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ON A GENERAL SIMILARITY BOUNDARY LAYER EQUATION

B. BRIGHI and J.-D. HOERNEL

Abstract. In this paper we are concerned with the solutions of the differential
equation f ′′′ + ff ′′ + g(f ′) = 0 on [0,∞), satisfying the boundary conditions

f(0) = α, f ′(0) = β ≥ 0, f ′(∞) = λ, and where g is a given continuous func-

tion. This general boundary value problem includes the Falkner-Skan case, and can
be applied, for example, to free or mixed convection in porous medium, or flow

adjacent to stretching walls in the context of boundary layer approximation. Under

some assumptions on the function g, we prove existence and uniqueness of a concave
or a convex solution. We also give some results about nonexistence and asymptotic

behaviour of the solution.

1. Introduction

We consider the following third order non-linear autonomous differential equation

f ′′′ + ff ′′ + g(f ′) = 0(1)

with the boundary conditions

f(0) = α,(2)
f ′(0) = β,(3)
f ′(∞) = λ(4)

where α ∈ R, β ∈ R+, λ ∈ R and f ′(∞) := lim
t→∞

f ′(t). We also assume that the
given function g is locally Lipschitz on a interval J containing β and λ.

In the literature, the problem (1)–(4) with suitable g and λ arises in many
fields of an application such as free or mixed convection in a fluid saturated porous
medium near a semi or double infinite wall in the framework of boundary layer
approximation, high frequency excitation of liquid metal, stretching walls,. . .

The problems of free convection, stretching walls and high frequency excitation
of liquid metal corresponds to the function g given by g(x) = 2m

m+1 (−x)x and to
λ = 0. There are many papers in connection with those such as [2], [3], [7], [15],
[16], [17], [19], [20], [26], [30], [32], [33], [34], [35] for the physical point of view
or numerical computations, [5], [6], [9], [10], [12], [14], [22], [23], [25], [37], [38]
for the mathematical analysis and [11] for a survey.
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The Falkner-Skan equation, arising in the study of two dimensional flow of a
slightly viscous incompressible fluid past a wedge of angle πm under the assump-
tions of boundary-layer theory, is obtained for g(x) = m(1− x)(1 + x) and λ = 1.
This famous equation has been widely studied, see for example [18], [21], [27],
[28], [29] and the references therein for a survey, and [31], [40], [41], [42] for more
recent investigations.

The mixed convection case corresponds to g(x) = 2m
m+1 (1 − x)x and λ = 1.

This problems has appeared recently in [1] and [36]. Some first theoretical results
about this equation can be found in [13] and [24].

The Blasius problem, corresponding to g = 0, is a particular case of all previous
situations and the first historic case in which an equation of the form (1) appears.
This well-known problem, that arises in [8] at the begining of the previous century,
has been studied in a lot of papers. For more details, we refer to [4], [18] and [27]
and the references therein.

Finally, let us notice that a first generalization of some of the previous equations
can be found in [39]. The author considers the problem (1)–(4) with α ≥ 0,
λ ≥ β > 0 and functions g such that g(x) = ĝ(x2) where ĝ is assumed to be
positive and monotone decreasing on [β, λ) and ĝ(λ2) = 0. Under these hypotheses,
he proves that there exists one and only one convex solution of this problem.

Remark 1. Let a 6= 0, and consider the differential equation

u′′′ + auu′′ + h(u′) = 0

where h is a given function. By setting

f(t) =
a√
|a|

u

(
t√
|a|

)
the equation in u becomes to f ′′′ + ff ′′ + g(f ′) = 0 with g(x) = 1

ah(x) if a > 0
and g(x) = 1

ah(−x) if a < 0.

2. Preliminary results

First of all, let us remark that if f satisfies the equation (1) on an interval I and
if we denote by F any anti-derivative of f on I, then we have(

f ′′eF
)′

= −g(f ′)eF .(5)

This, in particular implies that the concavity of f is related to changes of the sign
of g.

We will need some Lemmas concerning the solutions of (1).

Lemma 1. If g(µ) = 0 and if f is a solution of (1) on an interval I such that
there exists a point t0 ∈ I verifying f ′′(t0) = 0 and f ′(t0) = µ, then f ′′(t) = 0 for
every t ∈ I.

