DIAMETER IN WALK GRAPHS

T. VETRÍK

Abstract

A walk W of length k is admissible if every two consecutive edges of W are distinct. If G is a graph, then its walk graph $W_{k}(G)$ has vertex set identical with the set of admissible walks of length k in G. Two vertices are adjacent in $W_{k}(G)$ if and only if one of the corresponding walks can be obtained from the other by deleting an edge from one end and adding an edge to the other end. We show that if the degree of every vertex in G is more than one, then $W_{k}(G)$ is connected and we find bounds for the diameter of $W_{k}(G)$.

1. Introduction and results

All graphs considered in this paper are finite, connected, without loops and multiple edges. By $\delta(G)$ we denote the minimum degree of G and by $d_{G}(u, v)$ we denote the distance between two vertices, u and v, in G. Let P_{k} be the set of paths of length k in G; and let W_{k} be the set of walks of length k in G in which no two consecutive edges are equal. The vertex set of the path graph $P_{k}(G)$ (of the walk graph $\left.W_{k}(G)\right)$ is the set $P_{k}\left(W_{k}\right)$. Two vertices of $P_{k}(G)\left(W_{k}(G)\right)$ are joined by an edge if and only if one can be obtained from the other by "shifting" the corresponding paths (walks) in G.

Path graphs were investigated by Broersma and Hoede [2] as a natural generalization of line graphs (observe that $P_{1}(G)$ is the line graph of G, i.e., $P_{1}(G)=$ $L(G))$. Walk graphs were investigated by Knor and Niepel [3] as a generalization of iterated line graphs. We have $P_{1}(G)=W_{1}(G), P_{2}(G)=W_{2}(G)$ and for $k \geq 3$ the graph $P_{k}(G)$ is an induced subgraph of $W_{k}(G)$.

Using analogous methods as Belan and Jurica for path graphs in [3], it is easy to find the lower bound for the diameter of walk graphs:

$$
\operatorname{diam}\left(W_{k}(G)\right) \geq \operatorname{diam}(G)-k
$$

Since $P_{k}(G)=W_{k}(G)$ if the graph G is a tree, analogously as for path graphs in [3], for arbitrary component H of walk graph $W_{k}(G)$ it can be proved

$$
\operatorname{diam}(H) \leq \operatorname{diam}(G)+k(k-2)
$$

providing that $\operatorname{diam}(G) \geq k$.

[^0]In this paper we improve these results for graphs which do not contain vertices of degree one.

Theorem 1. Let G be a graph with diameter $d \geq 1$ and $\delta(G)>1$.
A. If $d \geq k-1$, then $\operatorname{diam}\left(W_{k}(G)\right) \leq d+k$.
B. If $d \leq k-2$, then $\operatorname{diam}\left(W_{k}(G)\right) \leq 2 k-2$.

Corollary 2. Let G be a connected graph with $\delta(G)>1$. Then $W_{k}(G)$ is connected.

We remark that an analogy of Corollary 2 is not true for path graphs. By [4], we know that there exists a graph G with $\delta(G)=k-1$, such that $P_{k}(G)$ is disconnected.

Assertion 3. For every d, for which $2 \leq d$ and $k-1 \leq d$, there exists a graph G with diameter d and $\delta(G)>1$, such that $\operatorname{diam}\left(W_{k}(G)\right)=d+k$.

Problem 4. Let G be a graph with $\delta(G)>1$ and let $\operatorname{diam}(G)<k$. Are the bounds for $\operatorname{diam}\left(W_{k}(G)\right)$ of part B of Theorem 1 best possible?

Theorem 5. Let G be a graph with $\delta(G)>1$.
I. If k is even, then $\operatorname{diam}\left(W_{k}(G)\right) \geq \operatorname{diam}(G)$.
II. If k is odd, then $\operatorname{diam}\left(W_{k}(G)\right) \geq \operatorname{diam}(G)-1$.

Observe that if G is a cycle, then $W_{k}(G)$ is isomorphic to G. Hence the lower bound for $\operatorname{diam}\left(W_{k}(G)\right)$ is the best possible if k is even.

Assertion 6. For every odd number k and $d \geq 2 k$, there exists a graph G with diameter d and $\delta(G)>1$, such that $\operatorname{diam}\left(W_{k}(G)\right)=d-1$.

