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RINGS IN POST ALGEBRAS

S. RUDEANU

Abstract. Serfati [7] defined a ring structure on every Post algebra. In this paper we determine all the rings that are
defined over a Post algebra and share the properties of the Serfati ring. In the case r = 3 one of them is equivalent to

the Post algebra. This is a term equivalence and it extends the equivalence between a Boolean algebra and the Boolean
ring associated with it.

1. Introduction

It is well known that a Boolean algebra (B,∨, ·,′ , 0, 1) can be made into a Boolean ring (i.e., commutative,
idempotent and of characteristic 2) (B,+, ·, 0, 1) where x+y = xy′∨x′y. Conversely, every Boolean ring becomes
a Boolean algebra by defining x ∨ y = x + y + xy and x′ = x + 1. Moreover, the above constructions establish a
bijection (and together with the identity transformations on morphisms, they determine an isomorphism between
the category of Boolean algebras and the category of Boolean rings).

On the other hand, the category of Post algebras is close enough to the category of Boolean algebras; see e.g.
[1], [6]. It is therefore natural to ask whether the above equivalence between Boolean algebras and Boolean rings
can be extended to the Post framework. The only result in this direction known so far was obtained by Serfati
[7], who proved that on every Post algebra one can define a ring in terms of the Post-algebra operations. In this
paper we determine all the rings defined over an arbitrary Post algebra and sharing the properties of the Serfati
ring. In the case of a Post algebra of order 3 there are 6 such rings and one of them is equivalent to the Post
algebra.
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The exact formulation of the desired equivalence and of our results needs the following well-known universal
algebraic definition. The term functions of an algebra are the projection functions, the basic operations of the
algebra and all the functions obtained from them by composition (in other words, the clone generated by the
basic operations). For instance, the term functions of a ring are polynomials of that ring, but the converse does
not hold. In [5], [6] we prefer the denominations simple Boolean functions (simple Post functions) for the term
functions of a Boolean algebra (Post algebra). Thus, the ring operations of a Boolean algebra are simple Boolean
functions and the operations of the ring defined by Serfati are simple Post functions.

The paper is structured as follows. After the next section recalling all necessary prerequisites, in Section 3 we
prove that each ring on the chain of constants of a Post algebra P can be uniquely extended to a ring defined on
P by simple Post functions and conversely, every such ring can be defined in this way. In Section 4 we confine to
Post algebras of order 3. We prove that there are 6 rings on the chain of constants {0, e, 1}, all of them isomorphic
to the field Z3. By applying the results of Section 3, it follows that there are 6 rings defined on the whole algebra
P by simple Post functions (including, of course, the ring found by Serfati). One of these rings is equivalent to
the Post algebra in the same way as a Boolean ring is equivalent to the Boolean algebra having the same support:
it is a commutative ring defined by simple Post functions, having the same 0 and 1 as the Post algebra and the
basic operations of the Post algebra are term functions of the ring.

2. Prerequisites on Post algebras

Let (P,∨, ·, 0, 1) be a bounded distributive lattice; the meet · is also denoted simply by concatenation. An element
x ∈ P is said to be complemented provided there exists x′ ∈ P such that x ∨ x′ = 1 and xx′ = 0; the element x′

is called the complement of x and is uniquely determined by x. The set B(P ) of all complemented elements is a
Boolean algebra and a sublattice of P .

The lattice theoretic definition of Post algebras, given below, is due to Epstein [2].
Let r be an integer, r ≥ 2. Set

〈r〉 = {0, 1, . . . , r − 1} .(1)
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A Post algebra of order r is an algebra (P,∨, ·,0 ,1 , . . . ,r−1 , e0 = 0, e1, . . . , er−2,
er−1 = 1) of type (2, 2, (1)i∈〈r〉, (0)i∈〈r〉) such that (P,∨, ·, 0, 1) is a bounded distributive lattice,

e0 = 0 < e1 < · · · < er−2 < er−1 = 1(2)

and every element x ∈ P can be uniquely represented in the form

x =
∨

i∈〈r〉

eix
i with

∨
i∈〈r〉

xi = 1 and xixj = 0 (∀ i, j ∈ 〈r〉, i 6= j).(3)

The Post algebras of order 2 coincide with Boolean algebras. In fact, a Boolean algebra (B,∨, ·,′ , 0, 1) can be
identified with the Post algebra (B,∨, ·,0 ,1 , 0, 1) where x0 = x′ and x1 = x, because the identity function missing
in the former algebra is in fact the projection function of one variable, so that the two algebras have the same
clone of term functions.

