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DIAMETER IN WALK GRAPHS

T. VETRÍK

Abstract. A walk W of length k is admissible if every two consecutive edges of
W are distinct. If G is a graph, then its walk graph Wk(G) has vertex set identical

with the set of admissible walks of length k in G. Two vertices are adjacent in

Wk(G) if and only if one of the corresponding walks can be obtained from the other
by deleting an edge from one end and adding an edge to the other end. We show

that if the degree of every vertex in G is more than one, then Wk(G) is connected
and we find bounds for the diameter of Wk(G).

1. Introduction and results

All graphs considered in this paper are finite, connected, without loops and mul-
tiple edges. By δ(G) we denote the minimum degree of G and by dG(u, v) we
denote the distance between two vertices, u and v, in G. Let Pk be the set of
paths of length k in G; and let Wk be the set of walks of length k in G in which
no two consecutive edges are equal. The vertex set of the path graph Pk(G) (of
the walk graph Wk(G)) is the set Pk (Wk). Two vertices of Pk(G) (Wk(G)) are
joined by an edge if and only if one can be obtained from the other by “shifting”
the corresponding paths (walks) in G.

Path graphs were investigated by Broersma and Hoede [2] as a natural gener-
alization of line graphs (observe that P1(G) is the line graph of G, i.e., P1(G) =
L(G)). Walk graphs were investigated by Knor and Niepel [3] as a generalization
of iterated line graphs. We have P1(G) = W1(G), P2(G) = W2(G) and for k ≥ 3
the graph Pk(G) is an induced subgraph of Wk(G).

Using analogous methods as Belan and Jurica for path graphs in [3], it is easy
to find the lower bound for the diameter of walk graphs:

diam(Wk(G)) ≥ diam(G)− k.

Since Pk(G) = Wk(G) if the graph G is a tree, analogously as for path graphs
in [3], for arbitrary component H of walk graph Wk(G) it can be proved

diam(H) ≤ diam(G) + k(k − 2),

providing that diam(G) ≥ k.
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In this paper we improve these results for graphs which do not contain vertices
of degree one.

Theorem 1. Let G be a graph with diameter d ≥ 1 and δ(G) > 1.
A. If d ≥ k − 1, then diam(Wk(G)) ≤ d + k.
B. If d ≤ k − 2, then diam(Wk(G)) ≤ 2k − 2.

Corollary 2. Let G be a connected graph with δ(G) > 1. Then Wk(G) is
connected.

We remark that an analogy of Corollary 2 is not true for path graphs. By
[4], we know that there exists a graph G with δ(G) = k − 1, such that Pk(G) is
disconnected.

Assertion 3. For every d, for which 2 ≤ d and k− 1 ≤ d, there exists a graph
G with diameter d and δ(G) > 1, such that diam(Wk(G)) = d + k.

Problem 4. Let G be a graph with δ(G) > 1 and let diam(G) < k. Are the
bounds for diam(Wk(G)) of part B of Theorem 1 best possible?

Theorem 5. Let G be a graph with δ(G) > 1.
I. If k is even, then diam(Wk(G)) ≥ diam(G).

II. If k is odd, then diam(Wk(G)) ≥ diam(G)− 1.

Observe that if G is a cycle, then Wk(G) is isomorphic to G. Hence the lower
bound for diam(Wk(G)) is the best possible if k is even.

Assertion 6. For every odd number k and d ≥ 2k, there exists a graph G with
diameter d and δ(G) > 1, such that diam(Wk(G)) = d− 1.

It is easy to show that if k is odd and diam(G) = 2, then Wk(G) can not be
complete and hence diam(Wk(G)) ≥ 2.

We do not know if the lower bound of part II of Theorem 5 is best possible for
3 ≤ d < 2k. The value for the lower bound is equal either to d− 1 or d.

Problem 7. Let G be a graph with δ(G) > 1 and let diam(G) < 2k. Are the
bounds for diam(Wk(G)) of part II of Theorem 5 best possible?

2. Proofs

We remark that throughout the paper we use k only for the length of walks for
walk graph Wk(G). We denote the vertices of Wk(G) by small letters a, b, . . . ,
while the corresponding walks of length k in G we denote by capital letters A,B,
. . . It means that if A is a walk of length k in G and a is a vertex in Wk(G), then
a is necessarily the vertex corresponding to the walk A.