It is easy to show that if k is odd and $\operatorname{diam}(G)=2$, then $W_{k}(G)$ can not be complete and hence $\operatorname{diam}\left(W_{k}(G)\right) \geq 2$.

We do not know if the lower bound of part II of Theorem 5 is best possible for $3 \leq d<2 k$. The value for the lower bound is equal either to $d-1$ or d.

Problem 7. Let G be a graph with $\delta(G)>1$ and let $\operatorname{diam}(G)<2 k$. Are the bounds for $\operatorname{diam}\left(W_{k}(G)\right)$ of part II of Theorem 5 best possible?

2. Proofs

We remark that throughout the paper we use k only for the length of walks for walk graph $W_{k}(G)$. We denote the vertices of $W_{k}(G)$ by small letters a, b, \ldots, while the corresponding walks of length k in G we denote by capital letters A, B, \ldots..It means that if A is a walk of length k in G and a is a vertex in $W_{k}(G)$, then a is necessarily the vertex corresponding to the walk A.

Let A be a walk of length k in G. By $A(i), 0 \leq i \leq k$, we denote the i-th vertex of A. If A and B are walks in G such that $A=B$, then either $A(i)=B(k-i)$, $0 \leq i \leq k$; or $A(i)=B(i), 0 \leq i \leq k$.

Lemma 8. Let A_{0} and A_{0}^{\prime} be two admissible walks in G. If $A_{0}(0)=A_{0}^{\prime}(0)$ and $A_{0}(1) \neq A_{0}^{\prime}(1)$, then $d_{W_{k}(G)}\left(a_{0}, a_{0}^{\prime}\right) \leq k$.

Proof. We define k walks $A_{1}, A_{2}, \ldots, A_{k}$ by "shifting forwards". Let $A_{i}(0)=$ $A_{0}^{\prime}(i)$ and $A_{i}(1)=A_{i-1}(0), A_{i}(2)=A_{i-1}(1), \ldots, A_{i}(k)=A_{i-1}(k-1)$, where $i=1,2, \ldots, k$. We have

$$
\begin{aligned}
& A_{1}(0)=A_{0}^{\prime}(1) \neq A_{0}(1)=A_{1}(2) \quad \text { and } \\
& A_{i}(0)=A_{0}^{\prime}(i) \neq A_{0}^{\prime}(i-2)=A_{i-2}(0)=A_{i}(2), \quad i=2,3, \ldots, k
\end{aligned}
$$

Hence A_{i} are admissible walks and a_{i-1} and a_{i} are adjacent in $W_{k}(G)$. Therefore $d_{W_{k}(G)}\left(a_{0}, a_{k}\right) \leq k$. Since

$$
\begin{aligned}
A_{k}(0) & =A_{0}^{\prime}(k) \\
A_{k}(1) & =A_{k-1}(0)=A_{0}^{\prime}(k-1) \\
& \vdots \\
A_{k}(k) & =A_{k-1}(k-1)=\ldots=A_{k-k}(0)=A_{0}^{\prime}(0)
\end{aligned}
$$

we have $A_{k}=A_{0}^{\prime}$ and hence $d_{W_{k}(G)}\left(a_{0}, a_{0}^{\prime}\right) \leq k$.
Lemma 9. Let G be a graph with $\delta(G)>1$ and let A_{0} and A_{0}^{\prime} be two admissible walks in G. Let $A_{0}(p)=A_{0}^{\prime}(r)$ and $A_{0}(p+1)=A_{0}^{\prime}(r+1)$. Then

$$
d_{W_{k}(G)}\left(a_{0}, a_{0}^{\prime}\right) \leq 2 k-2
$$

Proof. Let $A_{0}(p)=A_{0}^{\prime}(r), A_{0}(p+1)=A_{0}^{\prime}(r+1)$ and let $p \leq r$. (The case $r<p$ can be solved analogously.) We define the walks $A_{1}^{\prime}, A_{2}^{\prime}, \ldots, A_{k-r-1}^{\prime}$ by "shifting forwards". Let $A_{i}^{\prime}(0)$ be an arbitrary vertex adjacent to $A_{i-1}^{\prime}(0)$ distinct from $A_{i-1}^{\prime}(1)$; and

$$
A_{i}^{\prime}(1)=A_{i-1}^{\prime}(0), \quad A_{i}^{\prime}(2)=A_{i-1}^{\prime}(1), \quad \ldots, \quad A_{i}^{\prime}(k)=A_{i-1}^{\prime}(k-1)
$$