In the sequel we consider r ≥ 3.
The set

E = {e0 = 0, e1, . . . , er−2, er−1 = 1}(4)

is called the chain of constants of the Post algebra P and is a subalgebra of P . The elements x0, x1, . . . , xr−1 are
called the disjunctive components of x.

It follows from (3) that all xi ∈ B(P ), with (xi)′ =
∨

j∈〈r〉,j 6=i xj .
It is also easy to see that

x ∈ B(P ) ⇐⇒ x0 = x′, xr−1 = x, xj = 0 (j = 1, . . . , r − 2)(5)

and that (ei)j is the Kronecker δ:

(ei)j =

{
1 if i = j,

0 if i 6= j.
(6)
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The Post functions are the elements of the clone generated by the 2r + 2 basic operations and all the constant
functions. They are the specialization of the universal algebraic concept of algebraic function (in Grätzer’s
terminology; also called polynomial functions by other authors). As mentioned in the introduction, the simple
Post functions are the elements of the clone generated by the basic operations, and they are the specialization of
the universal algebraic concept of term function (or Grätzer polynomial)1.

The alternative notation xi = xei (i ∈ 〈r〉) is very useful in the study of Post functions. The main result is
that Post functions are characterized by the expansion

f(x1, . . . , xn) =
∨

a1,...,an∈E

f(a1, . . . , an) · xa1
1 · · · · · xan

n ,(7)

while the simple Post functions are precisely those Post functions for which

f(a1, . . . , an) ∈ E (∀ a1, . . . , an ∈ E).(8)

It follows from this representation that if f and g are Post functions, then

f(X) = g(X) (∀X ∈ Pn) ⇐⇒ f(A) = g(A) (∀A ∈ En).(9)

We call this result the Verification Theorem, like in the case of Boolean algebras. It also follows from (8) that the
expression (7) of a simple Post function makes sense in any Post algebra. Therefore two simple Post functions
coincide if and only if they coincide on the Post algebra E. This is a “global” version of the Verification Theorem,
again like in the case of Boolean algebras.

1So both polynomial function-term function and algebraic function-polynomial function are conventional universal algebraic ter-
minologies, but we prefer the mixed terminology algebraic function-term function.
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The expressions of the form (7) obey the following identities:

(
∨

A∈En

cAXA) ◦ (
∨

A∈En

dAXA) =
∨

A∈En

(cA ◦ dA)XA (◦ = ∨, ·),(10′)

(
∨

A∈En

cAXA)i =
∨

A∈En

(cA)iXA (∀i ∈ 〈r〉),(10′′)

where cA, dA ∈ P and we have set X = (x1, . . . , xn), A = (a1, . . . , an), XA = xa1
1 · · · · · xan

n .
For every Post function f : Pn −→ P , the equation

f(x1, . . . , xn) = 0(11)

has solutions in Pn if and only if ∏
a1,...,an∈E

f(a1, . . . , an) = 0,(12)

where
∏

denotes iterated meet.
The above results and many others can be found in [6, Chapter 5] and [2, Theorem 13]; the notation and the

basic results are due to Serfati [7]. See also [5] for the case of Boolean algebras.

3. Extending rings in Post algebras

Let P be a Post algebra and E its chain of constants. Our starting point is the remark that the r! bijections
between E and 〈r〉 (cf. (4) and (1)) yield r! rings defined on E and isomorphic to Zr. Therefore the rings
described in the theorem below do exist.