Proof. Let f be a solution of (1) on I such that f ′′(t0) = 0 and f ′(t0) = µ for
some t0 ∈ I. Since the function r(t) = µ(t−t0)+f(t0) is a solution of (1) such that
r(t0) = f(t0), r′(t0) = f ′(t0) and r′′(t0) = f ′′(t0), we get r = f and f ′′ ≡ 0. �
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Lemma 2. Let f be a solution of (1) on some interval [t0,∞), such that
f ′(t) → l ∈ R as t → ∞. If moreover f is of a constant sign at infinity, then
we have

lim
t→∞

f ′′(t) = 0.

Proof. First of all, let us remark that since f ′(t) has a finite limit as t → ∞,
then

lim inf
t→∞

f ′′(t)2 = 0.(6)

Multiplying (1) by f ′′ and integrating on [t0, t], we get

1
2
f ′′(t)2 − 1

2
f ′′(t0)2 +

∫ t

t0

f(s)f ′′(s)2ds + G(f ′(t))−G(f ′(t0)) = 0,(7)

where we denoted by G any anti-derivative of g. As f is of a constant sign at
infinity, it follows that the integral in (7), and thus f ′′(t)2 too, have limits as
t →∞. From (6) we get the result. �

Remark 2. If l 6= 0 we have f(t) ∼ lt as t → ∞ and f is of a constant sign
at infinity. If l = 0 and if f is either concave or convex at infinity, then again f
is of a constant sign at infinity. From (5) it is the case, for example, if g is of a
constant sign in a neighbourhood of 0.

The following Lemma shows that to expect a solution of (1)–(4), we must assume
that the function g vanishes at the point λ.

Lemma 3. Let f be a solution of (1) on a interval [t0,∞), such that
f ′(t) → l ∈ R as t →∞. Then g(l) = 0.

Proof. Let us suppose that 2c = −g(l) > 0. There exists t1 > t0 such that
−g(f ′(t)) > c for t > t1 and from (5) we have(

f ′′ eF
)′

> c eF

on [t1,∞). This means that f ′′ cannot vanish more than once and thus f is concave
or convex at infinity.

• Assume now that f is bounded. Then, it follows from (1) and Lemma 2
that f ′′′(t) → 2c as t →∞ and we have a contradiction.

• Assume next that f is unbounded. Then |f(t)| → ∞ as t → ∞ and thus
there exists t2 > t1 such that f ′/f > 0 on [t2,∞). From (1) we get

f ′′′f ′

f
+ f ′′f ′ > c

f ′

f
on [t2,∞).(8)

Integrating we obtain∫ t

t2

f ′′′(s)f ′(s)
f(s)

ds +
1
2
f ′(t)2 − 1

2
f ′(t2)2 ≥ c (ln |f(t)| − ln |f(t2)|) .

It follows that ∫ ∞

t2

f ′′′(s)f ′(s)
f(s)

ds = ∞.(9)
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But, we have∫ t

t2

f ′′′(s)f ′(s)
f(s)

ds =
f ′′(t)f ′(t)

f(t)
− f ′′(t2)f ′(t2)

f(t2)

−
∫ t

t2

f ′′(s)2

f(s)
ds +

∫ t

t2

f ′′(s)f ′(s)2

f(s)2
ds

which leads to a contradiction with (9), since the integrals on the right hand
side have finite limits as t →∞.

For c < 0, same arguments give also a contradiction. The proof is now
complete.

�

Remark 3. If l 6= 0 we can have a much simpler proof. Indeed, in this case we
have f ′(t) ∼ l and f(t) ∼ lt as t →∞. Integrating (1) on [t0, t] we get

f ′′(t)− f ′′(t0)− f(t0)f ′(t0) = −f(t)f ′(t) +
∫ t

t0

f ′(s)2ds−
∫ t

t0

g(f ′(s))ds

= −l2t(1 + o(1)) + l2t(1 + o(1))− g(l)t(1 + o(1))

= −g(l)t + o(t)

which is a contradiction since f ′′(t) → 0 as t →∞ by Lemma 2.

Remark 4. A solution, for which the first derivative does not have a finite
limit, does exist. For example

• For any a ∈ R∗ and any b ∈ R the function f defined by

f(t) = at2 + bt +
b2 − 1

4a

is a solution of (1) with g(x) = 1
2 (1 − x2) and f ′(t) → ±∞ as t → ∞

(Falkner-Skan with m = 1
2 ).