where $i=1,2, \ldots, k-r-1$. Since $A_{i}^{\prime}(0) \neq A_{i-1}^{\prime}(1)=A_{i}^{\prime}(2), i=1,2, \ldots, k-r-1$, the walks A_{i}^{\prime} are admissible and the vertices a_{i-1}^{\prime} and $a_{i}^{\prime}, i=1,2, \ldots, k-r-1$, are adjacent in $W_{k}(G)$. Therefore

$$
d_{W_{k}(G)}\left(a_{0}^{\prime}, a_{k-r-1}^{\prime}\right) \leq k-r-1
$$

In a similar way we define p walks $A_{1}, A_{2}, \ldots, A_{p}$ by "shifting backwards". Let

$$
A_{i}(0)=A_{i-1}(1), \quad A_{i}(1)=A_{i-1}(2), \quad \ldots, \quad A_{i}(k-1)=A_{i-1}(k)
$$

and let $A_{i}(k)$ be an arbitrary vertex adjacent to $A_{i}(k-1)$ distinct from $A_{i}(k-2)$, where $i=1,2, \ldots, p$. The walks A_{i} are admissible and the vertices a_{i-1} and a_{i}, $i=1,2, \ldots, p$, are adjacent in $W_{k}(G)$. Therefore

$$
d_{W_{k}(G)}\left(a_{0}, a_{p}\right) \leq p
$$

We have

$$
\begin{array}{ll}
A_{p}(0)=A_{k-r-1}^{\prime}(k-1) & \left(\text { since } A_{p}(0)=A_{p-1}(1)=\ldots=A_{0}(p)\right. \\
& \left.A_{k-r-1}^{\prime}(k-1)=A_{k-r-2}^{\prime}(k-2)=\ldots=A_{0}^{\prime}(r)\right) \\
A_{p}(1)=A_{k-r-1}^{\prime}(k) \quad & \left(\text { as } A_{p}(1)=A_{p-1}(2)=\ldots=A_{0}(p+1)\right. \\
& \left.A_{k-r-1}^{\prime}(k)=A_{k-r-2}^{\prime}(k-1)=\ldots=A_{0}^{\prime}(r+1)\right) .
\end{array}
$$

Now we define the walks $A_{p+1}, A_{p+2}, \ldots, A_{p+k-1}$ as follows. Let

$$
A_{p+i}(0)=A_{k-r-1}^{\prime}(k-1-i) \quad \text { and }
$$

$$
A_{p+i}(1)=A_{p+i-1}(0), \quad A_{p+i}(2)=A_{p+i-1}(1), \quad \ldots, \quad A_{p+i}(k)=A_{p+i-1}(k-1)
$$

$i=1,2, \ldots, k-1$. The walks A_{i} are admissible and thevertices a_{i-1} and a_{i}, $i=1,2, \ldots, k-1$, are adjacent in $W_{k}(G)$. Therefore

$$
d_{W_{k}(G)}\left(a_{p}, a_{p+k-1}\right) \leq k-1
$$

We have

$$
\begin{aligned}
& A_{p+k-1}(0)=A_{k-r-1}^{\prime}(0), \quad A_{p+k-1}(1)=A_{p+k-2}(0)=A_{k-r-1}^{\prime}(1), \quad \ldots, \\
& A_{p+k-1}(k)=A_{p+k-2}(k-1)=\ldots=A_{p}(1)=A_{k-r-1}^{\prime}(k)
\end{aligned}
$$

Hence $a_{p+k-1}=a_{k-r-1}^{\prime}$ and the distance

$$
\begin{aligned}
d_{W_{k}(G)}\left(a_{0}, a_{0}^{\prime}\right) & \leq d_{W_{k}(G)}\left(a_{0}, a_{p}\right)+d_{W_{k}(G)}\left(a_{p}, a_{p+k-1}\right)+d_{W_{k}(G)}\left(a_{k-r-1}^{\prime}, a_{0}^{\prime}\right) \\
& \leq p+(k-1)+(k-r-1)=2 k-2+p-r
\end{aligned}
$$

Since $p \leq r$,

$$
d_{W_{k}(G)}\left(a_{0}, a_{0}^{\prime}\right) \leq 2 k-2
$$

Proof of Theorem 1. Let $\operatorname{diam}\left(W_{k}(G)\right)=d_{W_{k}(G)}\left(a_{0}, a_{0}^{\prime}\right)$. Since the diameter of G is equal to d, we have $d_{G}\left(A_{0}(0), A_{0}^{\prime}(0)\right)=d^{\prime} \leq d$.

