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ON THE CLASS OF ALL RECIPROCAL BASES
FOR INTEGERS

T. ŠALÁT† and J. TOMANOVÁ

Abstract. In this paper the structure of the class of all reciprocal bases of N is

investigated from metric and topological point of view. For this purpose the method
of dyadic values of infinite subsets of N will be applied.

Introduction

A set A ⊆ N is called the reciprocal basis for integers (of N), shortly R-basis,
provided that for each s ∈ N there exist a1 < a2 < · · · < ak from A such that
s =

∑k
j=1

1
aj

(cf. [1], [2], [8]). It is well-known that the set of all positive integers
is an R-basis. It is proved in [1] that every arithmetic progression is an R-basis.
In the same paper a construction of R-bases of zero density based on the fact that
for every integer a ∈ N the sequence Sa = {a, 2a, 3a, . . . } is an R-basis is given.
Obviously this concept is closely related to the concept of egyptian fractions.

Note, that if A ⊆ N is a reciprocal basis of N then
∑

a∈A a−1 = ∞ and conse-
quently A is infinite.

Denote by Br the class of all reciprocal bases of N and by U the class of all
infinite subsets of N. Then

Br ⊆ U .(1)

We will use the concept of dyadic values of sets A ∈ U for the study of “the
magnitude” of Br in U .

If A = {a1 < a2 < · · · < ak < · · · } ∈ U , then we put ρ(A) =
∑∞

k=1 2−ak =∑∞
k=1 εk2−k, where (εk)∞1 is the characteristic function of the set A (i.e. εk = 1

if k ∈ A and εk = 0 if k ∈ N \ A). In this way we get an injective mapping ρ of
U onto the interval (0, 1]. If S ⊆ U , then we set ρ(S) = {ρ(A) : A ∈ S}. The
magnitude of the set ρ(S) ⊆ (0, 1] enables us to judge the magnitude of the class
S (cf. [4, p. 17]).

The magnitude of ρ(S) can be investigated from the metric point of view
(Lebesgue measure, Hausdorff dimension) and also from the topological point of
view (Baire’s categories).
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We recall the following fact about dyadic expansions of real numbers. Each
x ∈ (0, 1] can be uniquely expressed in the form x =

∑∞
k=1 εk(x)2−k, where

εk(x) = 0 or 1 and for an infinitely many k’s we have εk(x) = 1.
If m ∈ N is fixed then the whole interval (0, 1] can be written in the form

(0, 1] = ∪2m−1
j=0 ( j

2m , j+1
2m ] = ∪2m−1

j=0 i
(j)
m . To every interval i

(j)
m (0 ≤ j ≤ 2m − 1)

corresponds a sequence ε0
1, ε

0
2, . . . , ε

0
m of numbers 0, 1 in such a manner that if

x =
∑∞

k=1 εk(x)2−k ∈ i
(j)
m , then εk(x) = ε0

k (k = 1, 2, . . . ,m). We say shortly that
the interval i

(j)
m and the sequence ε0

1, ε
0
2, . . . , ε

0
m are associated.

1. Topological properties of the set ρ(Br)

We will show that from the topological point of view the class Br is a very large
subclass of U (see (1)).

Let s ∈ N. Denote by H(m, s) the union of all intervals i
(j)
m (m fixed) with the

following property: The interval i
(j)
m is associated with a sequence ε0

1, ε
0
2, . . . , ε

0
m

such that for a suitable set M , M ⊆ {k ≤ m : ε0
k = 1} we have s =

∑
k∈M

1
k .

It is a well-known fact that (every) integer s can be represented as a sum of
reciprocal values of some distinct integers (cf. [1]). So for s there exists an m such
that H(m, s) 6= ∅. Put H(s) = ∪∞m=1H(m, s). Hence H(s) 6= ∅.

The following auxiliary result will be used in what follows.

Lemma 1.1. We have

(2) ρ(Br) =
∞⋂

s=1

H(s) =
∞⋂

s=1

∞⋃
m=1

H(m, s).

