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NORMAL GENERATION OF UNITARY GROUPS OF CUNTZ ALGEBRAS
BY INVOLUTIONS

A. AL-RAWASHDEH

Abstract. In purely infinite factors, P. de la Harpe proved that a normal subgroup of the unitary

group which contains a non-trivial self-adjoint unitary contains all self-adjoint unitaries of the factor.
Also he proved the same result in finite continuous factors. In a previous work the author proved a
similar result in some types of unital AF-algebras. In this paper we extend the result of de la Harpe,
concerning the purely infinite factors to a main example of purely infinite C∗-algebras called the Cuntz
algebras On(2 ≤ n ≤ ∞) and we prove that U(On) is normally generated by some non-trivial in-
volution. In particular, in the Cuntz algebra O∞ we prove that U(O∞) is normally generated by
self-adjoint unitary of odd type.

1. Introduction

Let A be any unital C∗-algebra. The group of unitaries and the set of projections of A are
denoted by U(A), P(A) respectively. The involutions of A are the set of self-adjoint unitaries (∗-
symmetries). In several types of C∗-algebras, we have that the involutions generate all the unitaries.
In the case of von Neumann factors, M. Broise in [3]; proved the following main theorem.

Theorem 1.1. [3, Theorem 1] If B is a factor of type II1 or III, then the set of involutions
generates U(B).
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Also, in the case of simple, purely infinite C∗-algebras, M. Leen proved the following result.

Theorem 1.2. [10, Theorem 3.8] If A is a simple, unital purely infinite C∗-algebra, then the
set of ∗-symmetries of A forms a set of generators for U0(A), (where U0(A) denotes the identity
component of the unitary group of A).

The Cuntz algebras are interesting examples of simple, unital purely infinite C∗-algebras, which
was introduced by Cuntz in [5] this C∗-algebra is generated by isometries that have orthogonal
ranges (for more information see [6, V. 4]). As shown in [5] the unitary group of the Cuntz algebras
are connected. Now let us recall these definitions.

Definition 1.3. The Cuntz algebra On, where 2 ≤ n, is the universal C∗-algebra which is
generated by isometries s1, s2, . . . , sn, such that

n∑
i=1

sis
∗
i = 1(1)

with s∗i sj = 0, when i 6= j. The Cuntz algebra O∞ is generated by infinite number of such
isometries.

Remark 1.4. [6, V. 4] Recall that a universal C∗-algebra On means, whenever t1, t2 . . . tn form
another set of isometries satisfying (1), then there is a unique ∗-homomorphism ρ of On onto
C∗({t1, t2, . . . tn}) such that ρ(si) = ti, for all 1 ≤ i ≤ n.

In this paper, the projection sis
∗
i is denoted by pi, and these projections are called the standard

projections of the Cuntz algebras. The corresponding involution 1− 2pi is denoted by ui.

Let us recall the following main results concerning the Cuntz algebras.
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Theorem 1.5. [5] The Cuntz algebras On(2 ≤ n ≤ ∞) are simple unital purely infinite C∗-
algebras.

Using the fact that K1(On) ∼= 0 (see [4, 3.8]) and K1(A) ' U(A)/U(A)0 (see [4, p. 188], M.
Leen’s result (Theorem 1.2) shows that the set of ∗-symmetries of On(2 ≤ n ≤ ∞) generates the
unitary group U(On).

Definition 1.6. A group G is normally generated by an element x if the only normal subgroup
of G containing x is G itself.

If u = 1− 2p is an involution in a factor B, then P. de la Harpe defined the notion of the type
of u to be the pair (x, y), where x = D(1− p) and y = D(p), as D denotes a normalized dimension
function on B, see [7]. He proved that any normal subgroup N of U(B), which is not contained in
the circle S1, contains a non-trivial involution, and then contains all the involutions of B (see [8,
Proposition 2]). Afterwards, P. de la Harpe used Broise’s result (Theorem 1.1), and he proved the
following theorem.