Observe that if $d \geq k-1$, then $2 k-2<d+k$; and if $d \leq k-2$, then $d+k \leq 2 k-2$.
If some edge from A_{0} is equal to some edge from A_{0}^{\prime}, then $d_{W_{k}(G)}\left(a_{0}, a_{0}^{\prime}\right) \leq$ $2 k-2$, by Lemma 9 .

Assume that A_{0} and A_{0}^{\prime} are edge disjoint. Let $V=\left(v_{0}, v_{1}, \ldots, v_{d^{\prime}}\right)$ be a path of length d^{\prime} in G such that $v_{0}=A_{0}(0)$ and $v_{d^{\prime}}=A_{0}^{\prime}(0)$. If the length of V is zero, we have $A_{0}(0)=A_{0}^{\prime}(0)$ and $A_{0}(1) \neq A_{0}^{\prime}(1)$. Then $d_{W_{k}(G)}\left(a_{0}, a_{0}^{\prime}\right) \leq k$, by Lemma 8 . Let V be a path of length at least one. We distinguish two cases:
I. Suppose that $v_{1} \neq A_{0}(1)$ and $v_{d^{\prime}-1} \neq A_{0}^{\prime}(1)$. We define d^{\prime} walks $A_{1}, A_{2}, \ldots, A_{d^{\prime}}$ by "shifting forwards". Let

$$
A_{i}(0)=v_{i}, \quad A_{i}(1)=A_{i-1}(0), \quad \ldots, \quad A_{i}(k)=A_{i-1}(k-1)
$$

where $i=1,2, \ldots, d^{\prime}$. Since

$$
A_{1}(0)=v_{1} \neq A_{0}(1)=A_{1}(2) \quad \text { and } \quad A_{i}(0)=v_{i} \neq v_{i-2}=A_{i-1}(1)=A_{i}(2)
$$

for $i=2,3, \ldots, d^{\prime}$; the walks A_{i} are admissible and the vertices a_{i-1} and a_{i}, $i=1,2, \ldots, d^{\prime}$, are adjacent in $W_{k}(G)$. Hence $d_{W_{k}(G)}\left(a_{0}, a_{d^{\prime}}\right) \leq d^{\prime}$. Now we have $A_{d^{\prime}}(0)=v_{d^{\prime}}=A_{0}^{\prime}(0)$ and $A_{d^{\prime}}(1)=A_{d^{\prime}-1}(0)=v_{d^{\prime}-1} \neq A_{0}^{\prime}(1)$. By Lemma 8 , $d_{W_{k}(G)}\left(a_{r}, a_{0}^{\prime}\right) \leq k$, therefore

$$
d_{W_{k}(G)}\left(a_{0}, a_{0}^{\prime}\right) \leq k+d^{\prime} \leq k+d
$$

II. Suppose that at least one of the edges $A_{0}(0) A_{0}(1), A_{0}^{\prime}(0) A_{0}^{\prime}(1)$ belongs to V.
a) Let $A_{0} \not \subset V$ and $A_{0}^{\prime} \not \subset V$. Let $t(s)$ be the smallest positive integer such that $v_{t+1} \neq A_{0}(t+1)\left(v_{d^{\prime}-(s+1)} \neq A_{0}^{\prime}(s+1)\right)$. It means that

$$
\begin{aligned}
& A_{0}=\left(v_{0}=A_{0}(0), \ldots, v_{t}=A_{0}(t), A_{0}(t+1), \ldots, A_{0}(k)\right) \quad \text { and } \\
& A_{0}^{\prime}=\left(A_{0}^{\prime}(k), \ldots, A_{0}^{\prime}(s+1), v_{d^{\prime}-s}=A_{0}^{\prime}(s), \ldots, v_{d^{\prime}}=A_{0}^{\prime}(0)\right)
\end{aligned}
$$

Since the walks A_{0} and A_{0}^{\prime} are edge disjoint, it is evident that $t \leq d^{\prime}-s$.
We define t walks $A_{1}, A_{2}, \ldots, A_{t}$ by "shifting backwards" as follows. Let

$$
A_{i}(0)=A_{i-1}(1)=v_{i}, \quad A_{i}(1)=A_{i-1}(2), \quad \ldots, \quad A_{i}(k-1)=A_{i-1}(k)
$$

and let $A_{i}(k)$ be an arbitrary vertex adjacent to $A_{i}(k-1)$ distinct from $A_{i}(k-2)$, where $i=1,2, \ldots, t$.