Theorem 1. Each ring (commutative ring, unitary ring) defined on the chain of constants E can be uniquely
extended to a ring (commutative ring, unitary ring) defined on the Post algebra P by simple Post functions; cf.
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formulae (13) and (14) below. Conversely, each ring (commutative ring, unitary ring) defined on P by simple
Post functions and having the zero (and one) in E is obtained in this way.

Comment. The ring found by Serfati is indeed commutative, with zero and one in E, and defined by simple
Post functions.

Proof. Let (E,⊕,�) be a ring. In view of the representation (7), (8), the functions ⊕ and � can be uniquely
extended to simple Post functions on P , which, by an abuse of notation, we will denote by the same symbols ⊕
and �, respectively:

x⊕ y =
∨

i,j∈〈r〉

(ei ⊕ ej)xiyj =
∨

h∈〈r〉

eh

∨
ei⊕ej=eh

xiyj ,(13)

x� y =
∨

i,j∈〈r〉

(ei � ej)xiyj =
∨

h∈〈r〉

eh

∨
ei�ej=eh

xiyj .(14)

Each ring axiom different from the existence of −x is satisfied by the operations (13), (14) in view of the
Verification Theorem (9).

To prove the existence of −x, take an element x ∈ P and look for an element y ∈ P such that x ⊕ y = eα,
where eα is the common zero of the operation ⊕ on E and the extended operation ⊕ on P . Since 0 ∈ E, it follows
that the latter equation implies x ⊕ y ⊕ 0 = eα ⊕ 0 = 0. But the existence of eβ such that 0 ⊕ eβ = eα implies
that if x⊕ z = 0 then x⊕ z ⊕ eβ = eα. Therefore it suffices to prove that for each x ∈ P , the equation x⊕ y = 0
has a solution y ∈ P .

The latter equation can be written ∨
j

(
∨
i

(ei ⊕ ej)xi)yj = 0 ,
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which is of the form (11). Its consistency condition (12) becomes∏
j

∨
i

(ei ⊕ ej)xi = 0

and this should be true for every x ∈ P . In view of the Verification Theorem (9), the latter condition is equivalent
to ∏

j

∨
i

(ei ⊕ ej)(eh)i = 0 (∀ eh ∈ E) ,

or equivalently, using (6), ∏
j

(eh ⊕ ej) = 0 (∀ eh ∈ E) ,

which is true because for each eh ∈ E there is an element ej ∈ E such that eh ⊕ ej = 0.
Conversely, if the operations ⊕ and � of the ring (commutative ring, unitary ring) P are simple Post functions,

they satisfy (13) and (14) and their restrictions to E exist by (8). In view of the Verification Theorem, if the zero
of P is in E then these restrictions satisfy each ring axiom different from the existence of −x. Besides, for each
e ∈ E, the elements e⊕ e0, e⊕ e1, . . . , e⊕ er−1 are r distinct elements of E, therefore one of them is zero.

Clearly if the ring P has unit element in E, then the ring E has the same unit. �

Corollary 1. There is an algorithm which constructs all the rings (commutative rings, unitary rings) defined
on a Post algebra by simple Post functions.

Proof. Construct algorithmically all the ring structures on the finite set E and apply Theorem 1. �

Corollary 2. Every subalgebra of a Post algebra is also a subring of each of the rings constructed in Theorem 1.
In particular so is E.

Proof. If S is a subalgebra of P , then E ⊆ S and S is a Post algebra itself (see e.g. [1, Remark 4.1.14]),
therefore the conclusion folows by formulae (13) and (14). �
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Corollary 3. If the ring (E,⊕,�) is isomorphic to Zr, then the ring constructed in Theorem 1 satisfies
x⊕ x⊕ . . .⊕ x = 0 (r terms) and x� x� . . .� x = x (r factors).

Proof. By the Verification Theorem (9). �

The Boolean pattern suggests that we should look for rings having the same zero and one as the Post algebra.