Theorem 1.7. [8] If B is a factor of type II1 or III and N is any normal subgroup of U(B),
which is not contained in the circle S1, then N = U(B).

If v is an involution of On(2 ≤ n ≤ ∞), then as introduced in [1], we define the type of v to be
the element [p] in K0(On), where v = 1− 2p. Since the K0(On) is a cyclic group, the type of v is
an integer. In Section 2, we show that a normal subgroup N of U(On), n < ∞ contains all the
involutions if

1. N contains an involution of the type 1 (i.e. [1]), or
2. N contains a non-trivial involution and n− 1 is a prime number, or
3. N contains a non-trivial involution such that its type and n− 1 are relatively prime. Then

using M. Leen’s result in Theorem 1.2, we prove that U(On) is normally generated by a
non-trivial involution.
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In Section 3, we show that if N contains an involution of odd type, then N contains all the invo-
lutions of O∞. Consequently, we use M. Leen’s result in order to prove that U(On) is normally
generated by an involution of odd type.

Now, let us recall main results concerning purely infinite C∗-algebras, that might be used
throughout this paper.

Proposition 1.8. [4, 1.5] In any C∗-algebra A, the following hold:
(i) If p, q are infinite projections and pq = 0, then p + q is an infinite projection.
(ii) If p is an infinite projection, and p′ ∼ p, then p′ is an infinite projection.
(iii) If p and q are infinite projections, then there exists an infinite projection p′ such that p ∼ p′

and p′ < q, moreover q − p′ is an infinite projection.

Theorem 1.9. [2, 6.11.9] Two infinite projections in a simple unital C∗-algebra are equivalent
if and only if they have the same K0-class. Two non-trivial projections with the same K0-class in
a purely infinite C∗-algebra are unitarily equivalent.

2. The On(2 ≤ n < ∞) Case

We prove the following result which is valid for the Cuntz algebras On(2 ≤ n ≤ ∞). The proof is
similar to [1, Lemma 2.2], in the case of the UHF-algebras. For completeness we have.

Lemma 2.1. Let u and v be two involutions of On(2 ≤ n ≤ ∞). Then u is conjugate to v if
and only if they have the same type.

Proof. If u and v are conjugate involutions of On(2 ≤ n ≤ ∞), then as in [1, Lemma 2.2],
there exists a unitary w in U(On) such that u = wvw∗. But u = 1− 2e and v = 1− 2f for some
projections e, f in A, so u = w(1− 2f)w∗ = 1− 2wfw∗, therefore e = wfw∗ and by Theorem 1.9,
[e] = [f ].
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Conversely, assume that the involutions u and v have the same type. Then u = 1 − 2p and
v = 1 − 2q, for some p, q ∈ P(On) with [p] = [q] in K0(On) group. Then by Theorem 1.9, the
projections p and q are unitarily equivalent, and therefore u = wvw∗ for some w ∈ U(On). �

Proposition 2.2. In On(2 ≤ n ≤ ∞), the involution ui(i = 1, . . . n) has type 1.

Proof. As ui = 1− 2pi, the type of ui is [pi]. By definition pi = sis
∗
i and s∗i si = 1; therefore by

Theorem 1.9, we have [pi] = [1]. �

The following result is based on [4, 3.7, 3.8]; that is K0(On) ' Zn−1.

Proposition 2.3. If 0 ≤ k ≤ n− 2; n < ∞, then there exists an involution in On of type k (in
fact, of type k[1]).

Proof. Let p1, p2, . . . pn be the standard projections of On, and vk = 1− 2(p1 + p2 + · · · pk); for
0 ≤ k ≤ n− 2. Then vk is an involution in On of type equal to k. �

Lemma 2.4. If N is a normal subgroup of U(On)(n < ∞), which contains an involution of the
type 1([1]), then N contains an involution of any given type.