Analogously we define s walks $A_{1}^{\prime}, A_{2}^{\prime}, \ldots, A_{s}^{\prime}$. Let

$$
A_{i}^{\prime}(0)=A_{i-1}^{\prime}(1)=v_{d^{\prime}-i}, \quad A_{i}^{\prime}(1)=A_{i-1}^{\prime}(2), \quad \ldots, \quad A_{i}^{\prime}(k-1)=A_{i-1}^{\prime}(k)
$$

and let $A_{i}^{\prime}(k)$ be an arbitrary vertex adjacent to $A_{i}^{\prime}(k-1)$ distinct from $A_{i}^{\prime}(k-2)$, where $i=1,2, \ldots, s$.

The walks $A_{i}\left(A_{i}^{\prime}\right)$ are admissible and the vertices a_{i-1} and $a_{i}, i=1,2, \ldots, t$ (a_{i-1}^{\prime} and $\left.a_{i}^{\prime}, i=1,2, \ldots, s\right)$, are adjacent in $W_{k}(G)$. Therefore

$$
d_{W_{k}(G)}\left(a_{0}, a_{t}\right) \leq t \quad \text { and } \quad d_{W_{k}(G)}\left(a_{0}^{\prime}, a_{s}^{\prime}\right) \leq s
$$

We have

$$
\begin{array}{ll}
A_{t}(0)=v_{t}, & A_{s}^{\prime}(0)=v_{d^{\prime}-s} \quad \text { and } \\
A_{t}(1)=A_{t-1}(2)=\ldots=A_{0}(t+1), & A_{s}^{\prime}(1)=A_{s-1}^{\prime}(2)=\ldots=A_{0}^{\prime}(s+1)
\end{array}
$$

Assume that $t<d^{\prime}-s$. We have $A_{t}(1)=A_{0}(t+1) \neq v_{t+1}, A_{s}^{\prime}(1)=A_{0}^{\prime}(s+1) \neq$ $v_{d^{\prime}-(s+1)}$ and $d\left(A_{t}(0), A_{s}^{\prime}(0)\right)=d^{\prime}-s-t$. In the same way as in part I of this proof it can be shown that $d_{W_{k}(G)}\left(a_{t}, a_{s}^{\prime}\right) \leq d^{\prime}-s-t+k$. Then

$$
\begin{aligned}
d_{W_{k}(G)}\left(a_{0}, a_{0}^{\prime}\right) & \leq d_{W_{k}(G)}\left(a_{0}, a_{t}\right)+d_{W_{k}(G)}\left(a_{t}, a_{s}^{\prime}\right)+d_{W_{k}(G)}\left(a_{s}^{\prime}, a_{0}^{\prime}\right) \\
& \leq t+\left(d^{\prime}-s-t+k\right)+s=d^{\prime}+k \leq d+k .
\end{aligned}
$$

Suppose that $t=d^{\prime}-s$. Then $A_{t}(0)=A_{s}^{\prime}(0)$. Since A_{0} and A_{0}^{\prime} are edge-disjoint, $A_{t}(1)=A_{0}(t+1) \neq A_{0}^{\prime}(s+1)=A_{s}^{\prime}(1)$, and by Lemma $8, d_{W_{k}(G)}\left(a_{t}, a_{s}^{\prime}\right) \leq k$. Hence

$$
d_{W_{k}(G)}\left(a_{0}, a_{0}^{\prime}\right) \leq t+k+s=d^{\prime}+k \leq d+k .
$$

b) Let $A_{0} \subset V$. (The case $A_{0}^{\prime} \subset V$ can be solved in a similar manner.) Suppose that $B_{0}=A_{0}$, where $B_{0}(i)=A_{0}(k-i), i=0,1, \ldots, k$. Then instead of A_{0} we consider B_{0}, instead of V consider $V^{\prime}=\left(v_{0}^{\prime}=v_{k}=B_{0}(0), v_{1}^{\prime}=v_{k+1}, \ldots, v_{d^{\prime}-k}^{\prime}=\right.$ $\left.v_{d^{\prime}}=A_{0}^{\prime}(0)\right)$ and proceed analogously as above.

