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REGULARITY OF WEAK SOLUTIONS
OF DEGENERATE ELIPTIC EQUATIONS

A. C. CAVALHEIRO

ABSTRACT. In this article we establish the existence of higher order weak derivatives
of weak solutions of the Dirichlet problem for a class of degenerate elliptic equations.

1. INTRODUCTION

In this paper we shall study the existence of higher order weak derivatives (see
Theorem 3.9) of weak solutions of degenerate elliptic equations Lu = g, where L
is an elliptic operator

(1.1) Lu=— Z DJ(CLU(Z‘)DZU)(Z‘))

ij=1

whose coefficients a;; are measurable, real-valued functions, and whose coefficient
matrix A = (a,;) is symmetric and satisfies the degenerate ellipticity condition

n

(1.2) w@)E < D aii(@)€E <v(x)|éf

ij=1

for all £ € R™ and almost every x € Q CR", where (2 is a bounded open set, w and
v are weight functions (that is, w and v are locally integrable and nonnegative
functions on R™).

In general, the Sobolev spaces W*P?(Q) without weights occurs as spaces of
solutions for elliptic and parabolic partial differential equations. For degenerate
partial differential equations, i.e., equations with various types of singularities in
the coefficients it is natural to look for solutions in weighted Sobolev spaces (see
1], [2], (3], [4], [5] and [8]).
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2. DEFINITIONS AND BASIC RESULTS

By a weight, we shall mean a locally integrable function w on R™ such that 0 <
w(x) < oo for a.e. x€R™. Every weight w gives rise to a measure on the measurable
subsets of R™ through integration. This measure will also be denoted by w. Thus
w(E) = [, wdz for measurable sets £ C R".

Definition 2.1. Let 2 CR" be open and let w be a weight. For 1 < p < oo,

we define LP(Q,w), the Banach space of all measurable functions f defined on
for which

1/p
1l o = ( / |f<x>|pw<x)dx) o

Definition 2.2. Let 1 <p < oc.

(a) The weight w belongs to the Muckenhoupt class A, (w€A,) if there is a
constant C = C),,, (called Ap-constant) such that

1 1 Pl
(m/ wdm) (w/ w V=1 daz) <C, when 1 < p < o0
B B
1 1
(W/ wdx) (ess sup ) <C, when p =1,
B B W

for every ball B CR™, where |B| is the n-dimensional Lebesgue measure
of B.

(b) Let w and v be weights. We shall say that the pair of weights (v, w) satisfies
the condition Ay, 1 < p < oo, if there is a constant C such that

1 1 p—1
<W/zav(x) dx) (W/Bwl/(pl)(x) dx) <, when 1 < p < oo,

1
E/ v(z)de < C essi%fw, when p =1,
B

for every ball B in R". The smallest constant C will be called the Ap-
constant for the pair (w,v).

Remark 2.3. If (v,w)€A4, and w < v then weA, and veA,.

Example 2.4. The function w(z) = |z|%, z€R", is a weight A4, if and only if
—n < a<n(p—1) (see [7, Chapter 15]).

Remark 2.5. If weA,, 1 < p < oo, then since w1/ ®=1) is locally integrable,
when p > 1, and 1/w is locally bounded, when p = 1, we have LF(Q,w) C L{,.(Q)
for every open set Q and such that convergence in L” ({2, w) implies local conver-
gence in L'(Q). If Q is bounded, in the same way one obtains LP(Q,w) C L' ().
It thus makes sense to talk about weak derivatives of functions in L?(,w).

Definition 2.6. We shall say that the pair of weights (v,w) satisfies the con-
dition S, (1 < p < oo) if there is a constant C (called the Sp-constant) such
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J

1
for every ball B, where [M f](z) = sup E/ |f(y)| dy is the Hardy-Littlewood
B>z B

maximal function, = w="®~Y and u(B) = [, p(z)dz.

that
p

M(pxp)(z)| v(z)de < Cu(B) < oo,

Remark 2.7. If (v,w)€S,, 1 < p < o0, then (v,w)€EA,.
Theorem 2.8 (Muckenhoupt generalized theorem). Let 1 < p < oo and let
(v,w) be a pair of weights in R™. Then M : LP(R™ w) — LP(R™, v) is bounded
”Mf”LP(]R",v) < CM”fHLP(]R”,w)’

if and only if (v,w)€S,. The constant Cyr is called Muckenhoupt constant and
Cu depends only on n, p and the Sp-constant of (v,w).