• If g(x) = −x2 +x+1, then f(t) = sin t is a solution of (1) for which f ′ does
not have a limit at infinity.

In order to get solutions of (1)–(4) for given α ∈ R, β ∈ R+ and λ ∈ R, we will
consider the initial value problem

f ′′′ + ff ′′ + g(f ′) = 0,
f(0) = α,
f ′(0) = β,
f ′′(0) = γ

(10)

and use a shooting technique on the parameter γ. We will denote by fγ its solution
and by [0, Tγ) its right maximal interval of existence. Integrating (1) on [0, t] for
0 < t < Tγ , we obtain the useful identity

f ′′γ (t) = γ − fγ(t)f ′γ(t) + αβ +
∫ t

0

(
f ′γ(s)2 − g(f ′γ(s))

)
ds.(11)
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Remark 5. Looking at (11) we see that if we take g(x) = x2 the integral on
the right hand side vanishes. Then, integrating on [0, t] we obtain

f ′(t) +
1
2
f(t)2 = (γ + αβ)t +

α2

2
+ β

and choosing γ = −αβ we have for β > −α2/2 the function

f(t) =
1

− 1
2d + α+d

2αd−2d2 edt
+ d

with d =
√

α2 + 2β which is a bounded solution of the problem (1)–(4) for λ = 0.

Remark 6. Let us take a look at the case β = λ > 0. If g(λ) = 0, then the
function f0(t) = λt + α is a solution of (1)–(4). Without additional hypotheses on
g, we cannot say anything about uniqueness. However, if we assume, for example,
that g(x) < 0 for x > λ and g(x) > 0 for x < λ, then f0 is the unique solution
of (1)–(4). Indeed, let fγ be another solution of (1)–(4) such that γ > 0. Since
f ′γ(0) = f ′γ(∞) = λ, there exists t0 > 0 such that f ′γ(t0) > λ, f ′′γ (t0) = 0 and
f ′′′γ (t0) ≤ 0. From (1) we obtain f ′′′γ (t0) = −g(f ′γ(t0)) > 0 and thus a contradiction.
If γ < 0, the same approach leads again to a contradiction.

In the following, we will focus first on the concave solutions and next on the
convex solutions of (1)–(4) with functions g such that g(λ) = 0. As seen in
Lemma 3, this hypothesis is necessary to realize the condition f ′(t) → λ as t →∞.
In addition, we will assume that some condition on the sign of g is satisfied between
β and λ in order to get existence and uniqueness of a concave solution (when λ < β)
or a convex solution (when λ > β) of the problem (1)–(4). Such an assumption
holds in the physical cases evoked in the introduction for the positive values of the
parameter m.

When the proofs in the convex case are close to the ones of the concave case we
will remove some details in order to shorten them.

3. Concave solutions

Theorem 1. Let α ∈ R and 0 ≤ λ < β. If g(x) < 0 for x ∈ (λ, β] and g(λ) = 0,
then the problem (1)–(4) admits a unique concave solution.

Proof of existence. Let fγ be a solution of the initial value problem (10) with
λ < β and γ ≤ 0. As long as we have f ′γ > λ and f ′′γ < 0, fγ exists. Because of
Lemma 1, there are only three possibilities

(a) f ′′γ becomes positive from a point such that f ′γ > λ,
(b) f ′γ takes the value λ at a point for which f ′′γ < 0,
(c) we always have f ′γ > λ and f ′′γ < 0.

As f ′0(0) = β > λ, f ′′0 (0) = 0 and f ′′′0 (0) = −g(f ′0(0)) = −g(β) > 0 we have
f ′0(t) > λ and f ′′0 (t) > 0 on a interval [0, t0). By continuity it follows that f ′′γ
becomes positive at a point for which f ′γ > λ for small values of −γ and thus fγ

is of type (a).
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On the other hand, as long as f ′′γ (t) < 0 and f ′γ(t) ≥ λ, we have fγ(t) ≥ α,
f ′γ(t) ≤ β and, using (11) we obtain

f ′′γ (t) ≤ γ + |α|β + αβ + β2t−
∫ t

0

g(f ′γ(ξ))dξ

≤ γ + |α|β + αβ + (β2 + C)t

where C = max{−g(x) ; x ∈ [λ, β]} > 0. Integrating once again we have

λ ≤ f ′γ(t) ≤ β2 + C

2
t2 + (γ + αβ + |α|β)t + β := Pγ(t).