Corollary 4. Let π : 〈r〉 −→ E be a bijection such that π(0) = 0 and π(1) = er−1. Let (E,⊕,�) be the ring
such that π : Zr −→ (E,⊕,�) is an isomorphism. Then e0 and er−1 are the zero and the unit, respectively, of
(E,⊕,�) and of the ring (P,⊕,�) associated with it in Theorem 1

Proof. The first statement is obvious. The identity eh ⊕ e0 = eh (∀ eh ∈ E) implies the identity x ⊕ e0 =
x (∀x ∈ P ) by the Verification Theorem (9), and similarly we get x� er−1 = x (∀x ∈ P ). �

Serfati [7], using another approach, found the ring

x⊕ y =
∨

h∈〈r〉

eh

∨
i+j≡h

xiyj ,(15)

x� y =
∨

h∈〈r〉

eh

∨
ij≡h

xiyj ,(16)

where ≡ is the congruence mod(r). Note that this is the ring constructed in Theorem 1, when the starting ring
is isomorphic to Zr via the mapping ei 7→ i. It follows by Corollary 3 that the ring (15), (16) is of characteristic
r and if r is prime then it is also r-potent. Serfati noted these properties, as well as Corollary 2 for his ring. He
also noted that for r = 3 the restriction of the operation (15) to the Boolean algebra B(P ) is not the symmetric
difference x + y = xy′ ∨ x′y. Let us prove the following general result for arbitrary r.

Proposition 1. The restriction of the ring sum (13) to the Boolean algebra B(P ) is the symmetric difference
if and only if

er−1 ⊕ er−1 = e0 .(17)
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Proof. It follows from (5) that the only non-null terms of the restriction under investigation are x0y0, xr−1yr−1,
x0yr−1 and xr−1y0, that is, x′y′, xy, x′y and xy′. On the other hand, put

Xh = {xiyj | ei ⊕ ej = eh} (∀h ∈ 〈r〉)

and note that these sets of functions are pairwise disjoint.
If the expansion of x⊕ y over B(P ) is the symmetric difference, then it does not contain the term xr−1yr−1 =

xy, hence xr−1yr−1 6∈ Xk (k = 1, . . . , r − 1). Since
⋃

h∈〈r〉 Xh consists of all the terms xiyj , it follows that
xr−1yr−1 ∈ X0, which is equivalent to (17).

Conversely, suppose (17) holds true. Then xr−1yr−1 ∈ X0 and since x0y0 ∈ X0 while x0yr−1, xr−1y0 ∈ Xr−1,
it follows that the expansion of x⊕ y over B(P ) is

x⊕ y = er−1(x0yr−1 ∨ xr−1y0) = x′y ∨ xy′.

�

Now we see that Serfati’s remark is valid for arbitrary r ≥ 3:

Corollary 5. The restriction of the Serfati ring (see (15) and (16)) to B(P ) does not reduce to the symmetric
difference.

Proof. Notice that xr−1yr−1 6∈ X0 because (r − 1) + (r − 1) ≡ r − 2 6≡ 0 . �

So far Theorem 1 and Corollary 4 represent a step forward towards the desideratum of constructing a theory of
rings in Post algebras, totally analogous to the theory of Boolean rings. The results of the next section partially
fulfil this ambitious plan.
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4. The case r = 3

Theorem 1 characterizes all the rings (commutative rings, unitary rings) defined on a Post algebra by simple Post
functions, while Corollary 1 provides an algorithm which lists all of them. In this section we explicitly determine
all these rings in the case r = 3.

The chain of constants E = {e0 = 0, e1, e2 = 1} will alternatively be written E = {0, e, 1} or E = {eα, eβ , eω}
(where (α, β, ω) is a permutation of (0, 1, 2)), as may be convenient.

Propositions 2 and 3 below go back to Moisil [3], except that uniqueness is taken for granted.