Let A be a walk of length k in G. By A(i), 0 ≤ i ≤ k, we denote the i-th vertex
of A. If A and B are walks in G such that A = B, then either A(i) = B(k − i),
0 ≤ i ≤ k; or A(i) = B(i), 0 ≤ i ≤ k.

Lemma 8. Let A0 and A′
0 be two admissible walks in G. If A0(0) = A′

0(0) and
A0(1) 6= A′

0(1), then dWk(G)(a0, a
′
0) ≤ k.
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Proof. We define k walks A1, A2, . . . , Ak by “shifting forwards”. Let Ai(0) =
A′

0(i) and Ai(1) = Ai−1(0), Ai(2) = Ai−1(1), . . . , Ai(k) = Ai−1(k − 1), where
i = 1, 2, . . . , k. We have

A1(0) = A′
0(1) 6= A0(1) = A1(2) and

Ai(0) = A′
0(i) 6= A′

0(i− 2) = Ai−2(0) = Ai(2), i = 2, 3, . . . , k.

Hence Ai are admissible walks and ai−1 and ai are adjacent in Wk(G). Therefore
dWk(G)(a0, ak) ≤ k. Since

Ak(0) = A′
0(k),

Ak(1) = Ak−1(0) = A′
0(k − 1),

...

Ak(k) = Ak−1(k − 1) = . . . = Ak−k(0) = A′
0(0),

we have Ak = A′
0 and hence dWk(G)(a0, a

′
0) ≤ k. �

Lemma 9. Let G be a graph with δ(G) > 1 and let A0 and A′
0 be two admissible

walks in G. Let A0(p) = A′
0(r) and A0(p + 1) = A′

0(r + 1). Then

dWk(G)(a0, a
′
0) ≤ 2k − 2.

Proof. Let A0(p) = A′
0(r), A0(p+1) = A′

0(r+1) and let p ≤ r. (The case r < p
can be solved analogously.) We define the walks A′

1, A
′
2, . . . , A

′
k−r−1 by “shifting

forwards”. Let A′
i(0) be an arbitrary vertex adjacent to A′

i−1(0) distinct from
A′

i−1(1); and

A′
i(1) = A′

i−1(0), A′
i(2) = A′

i−1(1), . . . , A′
i(k) = A′

i−1(k − 1),

where i = 1, 2, . . . , k−r−1. Since A′
i(0) 6= A′

i−1(1) = A′
i(2), i = 1, 2, . . . , k−r−1,

the walks A′
i are admissible and the vertices a′i−1 and a′i, i = 1, 2, . . . , k − r − 1,

are adjacent in Wk(G). Therefore

dWk(G)(a′0, a
′
k−r−1) ≤ k − r − 1.

In a similar way we define p walks A1, A2, . . . ,Ap by “shifting backwards”. Let

Ai(0) = Ai−1(1), Ai(1) = Ai−1(2), . . . , Ai(k − 1) = Ai−1(k)

and let Ai(k) be an arbitrary vertex adjacent to Ai(k− 1) distinct from Ai(k− 2),
where i = 1, 2, . . . , p. The walks Ai are admissible and the vertices ai−1 and ai,
i = 1, 2, . . . , p, are adjacent in Wk(G). Therefore

dWk(G)(a0, ap) ≤ p.

We have
Ap(0) = A′

k−r−1(k − 1) (since Ap(0) = Ap−1(1) = . . . = A0(p),

A′
k−r−1(k − 1) = A′

k−r−2(k − 2) = . . . = A′
0(r))

Ap(1) = A′
k−r−1(k) (as Ap(1) = Ap−1(2) = . . . = A0(p + 1),

A′
k−r−1(k) = A′

k−r−2(k − 1) = . . . = A′
0(r + 1)).
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Now we define the walks Ap+1, Ap+2, . . . , Ap+k−1 as follows. Let

Ap+i(0) = A′
k−r−1(k − 1− i) and

Ap+i(1) = Ap+i−1(0), Ap+i(2) = Ap+i−1(1), . . . , Ap+i(k) = Ap+i−1(k − 1),

i = 1, 2, . . . , k − 1. The walks Ai are admissible and thevertices ai−1 and ai,
i = 1, 2, . . . , k − 1, are adjacent in Wk(G). Therefore

dWk(G)(ap, ap+k−1) ≤ k − 1.