Hence, for −γ large enough, the equation Pγ(t) = λ has two positive roots t0 < t1,
and therefore we have f ′γ(t0) = λ and f ′′γ (t) < 0 for t ≤ t0, and fγ is of type (b).

Defining A = {γ < 0 ; fγ is of type (a)} and B = {γ < 0 ; fγ is of type (b)} we
have A 6= ∅, B 6= ∅ and A ∩B = ∅. Both A and B are open sets, so there exists a
γ∗ < 0 such that the solution fγ∗ of (10) is of type (c) and is defined on the whole
interval [0,∞). For this solution we have f ′γ∗ > λ and f ′′γ∗ < 0 which implies that
f ′γ∗ → l ∈ [λ, β) as t → ∞. From Lemma 3 and the fact that g < 0 on (λ, β] we
get l = λ. �

Proof of uniqueness. Let f be a concave solution of (1)–(4). As f ′ is positive
and strictly decreasing, we can define a function v : (λ2, β2] → [α,∞) such that

∀t ≥ 0, v(f ′(t)2) = f(t).

Setting y = f ′(t)2 leads to

f(t) = v(y), f ′′(t) =
1

2v′(y)
and f ′′′(t) = −

v′′(y)
√

y

2v′(y)3
.(12)

Then, using (1) we obtain

∀y ∈ (λ2, β2], v′′(y) =
v(y)v′(y)2

√
y

+
2v′(y)3g(

√
y)

√
y

(13)

with

v(β2) = v(f ′(0)2) = α and v′(β2) =
1
2γ

< 0.

Suppose now that there are two concave solutions f1 and f2 of (1)–(4) with
f ′′i (0) = γi < 0, i ∈ {1, 2} and γ1 > γ2. They give v1, v2 solutions of the equation
(13) defined on (λ2, β2] such that, if w = v1 − v2, we have

w(β2) = 0 and w′(β2) =
1

2γ1
− 1

2γ2
< 0.

If w′ vanishes, there exists an x in (λ2, β2] such that w′(x) = 0, w′′(x) ≤ 0 and
w(x) > 0. But from (13) we then obtain

w′′(x) =
v′1(x)2√

x
w(x) > 0
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and this is a contradiction. Therefore, w′ < 0 and w > 0 on (λ2, β2]. Set now
Vi = 1

v′i
for i ∈ {1, 2} and W = V1 − V2 to obtain

W ′(y) = −w(y)
√

y
−

2w′(y)g(
√

y)
√

y
< 0.

But, using (12) we have Vi(f ′i(t)
2) = 2f ′′i (t) and thanks to Lemma 2 we get

W (y) → 0 as y → λ2. Since W is decreasing and W (β2) = 2(γ1 − γ2) > 0 this is
a contradiction. �

Remark 7. If, in addition to the hypotheses of Theorem 1, the function g is
assumed to be non-increasing, then we can write a much simpler proof for the
uniqueness result. For that, let f1 and f2 be two concave solutions of (1)–(4)
and let γi = f ′′i (0) < 0, i ∈ {1, 2} with γ1 > γ2. Writing u = f1 − f2, we have
u′(0) = 0, u′(∞) = 0 and u′′(0) > 0. Hence u′ admits a positive local maximum
at some t0 > 0 such that u′(t) > 0 for t ∈ (0, t0]. As u is increasing on [0, t0] and
u(0) = 0 we have u(t0) > 0. Then, from (1) and since f ′′i < 0 and f ′′1 (t0) = f ′′2 (t0)
we get

u′′′(t0) = −f ′′1 (t0)u(t0) + g(f ′2(t0))− g(f ′1(t0)) > 0

because f ′1(t0) > f ′2(t0), and we have a contradiction with the fact that u′′′(t0) ≤ 0.

The following Proposition gives some information about the behaviour at infin-
ity of the concave solution of the problem (1)–(4) obtained in Theorem 1.

Proposition 1. Let α ∈ R and 0 ≤ λ < β. Let us assume that g < 0 on (λ, β]
and g(λ) = 0, and let f be the concave solution of (1)–(4). Then, there exists a
constant µ such that α < µ <

√
α2 + 2(β − λ) and

lim
t→∞

{f(t)− (λt + µ)} = 0.(14)

Moreover, for all t ≥ 0, one has λt + α ≤ f(t) ≤ λt + µ.