Proposition 2. The Abelian groups defined on E are of the form (E = {eα, eβ , eω},⊕, eα), where ⊕ is defined
by the table

⊕ eα eβ eω

eα eα eβ eω

eβ eβ eω eα

eω eω eα eβ

and they are isomorphic to (Z3,+, 0).

Proof. The mapping eα 7→ 0, eβ 7→ 2, eω 7→ 1 establishes the isomorphism with Z3; the routine proof is left to
the reader. It remains to prove that any Abelian group on E is of this form.

Let eα denote the zero of an Abelian group on E. Then

eα ⊕ eα = eα, eα ⊕ eβ = eβ ⊕ eα = eβ , eα ⊕ eω = eω ⊕ eα = eω .

Since eβ ⊕ eω = eβ =⇒ eω = eα and eβ ⊕ eω = eω =⇒ eβ = eα, it follows that

eβ ⊕ eω = eω ⊕ eβ = eα.

Since the rows and the columns of the Cayley table of the group are permutations of (eα, eβ , eω), it follows from
eβ ⊕ eα = eβ and eβ ⊕ eω = eα that eβ ⊕ eβ = eω, while eω ⊕ eα = eω and eω ⊕ eβ = eα imply eω ⊕ eω = eβ . �
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Proposition 3. The unitary rings (E = {eα, eβ , eω},⊕,�, eα, eω) defined on E are of the following form: the
operation ⊕ is given in Proposition 2, while � is defined by the table

� eα eβ eω

eα eα eα eα

eβ eα eω eβ

eω eα eβ eω

These rings are fields isomorphic to Z3.

Proof. The mapping eα 7→ 0, eβ 7→ 2, eω 7→ 1 establishes the asserted isomorphism; the routine proof is again
left to the reader. It remains to prove that any unitary ring on E is of this form.

Note that x � eω = eω � x = x and x � eα = eα � x = eα for all x ∈ E, while the operation ⊕ is given in
Proposition 2 (in which the interchange of β and ω is immaterial).

Furthermore, eβ � (eβ ⊕ eω) = eβ � eα = eα and since

eβ � eβ = eα =⇒ eβ � eβ ⊕ eβ � eω = eα ⊕ eβ = eβ 6= eα ,

eβ � eβ = eβ =⇒ eβ � eβ ⊕ eβ � eω = eβ ⊕ eβ = eω 6= eα ,

it follows that eβ � eβ = eω. �

Theorem 2. The commutative unitary rings defined on a Post algebra P of order 3 by simple Post functions
are of the form (P,⊕,�, eα, eω), where

x⊕ y = eα(xαyα ∨ xβyω ∨ xωyβ ∨ eβ(xωyω ∨ xαyβ ∨ xβyα)

∨ eω(xβyβ ∨ xαyω ∨ xωyα) ,
(18)

x� y = eα(xαyα ∨ xαyβ ∨ xβyα ∨ xαyω ∨ xωyα)

∨ eβ(xβyω ∨ xωyβ) ∨ eω(xβyβ ∨ xωyω) .
(19)
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Comment. The ring explicitly given by Serfati [7] in the case r = 3 is obtained for (α, β, ω) := (0, 2, 1), hence
(eα, eβ , eω) = (0, 1, e):

x⊕S y = x1y1 ∨ x0y2 ∨ x2y0 ∨ e(x2y2 ∨ x0y1 ∨ x1y0) ,

x�S y = x2y1 ∨ x1y2 ∨ e(x2y2 ∨ x1y1) .

Proof. It follows by Theorem 1 that the sought rings are of the form (13), (14), where the operations ⊕ and �
on E are given in Proposition 3. This yields formulae (18) and (19). �

Corollary 6. Each of the rings described in Proposition 3 and Theorem 2 is of characteristic 3 and 3-potent.

Proof. By Proposition 3 and Corollary 3, since the rings in Theorem 2 are obtained by the construction in
Theorem 1. �

As explained in the previous section, we wish that the zero and the one of the rings coincide with those of the
Post algebra.