Proof. See Theorem 4.9, Chapter IV in [6]. O

Definition 2.9. Let 2 C R™ be a bounded domain and let v, w be weights. We
define the space

Wh2(Q,w,v)
= {ueLQ(Q,v) : / (AVu, Vu) dz < oo and D*uecL?(Q,w), 2 < |a| < k}
Q

with the norm
1/2

[l sz (@) = / u?vdz +/ (AVu,Vuydz + > / |Duf?w dz
@ @ 2< o] <k 79
where A = (a;;)i j=1,..n is the coefficient matrix of the operator L.
Remark 2.10. If (v,w)€S; and w < v then C*(Q) is dense in W*2(Q, w, v)
(see [1, Theorem 4.7]). In this case, we define W}*?(Q,w,v) as the closure of

C§° () with respect to the norm
1/2

elly 2y = /Q<AVu,Vu)dx+ ) /Q|Dau\2wdm

2<|a|<k
Note that, by (1.2), we have

Vu|*wdz < / (AVu, Vu)dz < | |Vul*vdz.
Q Q Q

Definition 2.11. We say that an element u€WH2(Q,w, v) is a weak solution
of the equation Lu = g if

n
/ Z a,-jDiungodx:/ggodx
Q.50 Q

for every peW,*(Q,w,v).
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Remark 2.12. The existence and uniqueness result for the Dirichlet problem

Lu=g, in O
(P 1,2
u—YeWy (Q,w,v)
where 1 € W12(Q,w, v), can be found in [1, Theorem 4.9].

3. DIFFERENTIABILITY OF WEAK SOLUTIONS

In this section we prove that weak solutions u€W12(2,w,v) of the equation
Lu = g, with some hypotheses, are twice weakly differentiable and DijuELz(Q’ ,w)
(that is, ueW?22(Q, w,v), V' CcC Q).

Definition 3.1. Let u be a function on a bounded open set 2 C R™ and denote
by e; the unit coordinate vector in the z; direction. We define the difference
quotient of u at z in the direction e; by

u(x + hey) — u(x)
h
Lemma 3.2. Let Q'CCQ and 0 < |h] < dist(Q,09Q). If u,pel? (Q,w),

loc

supp(p) C Q' and g is a measurable function with |g(x)] < Cw(x), then
(a) Al(up)(z) = u(z + her) Ahp(x) + o(z) Alu(z), with 1 < k < n.

(3.1)  Ahu(z) = , (0 < |h| < dist (x,00)).

(b) /Q o(e)u(z) Ay " p(z) i = — /Q () AL (gu) (x) do.

(c) If p€ CH(Q), then A(D;p)(x) = Dj(ARp)(x).
Proof. The proof of this lemma follows trivially from the Definition 3.1. O

Definition 3.3. Let w be a weight in R™. We say that w is uniformly A, in
each coordinate if

(a) wedp(R");

(b) wi(t)=w(z1,...,Tiz1,t, Tix1, ..., L) isin A,(R), for z1, ..., 2i—1, Tit1,- - -,
.., 2p ae., 1 <i<n, with A, constant of w; bounded independently of
Tiyee oy Ti—1,Lit1y--5Tp-

Example 3.4. Let w(z,y) = wi(z)wa(y), with wy(x) = |x|1/2 and wy(y) =

1/2

ly|""“. We have w is uniformly A, in each coordinate.

Definition 3.5. Let v,w be weights in R".

(a) We say that (v,w) is uniformly A, in each coordinate if (v,w)€A,(R™)
and (v, w;)€A,(R) (1 < ¢ < n) with constant A, of (v;,w;) bounded
independently of x1,...,2;—1,Tiq1,-..,ZTn.