Proof. Since f is concave, then for all t ≥ 0 we have f ′(t) ∈ (λ, β] and the
function t 7→ f(t)− λt is increasing. Hence f(t)− λt → µ ∈ (α,∞] as t →∞. In
addition, we have

∀t ≥ 0, f ′′′(t) = −f(t)f ′′(t)− g(f ′(t)) ≥ −f(t)f ′′(t)

and thus

∀t ≥ 0,
f ′′′(t)
−f ′′(t)

≥ f(t) ≥ f(t)− λt.

If we assume that µ = ∞, it follows that

lim
t→∞

f ′′′(t)
−f ′′(t)

= ∞.

Therefore, there exists t0 ≥ 0 such that f ′′′(t) ≥ −f ′′(t) for t ≥ t0. Then integrat-
ing twice and using Lemma 2 we get

∀t ≥ t0, −f ′′(t) ≥ −λ + f ′(t)
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and
∀t ≥ t0, −f ′(t) + f ′(t0) ≥ −λt + λt0 + f(t)− f(t0).

Since the left hand side is bounded, we get a contradiction. Therefore, µ < ∞ and
we have

∀t > 0, λt + α < f(t) < λt + µ.

Finally, let us introduce the auxiliary nonnegative function

u(t) = f ′(t) +
1
2
(f(t)− λt)2.

From (14), we see that u is bounded. Moreover, we have

u′′(t) = −g(f ′(t))− λtf ′′(t) + (f ′(t)− λ)2 > 0

and u is convex. Therefore u is decreasing and thus

β +
α2

2
= u(0) > u(∞) = λ +

µ2

2
.

This completes the proof. �

Remark 8. If λ = 0 the previous result means that the concave solution of
(1)–(4) is bounded.

We have the following nonexistence result

Theorem 2. Let α ≤ 0 and 0 ≤ λ < β. If g is differentiable and if ∀x ∈ [λ, β],

g(x) ≥ x2 − λx and − α + max
x∈[λ,β]

{g(x)− x2 + λx} > 0,(15)

then the problem (1)–(4) does not admit concave solutions.

Proof. We follow an idea of [40]. Let 0 ≤ λ < β and suppose that f is a concave
solution of (1)–(4). As f ′ is strictly decreasing, we can define a negative function
v : (λ, β] → R such that

∀t ≥ 0, v(f ′(t)) = f ′′(t).

Setting y = f ′(t) we obtain

f ′′(t) = v(y), f ′′′(t) = v(y)v′(y)

and f (4)(t) = v(y)2v′′(y) + v(y)v′(y)2.
(16)

Derivating equation (1) leads to

f (4) + f ′f ′′ + ff ′′′ + g′(f ′)f ′′ = 0

and as

f =
−f ′′′ − g(f ′)

f ′′

we get

v′′(y) = − y

v(y)
−

(
g(y)
v(y)

)′
.(17)
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Integrating (17) on [z, z1] with λ ≤ z ≤ z1 leads to

v′(z1)− v′(z) = −
∫ z1

z

y

v(y)
dy − g(z1)

v(z1)
+

g(z)
v(z)

.(18)

Using the equation (1) and (16), the equality (18) becomes

−f(s1)− v′(z) = −
∫ z1

z

y

v(y)
dy +

g(z)
v(z)

with s1 such that f ′(s1) = z1.
Integrating on [λ, x] with λ ≤ x ≤ z1, and since v(λ) = f ′′(∞) = 0 by Lemma 2,

we get

−f(s1)(x− λ)− v(x) = −
∫ x

λ

(∫ z1

z

y

v(y)
dy

)
dz +

∫ x

λ

g(z)
v(z)

dz

= −
[
z

∫ z1

z

y

v(y)
dy

]x

λ

+
∫ x

λ

−z2 + g(z)
v(z)

dz

= −x

∫ z1

x

y

v(y)
dy + λ

∫ z1

λ

z

v(z)
dz +

∫ x

λ

−z2 + g(z)
v(z)

dz

and taking x = z1 and z1 → β we derive

−v(β) =
∫ β

λ

λz − z2 + g(z)
v(z)

dz + α(β − λ).(19)