Theorem 3. The unique ring of the form (P,⊕,�, 0, 1) defined on P by simple Post functions is given by

x⊕ y = e(x2y2 ∨ x0y1 ∨ x1y0) ∨ x1y1 ∨ x0y2 ∨ x2y0 ,(20)

x� y = e(x1y2 ∨ x2y1) ∨ x1y1 ∨ x2y2 ,(21)

and its restriction on E is the field Z3 where 2 = e.

Proof. According to Theorem 1, the zero and one of P coincide with those of E. So we apply Theorem 2 with
eα := 0 = e0 and eω := 1 = e2, hence
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⊕ 0 e 1
0 0 e 1
e e 1 0
1 1 0 e

� 0 e 1
0 0 0 0
e 0 1 e
1 0 e 1

eβ = e1 = e. We thus obtain the tables above, which define Z3, while formulae (18) and (19) reduce to (20) and
(21). �

Remark. Moisil [3] determined a ring structure on every centred 3-valued Lukasiewicz-Moisil algebra. The
centred Lukasiewicz-Moisil algebras coincide with Post algebras; cf. [1, Corollary 4.1.9]. The ring in Theorem 3
coincides with the ring found by Moisil, after the translation of the latter into the Post algebra language.

Corollary 7. The ring in Theorem 3 is unitary, commutative, of characteristic 3 and 3-potent.

Proof. By Corollary 6. �

Corollary 8. The restriction of the ring in Theorem 3 to B(P ) is not the symmetric difference.

Proof. By Proposition 1, since 1⊕ 1 = e. �

Theorem 4. The ring in Theorem 3 satisfies the identities

x ∨ y = (e� x� x� y � y)⊕ (x� x� y)⊕ (x� y � y)(22)

⊕ (x� y)⊕ x⊕ y ,

xy = (x� x� y � y)⊕ (e� x� x� y)(23)

⊕ (e� x� y � y)⊕ (e� x� y) ,

x0 = (e� x� x)⊕ 1 ,(24)
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x1 = (e� x� x)⊕ x ,(25)

x2 = (e� x� x)⊕ (e� x) ,(26)

and it is equivalent to the Post algebra, as defined in the Introduction.

Proof. In view of the Verification Theorem (9), it suffices to prove (22)–(26) for the Post algebra E, in which
x ∨ y = max(x, y) and xy = min(x, y). We begin with (22) and (23).

If x = 0 or y = 0 this is readily checked.
If x = y the right-hand sides of (22) and (23) are

(e� x� x� x� x)⊕ x⊕ x⊕ (x� x)⊕ x⊕ x = ((e⊕ 1)� x� x)⊕ x = x,

(x� x)⊕ (e� x)⊕ (e� x)⊕ (e� x� x) = ((1⊕ e)� x� x)⊕ ((e⊕ e)� x) = x.

If x = 1, y = e the right-hand sides of (22) and (23) are

(e� 1� 1)⊕ (1� e)⊕ (1� 1)⊕ (1� e)⊕ 1⊕ e = e⊕ e⊕ 1⊕ e⊕ 1⊕ e = e⊕ e = 1,

(1� 1)⊕ (e� 1� e)⊕ (e� 1� 1)⊕ (e� 1� e) = 1⊕ 1⊕ e⊕ 1 = e,

and similarly for x = e, y = 1.
Formulae (24)–(26) are readily checked for x = 0, e, 1,
Since e = 1⊕ 1, the polynomials (22)–(26) and the constant polynomials 0, e, 1 are term functions of the ring

(P,⊕,�, 0, 1). Hence formulae (20)–(26) establish the desired equivalence. �

Remark. Moisil [3] proved that formulae (22), (23) with e = 2 make Z3 into a 3-valued centred Lukasiewicz(-
Moisil) algebra and sketched the proof of the same result for any 3-ring, i.e., any ring satisfying x � x � x = x
and x⊕ x = 0.
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5. Conclusions

In a subsequent paper we will tackle the functorial aspect of this equivalence.
The cases r ≥ 4 remain open.
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