Proof. As N is a normal subgroup of U(On), and it contains an involution of the type 1, then
by Lemma 2.1, N contains ui(i = 1, . . . n). Then u1u2 = (1−2p1)(1−2p2) = 1−2(p1 +p2), which
is an involution of type 2, contained in N . Also u1u2u3 is an involution in N of type 3. Keep
going we have u1u2 . . . uk = 1−2(p1 +p2 + · · ·+pk) is an involution in N of type k(1 ≤ k ≤ n−2),
hence N contains an involution of any given type, which proves the required. �

Lemma 2.5. Let N be a normal subgroup of U(On), and suppose that n−1 is a prime number.
If N contains a non-trivial involution of On, then N contains the involution u1.
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Proof. Suppose that v ∈ N such that v = 1 − 2p and v is of type k, i.e. [p] = k. If k = n − 1,
then [p] = 0 ∈ K0(On), by Proposition 1.8(ii) we must have p = 0 and then v = 1 which gives a
contradiction as v is non-trivial. Therefore we consider 1 ≤ k ≤ n−2. We may assume that p < 1,
since if p = 1, then v = −1 which is an involution of type one, and this ends the proof. As n−1 is a
prime, there exist integers s and t such that sk+t(n−1) = 1, then sk = 1 in Zn−1. By Proposition
1.8(iii), we can find mutually orthogonal projections q1, q2, . . . qs, with [qi] = [p], i = 1, . . . s. Let
vi = 1 − 2qi, i = 1, . . . s. Then for every i, vi there is an involution of the type k, which belongs
to N as it is conjugate to v. Therefore

v1v2 . . . vs = 1− 2(q1 + q2 + · · ·+ qs)

is an involution in N , and the type of v1v2 . . . vs is sk = 1 ∈ Zn−1. �

By imitating the same proof in the previous result, we can rewrite Lemma 2.5 as follows:

Lemma 2.6. Let N be a normal subgroup of U(On). If N contains an involution of type k
such that k and n− 1 are relatively primes, then N contains an involution of type 1.

Therefore, we have the following theorem.

Theorem 2.1. A non-trivial involution u normally generates the group U(On) if either

(1) n− 1 is a prime number, or
(2) the type of u is relatively prime to n− 1.

Proof. IfN is a normal subgroup of U(On) that contains a non-trivial involution with hypothesis
of either (1) or (2), then by either Lemma 2.5 or Lemma 2.6, N contains an involution of type
1, therefore by Lemma 2.4, N contains an involution of any given type, then by Lemma 2.1 it
contains all involutions, hence by Leen’s result N = U(On). �
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3. The O∞ Case

In this section, we discuss the case of the Cuntz algebra O∞. We may ask, if a normal subgroup of
U(O∞) contains a non-trivial involution u0, then does it contain all the involutions of O∞? Hence
by using Leen’s result in Theorem 1.2, O∞ is normally generated by a non-trivial involution u0.
We give a positive answer to the question under some conditions on the non-trivial involution u0.

Recall that the Cuntz algebra O∞ is the universal unital C∗-algebra generated by an infinite
sequence of isometries s1, s2, s3, . . . with mutually orthogonal projections pj = sjs

∗
j . The involution

1− 2pj is denoted by uj (1 ≤ j ≤ ∞).
Now let us recall the following main results concerning O∞.

Theorem 3.1. [4, 3.11]
(i) K0(O∞) ∼= Z.
(ii) K1(O∞) ∼= 0.

Theorem 3.2. [4, 3.12] In O∞, every projection is equivalent to a projection either of the form∑k
i=1 sis

∗
i (1 ≤ k < ∞) or 1−

∑k
i=1 sis

∗
i (1 ≤ k < ∞).

In O∞, the type of an involution v is n[1], for some n ∈ Z, and we write that v has the type
n ∈ Z. Recall that Lemma 2.1 is also valid for O∞.