Since v(β) ≤ 0, the right hand side of (19) must be nonnegative, but this cannot
be the case if (15) holds. �

Remark 9. Using the previous Theorem we can recover the following nonex-
istence result

• for free convection (i.e. g(x) = − 2m
m+1x2 and λ = 0) there is no concave

solution for −1 < m ≤ − 1
3 when α < 0, and −1 < m < − 1

3 when α = 0
(see [5], [6], [9] and [14]),

and obtain the new results
• for the Falkner-Skan case (i.e. g(x) = m(1− x)(1 + x) and λ = 1) there is

no concave solution with α ≤ 0 and β > 1 for m ≤ − β
1+β ,

• for mixed convection (i.e. g(x) = 2m
m+1x(1 − x) and λ = 1) there is no

concave solution with α ≤ 0 and β > 1 for −1 < m < − 1
3 .

4. Convex solutions

Theorem 3. Let α ∈ R and 0 ≤ β < λ. If g(x) > 0 for x ∈ [β, λ) and g(λ) = 0,
then the problem (1)–(4) admits a unique convex solution.

Proof of existence. Let fγ be a solution of the initial value problem (10) with
0 ≤ β < λ and γ ≥ 0. We notice that fγ exists as long as we have f ′′γ > 0 and
f ′γ < λ. From Lemma 1, f ′′γ cannot vanish at a point where f ′γ = λ and it follows
that there are only three possibilities
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(a) f ′′γ becomes negative from a point such that f ′γ < λ,
(b) f ′γ takes the value λ at a point for which f ′′γ > 0,
(c) we always have β ≤ f ′γ < λ and f ′′γ > 0.

As f ′0(0) = β < λ, f ′′0 (0) = 0 and f ′′′0 (0) = −g(β) < 0, we have f0 is of type (a),
and by continuity it must be so for fγ with γ > 0 small enough.

On the other hand, as long as f ′′γ (t) > 0 and f ′γ(t) ≤ λ, we have fγ(t) ≤ λt + α,
and (11) leads to

f ′′γ (t) ≥ γ − fγ(t)f ′γ(t) + αβ −
∫ t

0

g(f ′γ(ξ))dξ

≥ γ − (λt + |α|)λ + αβ −
∫ t

0

g(f ′γ(ξ))dξ

≥ γ − |α|λ + αβ − (λ2 + C)t

where C = max{g(x) ; x ∈ [β, λ]} > 0 and integrating once again we have

λ ≥ f ′γ(t) ≥ −λ2 + C

2
t2 + (γ − |α|λ + αβ)t + β := Pγ(t).

Hence, for γ large enough, the equation Pγ(t) = λ has two positive roots t0 < t1,
and therefore, for such a γ, we have f ′γ(t0) = λ and f ′′γ (t) > 0 for t ≤ t0, and fγ is
of type (b).

Defining A = {γ > 0 ; fγ is of type (a)} and B = {γ > 0 ; fγ is of type (b)} we
have A 6= ∅, B 6= ∅ and A ∩B = ∅. Both A and B are open sets, so there exists a
γ∗ > 0 such that the solution fγ∗ of (10) is of type (c) and is defined on the whole
interval [0,∞). For this solution we have 0 < f ′γ∗ < λ and f ′′γ∗ > 0 which implies
that f ′γ∗ → l ∈ (β, λ] as t →∞. From Lemma 3 and the fact that g > 0 on [β, λ)
we get l = λ. �

Proof of uniqueness. Let f be a convex solution of (1)–(4). As f ′ and f ′′ are
positive, we can define a function v : [β2, λ2) → [α,∞) such that

∀t ≥ 0, v(f ′(t)2) = f(t).

We have

∀y ∈ [β2, λ2), v′′(y) =
v(y)v′(y)2

√
y

+
2v′(y)3g(

√
y)

√
y

(20)

and
v(β2) = v(f ′(0)2) = α and v′(β2) =

1
2γ

> 0.