We have

Ap+k−1(0) = A′
k−r−1(0), Ap+k−1(1) = Ap+k−2(0) = A′

k−r−1(1), . . . ,

Ap+k−1(k) = Ap+k−2(k − 1) = . . . = Ap(1) = A′
k−r−1(k).

Hence ap+k−1 = a′k−r−1 and the distance

dWk(G)(a0, a
′
0) ≤ dWk(G)(a0, ap) + dWk(G)(ap, ap+k−1) + dWk(G)(a′k−r−1, a

′
0)

≤ p + (k − 1) + (k − r − 1) = 2k − 2 + p− r.

Since p ≤ r,
dWk(G)(a0, a

′
0) ≤ 2k − 2.

�

Proof of Theorem 1. Let diam(Wk(G)) = dWk(G)(a0, a
′
0). Since the diameter of

G is equal to d, we have dG(A0(0), A′
0(0)) = d′ ≤ d.

Observe that if d ≥ k−1, then 2k−2 < d+k; and if d ≤ k−2, then d+k ≤ 2k−2.
If some edge from A0 is equal to some edge from A′

0, then dWk(G)(a0, a
′
0) ≤

2k − 2, by Lemma 9.
Assume that A0 and A′

0 are edge disjoint. Let V = (v0, v1, . . . ,vd′) be a path of
length d′ in G such that v0 = A0(0) and vd′ = A′

0(0). If the length of V is zero, we
have A0(0) = A′

0(0) and A0(1) 6= A′
0(1). Then dWk(G)(a0, a

′
0) ≤ k, by Lemma 8.

Let V be a path of length at least one. We distinguish two cases:
I. Suppose that v1 6= A0(1) and vd′−1 6= A′

0(1). We define d′ walks A1, A2, . . . , Ad′

by “shifting forwards”. Let

Ai(0) = vi, Ai(1) = Ai−1(0), . . . , Ai(k) = Ai−1(k − 1),

where i = 1, 2, . . . , d′. Since

A1(0) = v1 6= A0(1) = A1(2) and Ai(0) = vi 6= vi−2 = Ai−1(1) = Ai(2),

for i = 2, 3, . . . , d′; the walks Ai are admissible and the vertices ai−1 and ai,
i = 1, 2, . . . , d′, are adjacent in Wk(G). Hence dWk(G)(a0, ad′) ≤ d′. Now we have
Ad′(0) = vd′ = A′

0(0) and Ad′(1) = Ad′−1(0) = vd′−1 6= A′
0(1). By Lemma 8,

dWk(G)(ar, a
′
0) ≤ k, therefore

dWk(G)(a0, a
′
0) ≤ k + d′ ≤ k + d.
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II. Suppose that at least one of the edges A0(0)A0(1), A′
0(0)A′

0(1) belongs to V .
a) Let A0 6⊂ V and A′

0 6⊂ V . Let t (s) be the smallest positive integer such that
vt+1 6= A0(t + 1) (vd′−(s+1) 6= A′

0(s + 1)). It means that

A0 = (v0 = A0(0), . . . , vt = A0(t), A0(t + 1), . . . , A0(k)) and

A′
0 = (A′

0(k), . . . , A′
0(s + 1), vd′−s = A′

0(s), . . . , vd′ = A′
0(0)).

Since the walks A0 and A′
0 are edge disjoint, it is evident that t ≤ d′ − s.

We define t walks A1, A2, . . . , At by “shifting backwards” as follows. Let

Ai(0) = Ai−1(1) = vi, Ai(1) = Ai−1(2), . . . , Ai(k − 1) = Ai−1(k)

and let Ai(k) be an arbitrary vertex adjacent to Ai(k− 1) distinct from Ai(k− 2),
where i = 1, 2, . . . , t.

Analogously we define s walks A′
1, A

′
2, . . . , A

′
s. Let

A′
i(0) = A′

i−1(1) = vd′−i, A′
i(1) = A′

i−1(2), . . . , A′
i(k − 1) = A′

i−1(k)

and let A′
i(k) be an arbitrary vertex adjacent to A′

i(k− 1) distinct from A′
i(k− 2),

where i = 1, 2, . . . , s.
The walks Ai (A′

i) are admissible and the vertices ai−1 and ai, i = 1, 2, . . . , t
(a′i−1 and a′i, i = 1, 2, . . . , s), are adjacent in Wk(G). Therefore

dWk(G)(a0, at) ≤ t and dWk(G)(a′0, a
′
s) ≤ s.