Proof. 1) Let x ∈ ρ(Br). We show that x belongs to the right-hand side of (2).
Since x ∈ ρ(Br), we have x = ρ(A), where A = {a1 < a2 < · · · < ak < · · · } ⊆ N,

A being an R-basis. Hence there are numbers aj1 < aj2 < · · · < ajt
from A such

that s = 1
aj1

+ · · · + 1
ajt

. Put m = ajt ∈ N. The sequences ε0
1, ε

0
2, . . . , ε

0
m of 0’s

and 1’s satisfying the conditions ε0
aji

= 1 (i = 1, 2, . . . , t) are associated with some

intervals i
(l)
m (m fixed) and these intervals are subsets of the set H(m, s). Hence

x belongs to H(s). This is true for an arbitrary s ∈ N, therefore x belongs to the
right-hand side of (2).

2) Let x =
∑∞

j=1 εj2−j belong to the right-hand side of (2). Put A={j :εj =1}.
Then x = ρ(A). We will show that x belongs to ρ(Br). For this it suffices to show
that A ∈ Br.

Let v ∈ N. We show that v can be expressed as a sum of reciprocal values of a
finite number of distinct elements of A.

Since x ∈ H(v), there is an m ∈ N such that x ∈ H(m, v). By the definition
of the set H(m, v) there exists an interval i

(l)
m (l ∈ {0, 1, . . . , 2m − 1}) such that

x ∈ i
(l)
m and i

(l)
m is associated with a sequence ε0

1, ε
0
2, . . . , ε

0
m of 0’s and 1’s such that
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for a set M ⊆ {k ≤ m : ε0
k = 1} we have

v =
∑
k∈M

1
k

.(3)

For the dyadic expansion x =
∑∞

j=1 εj2−j we have εj = ε0
j (j = 1, 2, . . . ,m)

and so the set M consists of some k’s, k ≤ m such that εk = 1. Hence these
k’s belong to the set A and the number v can be expressed by (3) as a sum of
reciprocal values of some distinct elements of A. Since v is an arbitrary positive
integer, we see that A ∈ Br. �

Let S ⊆ U . Denote by cS the class U \ S (complement of S in U). Hence
cBr = U \ Br. The class cBr is the class of all infinite sets A ⊆ N that are not
R-bases. Hence for each A ∈ cBr there exists at least one s ∈ N such that s cannot
be expressed as a finite sum of reciprocal values of distinct elements of A.

In what follows the interval (0, 1] will be considered as a metric space with the
Euclidean metric.

Theorem 1.1. The set ρ(Br) is an Fσδ-set in (0, 1].

Proof. We use Lemma 1.1. Recall that the set H(m, s) is a union of a finite
number of intervals i

(l)
m (m fixed). Therefore H(m, s) is an Fσ-set in (0, 1]. Then

the right-hand side of (2) is an Fσδ-set in (0, 1]. The same holds for ρ(Br). �

Remark. By the definition of cBr and injectivity of the mapping ρ : U → (0, 1]
we get

ρ(cBr) = (0, 1] \ ρ(Br).(4)

From this and from Theorem 1.1 follows that the set ρ(cBr) is a Gδσ-set in (0, 1].

We have shown that the both sets ρ(Br), ρ(cBr) belong to the second Borel
class. We will determine their Baire’s categories.

Theorem 1.2. The set ρ(Br) is a residual set in (0, 1].

Proof. It suffices to prove that the set ρ(cBr) is a dense set of the first Baire
category in (0, 1]. The density of the set ρ(cBr) follows from the fact that the set
ρ(K), K being the class of all A ⊆ N with

∑
a∈A a−1 < ∞, is dense in (0, 1] (cf. [6,

Theorem 3]). We have K ⊆ cBr so that ρ(K) ⊆ ρ(cBr) and the density of ρ(cBr)
follows.

We prove that the set ρ(cBr) is a set of the first category in (0, 1].
By (4) and (2) we get

ρ(cBr) = (0, 1] \
∞⋂

s=1

∞⋃
m=1

H(m, s) =
∞⋃

s=1

∞⋂
m=1

cH(m, s).(5)

(Where cH(m, s) = (0, 1] \H(m, s).)
In virtue of (5) it suffices to prove that each of the sets ∩∞m=1cH(m, s)

(s = 1, 2, . . . ) is nowhere dense in (0, 1].
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Fix s ∈ N. On account of the well-known criterion of nowheredensity of a set in
metric space (cf. [3, p. 37]) it suffices to show that the following statement holds:

Every non-empty interval I ⊂ (0, 1] contains an interval J ⊆ I such that
J ∩ cH(m

′
, s) = ∅ for an m

′ ∈ N.
Let I ⊂ (0, 1] be an interval. Choose the numbers m, d, m ∈ N, 0 ≤ d ≤ 2m − 1

in such a way that i
(d)
m ⊂ I. We show that there is a subinterval i

(t)
m+v of i

(d)
m such

that

i
(t)
m+v ∩ cH(m + v, s) = ∅.(6)

holds.
If i

(d)
m ⊆ H(m, s) then we put v = 0 and t = d.