Suppose now that there are two convex solutions f1 and f2 of (1)–(4) with f ′′i (0) =
γi > 0, i ∈ {1, 2} and γ1 > γ2. They give v1, v2 solutions of the equation (20)
defined on [β2, λ2) such that for w = v1 − v2, we have w(β2) = 0 and w′(β2) < 0.
If w′ vanishes, there exists an x in [β2, λ2) such that w′(x) = 0, w′′(x) ≥ 0 and
w(x) < 0. But from (20) we then obtain w′′(x) < 0 and this is a contradiction.
Therefore w′ < 0 and w < 0 on [β2, λ2). Set now Vi = 1

v′i
for i ∈ {1, 2} and

W = V1 − V2. We have W > 0 and using (20) we obtain W ′(y) > 0. But,
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W (β2) = 2(γ1 − γ2) > 0 and W (y) → 0 as y → λ2, this contradicts the fact that
W is increasing. �

Proposition 2. Let α ∈ R and 0 ≤ β < λ. Assume that g > 0 on [β, λ) and
g(λ) = 0, and let f be the convex solution of (1)–(4). Then, there exists a constant
µ < α such that

lim
t→∞

{f(t)− (λt + µ)} = 0.

Moreover, for all t ≥ 0, one has λt + µ ≤ f(t) ≤ λt + α.

Proof. Since f is convex, for all t ≥ 0 we have f ′(t) ∈ [β, λ). Then the function
t 7→ f(t)− λt is decreasing and thus f(t)− λt → µ ∈ [−∞, α) as t →∞. On the
other hand, we have

∀t ≥ 0, f ′′′(t) = −f(t)f ′′(t)− g(f ′(t)) ≤ −f(t)f ′′(t)

and since f(t) → ∞ as t → ∞, there exists t0 ≥ 0 such that f ′′′(t) ≤ −f ′′(t) for
t ≥ t0. Then integrating twice and using Lemma 2 we get

∀t ≥ t0, −f ′′(t) ≤ −λ + f ′(t)

and
∀t ≥ t0, −f ′(t) + f ′(t0) ≤ −λt + λt0 + f(t)− f(t0).

Since the left hand side is bounded, we necessarily get µ > −∞, and then we have
λt + µ ≤ f(t) ≤ λt + α for all t ≥ 0. �

Let us finish this section with the following nonexistence result.

Theorem 4. Let α ≤ 0 and 0 ≤ β < λ. If g is differentiable and if ∀x ∈ [β, λ],

g(x) ≤ x2 − λx and − α + max
x∈[β,λ]

{x2 − λx− g(x)} > 0,(21)

then the problem (1)–(4) does not admit convex solutions

Proof. Let 0 ≤ β < λ and suppose that f is a convex solution of (1)–(4). As f ′

is positive, we can define a positive function v : [β, λ) → R such that

∀t ≥ 0, v(f ′(t)) = f ′′(t).

Following the method used in the proof of Theorem 2, we see that this function v
satisfies (17) and

−v(β) =
∫ λ

β

y2 − λy − g(y)
v(y)

dy − α(λ− β).(22)

Since v(β) ≥ 0, the right hand side of (22) must be nonpositive, but this cannot
be the case if (21) holds. �

Remark 10. Using the previous Theorem we can recover the following nonex-
istence result

• for the Falkner-Skan case (i.e. g(x) = m(1− x)(1 + x) and λ = 1) there is
no convex solution for m ≤ − 1

2 (see [40]),
and obtain the new result
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• for mixed convection (i.e. g(x) = 2m
m+1x(1 − x) and λ = 1) there is no

convex solution for −1 < m ≤ −1
3 .

5. Conclusion

In this paper we have obtained existence, uniqueness and nonexistence results
for the concave or convex solutions of a general boundary value problem arising in
many fields of application under some reasonable hypotheses. All these hypotheses
are verified in important physical cases in the framework of boundary layer ap-
proximations such as free or mixed convection, flow adjacent to stretching walls,
high frequency excitation of liquid metal and two dimensional flow of a slightly
viscous incompressible fluid past a wedge.

All our results hold for β, λ and g such that the function g vanishes at λ but
does not vanish between β and λ. Of course, under the same hypotheses, solutions
whose concavity changes may exist as it can be seen in [14] for the case of free
convection and in [29] for the Falkner-Skan problem when the parameter m is
positive.

In addition, if we assume that the sign of g is opposite of the one that we have
in the Theorems 1 and 3, then we can have multiple concave or convex solutions,
as it is the case for free or mixed convection and for the Falkner-Skan problem
when the parameter m is negative. See for example [9], [11], [22], [24] and [27].
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