We have

At(0) = vt, A′
s(0) = vd′−s and

At(1) = At−1(2) = . . . = A0(t + 1), A′
s(1) = A′

s−1(2) = . . . = A′
0(s + 1).

Assume that t < d′−s. We have At(1) = A0(t+1) 6= vt+1, A′
s(1) = A′

0(s+1) 6=
vd′−(s+1) and d(At(0), A′

s(0)) = d′ − s − t. In the same way as in part I of this
proof it can be shown that dWk(G)(at, a

′
s) ≤ d′ − s− t + k. Then

dWk(G)(a0, a
′
0) ≤ dWk(G)(a0, at) + dWk(G)(at, a

′
s) + dWk(G)(a′s, a

′
0)

≤ t + (d′ − s− t + k) + s = d′ + k ≤ d + k.

Suppose that t = d′ − s. Then At(0) = A′
s(0). Since A0 and A′

0 are edge-disjoint,
At(1) = A0(t + 1) 6= A′

0(s + 1) = A′
s(1), and by Lemma 8, dWk(G)(at, a

′
s) ≤ k.

Hence
dWk(G)(a0, a

′
0) ≤ t + k + s = d′ + k ≤ d + k.

b) Let A0 ⊂ V . (The case A′
0 ⊂ V can be solved in a similar manner.) Suppose

that B0 = A0, where B0(i) = A0(k − i), i = 0, 1, . . . , k. Then instead of A0 we
consider B0, instead of V consider V ′ = (v′0 = vk = B0(0), v′1 = vk+1, . . . , v

′
d′−k =

vd′ = A′
0(0)) and proceed analogously as above. �

Proof of Assertion 3. Led 2 ≤ d and k − 1 ≤ d. Assume that V , A and A′ are
three vertex-disjoint paths, where V =(v1, v2, . . . , vd−1), A=(A(0), A(1), . . . , A(k))
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and A′ = (A′(0), A′(1), . . . , A′(k)). Denote by G a graph consisting of V , A, A′

and edges A(i)v1, A′(i)vd−1, i = 0, 1, . . . ,k. Then the diameter

diam(G) = d(dG(A(0), A′(0)) = d) and dWk(G)(a, a′) = d + k.

By part A of Theorem 1, diam(Wk(G)) ≤ diam(G) + k, therefore

diam(Wk(G)) = d + k.

�

Proof of Theorem 5. Let diam(G) = dG(v0, vd) = d. Let V = (v0, v1, . . . ,vd)
be a path of length d in G.
I. Suppose k is even. Denote by A0 (A′) a walk of length k in G, where A0

(
k
2

)
= v0

(A′ (k
2

)
= vd). We show that dWk(G)(a0, a

′) ≥ d. Let us prove it by contradiction
and assume that dWk(G)(a0, a

′) = s ≤ d − 1. Let (a0, a1, . . . , as = a′) be a path
of length s in Wk(G). The vertices ai−1, ai are adjacent in Wk(G), therefore
Ai

(
k
2

)
= Ai−1

(
k
2 + 1

)
or Ai

(
k
2

)
= Ai−1

(
k
2 − 1

)
, i = 1, 2, . . . , s. Hence

dG

(
Ai

(
k

2

)
, Ai−1

(
k

2

))
= 1, i = 1, 2, . . . , s, and

dG(v0, vd) = dG

(
A0

(
k

2

)
, A′

(
k

2

))
≤ s,

a contradiction.
II. Suppose k is odd. Let A0 be a walk of length k with the central edge v0v1, where
v0 = A0

(
k−1
2

)
, v1 = A0

(
k+1
2

)
; and let A′ be a walk of length k with the central

edge vd−1vd = A′ (k−1
2

)
A′ (k+1

2

)
in G. We show that dWk(G)(a0, a

′) ≥ d − 1.
Assume the contrary and let dWk(G)(a0, a

′) = t ≤ d − 2. Let (a0, a1, . . . , at = a′)
be a path of length t in Wk(G). Since ai−1 and ai, i = 1, 2, . . . , t, are adjacent
vertices in Wk(G), the central edges of Ai−1 and Ai have to be adjacent in G.
Then it is easy to see that

max
{

dG

(
A0

(
k − 1

2

)
, Ai

(
k − 1

2

))
, dG

(
A0

(
k − 1

2

)
, Ai

(
k + 1

2

))}
≤ i+1,

i = 1, 2, . . . , t, a contradiction. �

Proof of Assertion 6. Let k be odd and d ≥ 2k. Assume that C and C ′ are two
edge-disjoint cycles;

C = (c0, c1, . . . , c2k = c0) and C ′ = (c′0, c
′
1, . . . , c

′
2(d−k) = c′0).