Proof of Assertion 3. Led $2 \leq d$ and $k-1 \leq d$. Assume that V, A and A^{\prime} are three vertex-disjoint paths, where $V=\left(v_{1}, v_{2}, \ldots, v_{d-1}\right), A=(A(0), A(1), \ldots, A(k))$
and $A^{\prime}=\left(A^{\prime}(0), A^{\prime}(1), \ldots, A^{\prime}(k)\right)$. Denote by G a graph consisting of V, A, A^{\prime} and edges $A(i) v_{1}, A^{\prime}(i) v_{d-1}, i=0,1, \ldots, k$. Then the diameter

$$
\operatorname{diam}(G)=d\left(d_{G}\left(A(0), A^{\prime}(0)\right)=d\right) \quad \text { and } \quad d_{W_{k}(G)}\left(a, a^{\prime}\right)=d+k
$$

By part A of Theorem $1, \operatorname{diam}\left(W_{k}(G)\right) \leq \operatorname{diam}(G)+k$, therefore

$$
\operatorname{diam}\left(W_{k}(G)\right)=d+k
$$

Proof of Theorem 5. Let $\operatorname{diam}(G)=d_{G}\left(v_{0}, v_{d}\right)=d$. Let $V=\left(v_{0}, v_{1}, \ldots, v_{d}\right)$ be a path of length d in G.
I. Suppose k is even. Denote by $A_{0}\left(A^{\prime}\right)$ a walk of length k in G, where $A_{0}\left(\frac{k}{2}\right)=v_{0}$ $\left(A^{\prime}\left(\frac{k}{2}\right)=v_{d}\right)$. We show that $d_{W_{k}(G)}\left(a_{0}, a^{\prime}\right) \geq d$. Let us prove it by contradiction and assume that $d_{W_{k}(G)}\left(a_{0}, a^{\prime}\right)=s \leq d-1$. Let $\left(a_{0}, a_{1}, \ldots, a_{s}=a^{\prime}\right)$ be a path of length s in $W_{k}(G)$. The vertices a_{i-1}, a_{i} are adjacent in $W_{k}(G)$, therefore $A_{i}\left(\frac{k}{2}\right)=A_{i-1}\left(\frac{k}{2}+1\right)$ or $A_{i}\left(\frac{k}{2}\right)=A_{i-1}\left(\frac{k}{2}-1\right), i=1,2, \ldots, s$. Hence

$$
\begin{aligned}
& d_{G}\left(A_{i}\left(\frac{k}{2}\right), A_{i-1}\left(\frac{k}{2}\right)\right)=1, \quad i=1,2, \ldots, s, \quad \text { and } \\
& d_{G}\left(v_{0}, v_{d}\right)=d_{G}\left(A_{0}\left(\frac{k}{2}\right), A^{\prime}\left(\frac{k}{2}\right)\right) \leq s,
\end{aligned}
$$

a contradiction.
II. Suppose k is odd. Let A_{0} be a walk of length k with the central edge $v_{0} v_{1}$, where $v_{0}=A_{0}\left(\frac{k-1}{2}\right), v_{1}=A_{0}\left(\frac{k+1}{2}\right)$; and let A^{\prime} be a walk of length k with the central edge $v_{d-1} v_{d}=A^{\prime}\left(\frac{k-1}{2}\right) A^{\prime}\left(\frac{k+1}{2}\right)$ in G. We show that $d_{W_{k}(G)}\left(a_{0}, a^{\prime}\right) \geq d-1$. Assume the contrary and let $d_{W_{k}(G)}\left(a_{0}, a^{\prime}\right)=t \leq d-2$. Let $\left(a_{0}, a_{1}, \ldots, a_{t}=a^{\prime}\right)$ be a path of length t in $W_{k}(G)$. Since a_{i-1} and $a_{i}, i=1,2, \ldots, t$, are adjacent vertices in $W_{k}(G)$, the central edges of A_{i-1} and A_{i} have to be adjacent in G. Then it is easy to see that
$\max \left\{d_{G}\left(A_{0}\left(\frac{k-1}{2}\right), A_{i}\left(\frac{k-1}{2}\right)\right), d_{G}\left(A_{0}\left(\frac{k-1}{2}\right), A_{i}\left(\frac{k+1}{2}\right)\right)\right\} \leq i+1$, $i=1,2, \ldots, t$, a contradiction.