Now we start by proving the following lemma, which is similar to Lemma 2.4 in the case of On,
where n is a finite number.

Lemma 3.3. If N is a normal subgroup of U(O∞), which contains an involution of the type 1,
then N contains an involution of any given type.

Proof. As N contains an involution of type 1, and N is a normal subgroup of U(O∞), we have
that N contains all the involutions ui i = 1, 2, . . .. Then u1u2 is an involution in N of type 2
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indeed, if k ∈ Z+, then u1u2 . . . uk = 1−2(p1 +p2 + · · ·+pk) is an involution in N of type k. Also,
N contains an involution of type 0, as 1 ∈ N .

Now it is enough to prove that N contains an involution of any negative type. Recall that if p is
a projection of O∞, then by Theorem 3.2, either p is equivalent to

∑k
i=1 sis

∗
i , hence [p] = k[1] or p

is equivalent to 1−
∑k

i=1 sis
∗
i , hence [p] = (1− k)[1], for some k ∈ Z+. As N contains involutions

of type 1, then the involution −1 belongs to N . Hence for each k ∈ Z+, −u1u2 . . . uk ∈ N , and

−u1u2 . . . uk = −(1− 2(p1 + p2 + · · ·+ pk))
= −1 + 2(p1 + p2 + · · ·+ pk)
= 1− 2(1− (p1 + p2 + · · ·+ pk)),

therefore, −u1u2 . . . uk is an involution of type 1− k and the lemma has been checked. �

Therefore, we have the following main result

Theorem 3.4. Any involution of type 1 normally generates the group U(O∞).

Proof. Suppose that N is a normal subgroup of U(O∞) that contains an involution of the type 1.
By using Lemma 3.3, we have that N contains an involution of any given type, therefore by Lemma
2.1, N contains all the involutions, hence by Leen’s result in Theorem 1.2, N = U(O∞). �

Let us now prove our main result.

Theorem 3.5. Any involution of odd type normally generates the group U(O∞).

Proof. Case 1: Suppose that N contains an involution of type 2k + 1, for some positive integer
k. By normality of N , we may assume that v = 1− 2

∑2k+1
i=1 pi ∈ N , also u = 1− 2

∑2k+2
i=2 pi ∈ N .
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Therefore, we have that

vu = (1− 2
2k+1∑
i=1

pi)(1− 2
2k+2∑
i=2

pi) = 1− 2(p1 + p2k+2),

which is an involution in N of type 2, hence N contains all involutions of the type 2. Then

(1− 2(p1 + p2))(1− 2(p3 + p4)) . . . (1− 2(p2k−1 + p2k)) = 1− 2
2k∑
i=1

pi ∈ N .

Therefore N contains the involution

(1− 2
2k+1∑
i=1

pi)(1− 2
2k∑
i=1

pi) = 1− 2p2k+1,

which is of the type 1, hence by Theorem 3.4, we have the desired.
Case 2: Suppose that N contains an involution v of the type −k, where k ∈ Z+, which is odd.

Then by normality of N and Lemma 2.1, the involution w1 = 1 − 2(1 − (p1 + p2 + · · · pk+1))
belongs to N , as its type is −k. In fact, w1 = −u1u2 . . . ukuk+1. Similarly, the involution w2 =
1 − 2(1 − (p2 + p3 + · · · pk+2)) belongs to N and w2 = −u2u3 . . . uk+2. Therefore, the involution
w1w2 = u1uk+2 ∈ N , hence N contains all involutions of type 2, by using Lemma 2.1. As k+1 is an
even integer, we get w3 = (u1u2)(u3u4) . . . (ukuk+1) ∈ N . Therefore we have that w1w3 = −1 ∈ N ,
which is an involution of type 1, hence by Theorem 3.4, the proof is completed. �

Finally, we conclude by noting that similar arguments show that a normal subgroup of U(On)
which contains a non-trivial involution (of any type) necessarily contains all the involutions of even
type.
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