Let ck = c′d−k and let G be the graph consisting of C and C ′. Then

V = (c0, c1, . . . , ck = c′d−k, c′d−k−1, . . . , c
′
0)

is the diameter path of G and the diameter is diam(G) = k + (d− k) = d. In the
following, we denote by

B1 = (c0, c1, . . . , ck), B2 = (ck, ck+1, . . . , c2k = c0),
B3 = (c′d−k, c′d−k−1, . . . , c

′
d−2k), B4 = (c′d−k, c′d−k+1, . . . , c

′
d)
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the paths of length k in G. Note that dWk(G)(bi, bj) = k, where i, j ∈ {1, 2, 3, 4},
i < j.

Suppose that A, A′ are any two walks of length k in G. We prove that

dWk(G)(a, a′) ≤ d− 1.

We partition the walks of length k into three sets S1, S2 and S3, where S1 is the
set of those, being part of C; S2 those in C ′; and S3 the remaining ones. There
are six cases to distinguish.
I. Let A,A′ ∈ S1. Since A and A′ are the walks in the cycle C of length 2k, it is
easy to see that

dWk(G)(a, a′) ≤ k

(dWk(G)(a, a′) = k if and only if A and A′ are edge-disjoint).
II. Let A,A′ ∈ S2. By analogy, since C2 is the cycle of length 2(d − k) and
A,A′ ⊂ C2, we have

dWk(G)(a, a′) ≤ d− k.

III. Let A,A′ ∈ S3. Then A ∩ Bi and A′ ∩ Bj are paths of length at least
k+1
2 for some i, j ∈ {1, 2, 3, 4}, in G. Consequently, dWk(G)(a, bi) ≤ k−1

2 and
dWk(G)(a′, bj) ≤ k−1

2 . We know that dWk(G)(bi, bj) = k if i 6= j, hence

dWk(G)(a, a′) ≤ 2k − 1 ≤ d− 1.

IV. Let A ∈ S1 and A′ ∈ S2. Since A ∩ B1 or A ∩ B2 is a path of length at least
k+1
2 in G, we have dWk(G)(a, bi) ≤ k−1

2 , where i = 1 or 2. Let

B′
3 = (c′d−k, c′d−k−1, . . . , c

′
0), B′

4 = (c′d−k, c′d−k+1, . . . , c
′
2(d−k))

be the paths of length d − k in G. Suppose that A′ ∩ B′
3 is a path of length at

least k+1
2 in G. Then there exists a path A′

s ⊂ B′
3 of length k in G, such that

dWk(G)(a′, a′s) ≤ k−1
2 . Since B′

3 is the path of length d − k and A′
s, B3 are the

subpaths of B′
3 of length k, dWk(G)(a′s, b3) ≤ d− 2k. Therefore

dWk(G)(a′, b3) ≤ dWk(G)(a′, a′s) + dWk(G)(a′s, b3) ≤
k − 1

2
+ d− 2k

and hence
dWk(G)(a, a′) ≤ dWk(G)(a, bi) + dWk(G)(bi, b3) + dWk(G)(b3, a

′)

≤ k − 1
2

+ k +
(

k − 1
2

+ d− 2k

)
= d− 1.

If A′ ∩ B′
3 is a path of length less than k+1

2 in G, then A′ ∩ B′
4 is a path of

length at least k+1
2 . It can be proved in a similar manner that

dWk(G)(a, a′) ≤ d− 1.

V. Let A ∈ S1 and A′ ∈ S3. Since dWk(G)(a, bi) ≤ k−1
2 , where i = 1 or 2; and

dWk(G)(a′, bj) ≤ k−1
2 , where j ∈ {1, 2, 3, 4}, we have

dWk(G)(a, a′) ≤ 2k − 1
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VI. Let A ∈ S2 and A′ ∈ S3. By IV, we know that dWk(G)(a, bi) ≤ k−1
2 +d−2k for

i = 3 or i = 4, and analogously as in IV it can be shown that dWk(G)(a, a′) ≤ d−1.
By part II of Theorem 5, the diameter of every walk graph is greater than or

equal to d− 1, therefore
diam(Wk(G)) = d− 1.

�
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