Proof of Assertion 6. Let k be odd and $d \geq 2 k$. Assume that C and C^{\prime} are two edge-disjoint cycles;

$$
C=\left(c_{0}, c_{1}, \ldots, c_{2 k}=c_{0}\right) \quad \text { and } \quad C^{\prime}=\left(c_{0}^{\prime}, c_{1}^{\prime}, \ldots, c_{2(d-k)}^{\prime}=c_{0}^{\prime}\right)
$$

Let $c_{k}=c_{d-k}^{\prime}$ and let G be the graph consisting of C and C^{\prime}. Then

$$
V=\left(c_{0}, c_{1}, \ldots, c_{k}=c_{d-k}^{\prime}, c_{d-k-1}^{\prime}, \ldots, c_{0}^{\prime}\right)
$$

is the diameter path of G and the diameter is $\operatorname{diam}(G)=k+(d-k)=d$. In the following, we denote by

$$
\begin{array}{ll}
B_{1}=\left(c_{0}, c_{1}, \ldots, c_{k}\right), & B_{2}=\left(c_{k}, c_{k+1}, \ldots, c_{2 k}=c_{0}\right) \\
B_{3}=\left(c_{d-k}^{\prime}, c_{d-k-1}^{\prime}, \ldots, c_{d-2 k}^{\prime}\right), & B_{4}=\left(c_{d-k}^{\prime}, c_{d-k+1}^{\prime}, \ldots, c_{d}^{\prime}\right)
\end{array}
$$

the paths of length k in G. Note that $d_{W_{k}(G)}\left(b_{i}, b_{j}\right)=k$, where $i, j \in\{1,2,3,4\}$, $i<j$.

Suppose that A, A^{\prime} are any two walks of length k in G. We prove that

$$
d_{W_{k}(G)}\left(a, a^{\prime}\right) \leq d-1
$$

We partition the walks of length k into three sets S_{1}, S_{2} and S_{3}, where S_{1} is the set of those, being part of $C ; S_{2}$ those in C^{\prime}; and S_{3} the remaining ones. There are six cases to distinguish.
I. Let $A, A^{\prime} \in S_{1}$. Since A and A^{\prime} are the walks in the cycle C of length $2 k$, it is easy to see that

$$
d_{W_{k}(G)}\left(a, a^{\prime}\right) \leq k
$$

$\left(d_{W_{k}(G)}\left(a, a^{\prime}\right)=k\right.$ if and only if A and A^{\prime} are edge-disjoint).
II. Let $A, A^{\prime} \in S_{2}$. By analogy, since C_{2} is the cycle of length $2(d-k)$ and $A, A^{\prime} \subset C_{2}$, we have

$$
d_{W_{k}(G)}\left(a, a^{\prime}\right) \leq d-k
$$

III. Let $A, A^{\prime} \in S_{3}$. Then $A \cap B_{i}$ and $A^{\prime} \cap B_{j}$ are paths of length at least $\frac{k+1}{2}$ for some $i, j \in\{1,2,3,4\}$, in G. Consequently, $d_{W_{k}(G)}\left(a, b_{i}\right) \leq \frac{k-1}{2}$ and $d_{W_{k}(G)}\left(a^{\prime}, b_{j}\right) \leq \frac{k-1}{2}$. We know that $d_{W_{k}(G)}\left(b_{i}, b_{j}\right)=k$ if $i \neq j$, hence

$$
d_{W_{k}(G)}\left(a, a^{\prime}\right) \leq 2 k-1 \leq d-1
$$

IV. Let $A \in S_{1}$ and $A^{\prime} \in S_{2}$. Since $A \cap B_{1}$ or $A \cap B_{2}$ is a path of length at least $\frac{k+1}{2}$ in G, we have $d_{W_{k}(G)}\left(a, b_{i}\right) \leq \frac{k-1}{2}$, where $i=1$ or 2 . Let