Let i
(d)
m ⊆ H(m, s) does not hold. Since the set {m + 1,m + 2, . . . ,m + k, . . . }

is an R-basis (cf. [2]) there exist nk (k = 1, 2, . . . , j), m+1 ≤ n1 < n2 < · · · < nj ,
such that

s =
j∑

k=1

1
nk

.(7)

Put nj = m + v (i.e. v = nj −m) and ε0
k = 1 for k = m + 1,m + 2, . . . ,m + v. Let

the interval i
(d)
m be associated with the sequence ε0

1, ε
0
2, . . . , ε

0
m of 0’s and 1’s. Con-

struct the interval i
(t)
m+v which is associated with the sequence ε0

1, ε
0
2, . . . , ε

0
m, ε0

m+1,

. . . , ε0
m+v of numbers 0, 1. Then i

(t)
m+v ⊆ i

(d)
m and from (7) we get (6). �

2. Metric properties of the set ρ(Br)

We have seen that the set ρ(Br) belongs to the second Borel class (Theorem 1.1).
So it is Lebesgue measurable and it would be desirable to determine λ(ρ(Br)) –
the Lebesgue measure of ρ(Br). Unfortunately we are not able to do this and
therefore it remains as an open problem. It is interesting that we can determine
the Hausdorff dimension (cf. [5]) of the set ρ(Br). But unfortunately from this
result we cannot derive the magnitude of λ(ρ(Br)).

Theorem 2.1. We have dim ρ(Br)) = 1.

Proof. It is well-known that there exists a set A ∈ Br with d(A) = 0 (cf.
[2]), where d(A) denotes the asymptotic density of A, i.e. d(A) = limn→∞

A(n)
n ,

A(n) = |A ∩ {1, 2, . . . , n}|.
Obviously every set D ⊇ A, D ⊆ N belongs again to Br. Denote by S(A) the

set {D ⊆ N : A ⊆ D}. Then we have S(A) ⊆ Br and so

dim ρ(S(A)) ≤ dim ρ(Br).(8)

In virtue of (8) it suffices to show that

dim ρ(S(A)) = 1.(9)

We will prove it using the following result which is an easy consequence of [7,
Theorem 2.7]:
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(S) Let M be a set of positive integers and (ε0
j ), j ∈ M be a fixed sequence of

0’s and 1’s. Denote by Z = Z(M, (ε0
j ), j ∈ M) the set of all x =

∑∞
j=1 εj(x)2−j ∈

(0, 1] for which εj(x) = ε0
j if j ∈ M and εj(x) = 0 or 1 if j ∈ N \M . Then

dim(Z) = lim inf
n→∞

log
∏

j≤n, j∈N\M
2

n log 2

= lim inf
n→∞

N \M (n)
n

= 1− d(M),

(10)

where d(M) = lim sup
n→∞

M(n)
n .

Put in (S) (see (10)): M = A, ε0
j = 1 for j ∈ A. Then Z(M, (ε0

j ), j ∈ M) =
ρ(S(A)) and from (10) we obtain ρ(S(A)) = 1− d(A) = 1− d(A) = 1. Hence (9)
holds. �

Remark. There are infinite sets A ⊆ N with
∑

a∈A a−1 = ∞ and zero asymp-
totic density that do not belong to Br. If A = {a1 < a2 < · · · < ak < · · · } ⊆ N,
gcd(ai, aj) = 1 for i 6= j, then the set A does not belong to Br, because it is easy to
show that the number 1 cannot be expressed in the form 1 = 1

ai1
+ 1

ai2
+ · · ·+ 1

aim
,

i1 < i2 < · · · < im. Taking the set of all prime numbers for A we get a set of zero
density with

∑
a∈A a−1 = ∞ which does not belong to Br.
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