiy‖
]

≤ na‖x− y‖+ b[‖x−
n∑

i=1

Tix‖+ (n− 1)‖x‖+ ‖y −
n∑

i=1

Tiy‖

+(n− 1)‖y‖]

≤ na‖x− y‖+ b
[
‖x−

n∑
i=1

Tix‖+ ‖y −
n∑

i=1

Tiy‖
]

+ 2b(n− 1)

≤ a‖x− y‖+ b
[
‖x−

n∑
i=1

Tix‖+ ‖y −
n∑

i=1

Tiy‖
]

+ 2b(n− 1)

+2a(n− 1)

= a‖x− y‖+ b
[
‖x−

n∑
i=1

Tix‖+ ‖y −
n∑

i=1

Tiy‖
]

+
1
2n

.

Taking limit n →∞ we obtain the result. �

The conclusion of the above proposition can be obtained changing the property
of the Banach space X and one condition.

Definition 2 (see, [7]). A Banach space X is called k-strictly convex iff for
any k + 1 elements x0, x1, . . . , xk of X, the relation

‖x0 + x1 + · · ·+ xk‖ = ‖x0‖+ ‖x1‖+ · · ·+ ‖xk‖
implies that x0, x1, . . . , xk are linearly dependent.
If k = 1 this definition gives the class of strictly convex spaces.

Theorem 14. Let X be a k-strictly convex Banach space and suppose that the
series

∑∞
i=1 Ti, where Ti : BX −→ BX , for each i ∈ N, converges. If the following

conditions hold
(i) Ti ∈ D(a, b)
(ii) x− Tix : i = 1, . . . k + 1 are linearly dependent

then,
∞∑

i=1

Ti ∈ D(a, b) for a + b sufficiently small.

Proof. The proof follows as the previous proposition.
From condition (ii) and the fact that X is a k-strictly convex Banach space we
have

k∑
i=1

‖x− Tix‖ = ‖kx−
k∑

i=1

Tix‖.

The rest of the proof is analogue to the previous proposition. �

Remark 4. Let’s note that the uniqueness of the fixed point is ensured from
Lemma 1 and Theorem 6.
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