$$
B_{3}^{\prime}=\left(c_{d-k}^{\prime}, c_{d-k-1}^{\prime}, \ldots, c_{0}^{\prime}\right), \quad B_{4}^{\prime}=\left(c_{d-k}^{\prime}, c_{d-k+1}^{\prime}, \ldots, c_{2(d-k)}^{\prime}\right)
$$

be the paths of length $d-k$ in G. Suppose that $A^{\prime} \cap B_{3}^{\prime}$ is a path of length at least $\frac{k+1}{2}$ in G. Then there exists a path $A_{s}^{\prime} \subset B_{3}^{\prime}$ of length k in G, such that $d_{W_{k}(G)}\left(a^{\prime}, a_{s}^{\prime}\right) \leq \frac{k-1}{2}$. Since B_{3}^{\prime} is the path of length $d-k$ and A_{s}^{\prime}, B_{3} are the subpaths of B_{3}^{\prime} of length $k, d_{W_{k}(G)}\left(a_{s}^{\prime}, b_{3}\right) \leq d-2 k$. Therefore

$$
d_{W_{k}(G)}\left(a^{\prime}, b_{3}\right) \leq d_{W_{k}(G)}\left(a^{\prime}, a_{s}^{\prime}\right)+d_{W_{k}(G)}\left(a_{s}^{\prime}, b_{3}\right) \leq \frac{k-1}{2}+d-2 k
$$

and hence

$$
\begin{aligned}
d_{W_{k}(G)}\left(a, a^{\prime}\right) & \leq d_{W_{k}(G)}\left(a, b_{i}\right)+d_{W_{k}(G)}\left(b_{i}, b_{3}\right)+d_{W_{k}(G)}\left(b_{3}, a^{\prime}\right) \\
& \leq \frac{k-1}{2}+k+\left(\frac{k-1}{2}+d-2 k\right)=d-1
\end{aligned}
$$

If $A^{\prime} \cap B_{3}^{\prime}$ is a path of length less than $\frac{k+1}{2}$ in G, then $A^{\prime} \cap B_{4}^{\prime}$ is a path of length at least $\frac{k+1}{2}$. It can be proved in a similar manner that

$$
d_{W_{k}(G)}\left(a, a^{\prime}\right) \leq d-1
$$

V. Let $A \in S_{1}$ and $A^{\prime} \in S_{3}$. Since $d_{W_{k}(G)}\left(a, b_{i}\right) \leq \frac{k-1}{2}$, where $i=1$ or 2 ; and $d_{W_{k}(G)}\left(a^{\prime}, b_{j}\right) \leq \frac{k-1}{2}$, where $j \in\{1,2,3,4\}$, we have

$$
d_{W_{k}(G)}\left(a, a^{\prime}\right) \leq 2 k-1
$$

VI. Let $A \in S_{2}$ and $A^{\prime} \in S_{3}$. By IV, we know that $d_{W_{k}(G)}\left(a, b_{i}\right) \leq \frac{k-1}{2}+d-2 k$ for $i=3$ or $i=4$, and analogously as in IV it can be shown that $d_{W_{k}(G)}\left(a, a^{\prime}\right) \leq d-1$.

By part II of Theorem 5, the diameter of every walk graph is greater than or equal to $d-1$, therefore

$$
\operatorname{diam}\left(W_{k}(G)\right)=d-1
$$

Acknowledgment. The author thanks Martin Knor for valuable discussions. The research was supported by the VEGA Grant No. 1/2004/05 and the APVT Grant No. 20-023302.

References

1. Belan A. and Jurica, P., Diameter in path graphs, Acta Math. Univ. Comenianae LXVIII (1999), 111-125.
2. Broersma H. J. and Hoede C., Path graphs, J. Graph Theory 13 (1989), 427-444.
3. Knor M. and Niepel, L., Path,trail and walk graphs, Acta Math. Univ. Comenianae LXVIII (1999), 253-256.
4. Knor M., Niepel L'. and Malah M., Conectivity of path graphs, Australasian Journal of Combinatorics 25 (2002), 175-184.
T. Vetrík, Slovak University of Technology, Faculty of Civil Engineering, Department of Mathematics, Radlinského 11, 81368 Bratislava, Slovakia, e-mail: vetrik@math.sk

[^0]: Received March 16, 2006.
 2000 Mathematics Subject Classification. Primary 05C12, 05C38.
 Key words and phrases. Diameter, walk graph.