(b) We say that (v,w) is uniformly S, in each coordinate if (v,w)€S,(R™)
and (v;,w;)€S5,(R) (1 < i < n) with Sp-constant of (v;,w;) bounded
independently of x1,...,2;_1,Ti41,-..,ZTp.
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Lemma 3.6. Let ueWh2(Q,w,v) and let (w,v) be uniformly Sy in each coor-
dinate. Then for any ' CCQ and 0 < |h| < dist(',9Q), we have
(3.2) [A%ullz2 (@) < CllDrullz2(0)
where C' = 2C);, and Cyy is the Muckenhoupt constant.
Proof. Case 1: Let us suppose initially that ueC(€2). We have,

_ h
AZu(l‘) _ u($—|—h€;z) u(x) _ %/O Dy.(x + Cey) dC

1 [t
= E/ Dku(xl,...,xk_l,xk+C,mk+1,...,xn)d§.
0
For 1 < k < n, we define the functions

Gie) = { Dyu(x), if zeQ

0, if zZQ.
We have for z€€) CC Q) and h satisfying 0 < |h| < dist(§Y', 09),
h 1 4
|[Aru(x)] < m / |Diw(zy, ooy Tpe1, Tk + €y Thot1s -+ 5 T d(‘
0
1 xr+h
= m / Gk(;vl,...,xk1,t,xk+1,...,xn)|dt‘
Th
< m / Gk(xla"'7xk—1at7l'k+1a"'7xn)|dt‘
:Dkfh

S 2M(G9]217---1$k71756k+17~--,$n)(Xk)7

where Gy " "R 0T (00 ) = G (w1, ..+, Xk, - - ., T ). Consequently, using the
notation dxy = dxy ... dwg_1dzg4s . .. dz, (where the hat indicates the term that
must be omitted in the product) and by Theorem 2.8, we obtain

|ARu(z)Pv(z) dz
Q/
< 22 / [M(G‘;gl"”’I’“‘lx’““’“"z")]z(xk)v(:cl, e Thy e, Ty) dT

§4/ [M (Gt T 2 (0 V(21 ooy Ty oy @) A2y oo dage o day

= 4/ 1 (CJZW/ |Gih“mk17%“’“'7%(Xk)|2w(3«"17~--,Xk,--.,xn)dmk) day
Rn= R
— 10} [ 1Gu@)Pul)ds =4CY, [ |Duu(o)Psts) da,
R Q

where C)y is independent of z1, ..., 21, Zg+1,- - ., Tn because (v,w) is uniformly
S5 in each coordinate. Therefore

[ARull 220y < ClIDkullz2.w), where C = 2C)y.
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Case 2. If ue WH2(Q,w,v) then there exists a sequence {um,}, U, € C>®(Q),
Cauchy sequence in the norm || - [[y1.r(,w,0)- By Remark 2.10, we have

Um—u in L*(Q,v), and Dyupm— Dyu in L*(Q,w).

Since (v,w)€Sy and w < v, we have w€A; and vEA,;. Consequently, by Re-
mark 2.5, there exists a subsequence {um} such that u,,; —u a.e. and Dy, — Dyu
a.e.. This implies, for 0 < |h| < dist(€, 99Q), that

AZumj —Ahy ae.

We have {A}u,,,} is a Cauchy sequence in L*(€,v), for any @' CC Q. In fact,
using the first case, we have

||Aﬁumr - Azumg

L2(@0) = AR (tm, — Unm,)

|L2(Q/,v)
< O Di(tm, — tm,) |L2(Q,w)
= C||Drum, — Dium, || 22(0.0)
— 0, as My, Mg—00.

Therefore, there exists g€ L?(Q',v) such that Alu,,,—g in L*(?,v). Conse-
quently, there exists a subsequence AZumjr —g a.e.. We can conclude that
Ay = g a.e.. Hence

Aty —Afu in L3, v).

J

This implies that
ARl L2 (0 0) = mgigloo | AR twm, || 207 0)
<C lim [ Dytm, |22 (0.0)
= C|Dxullr2(0,0)
that is, [|Alull 20 < CllDrullL2(0,0)- O

Lemma 3.7. Let ueLP(Qw), 1 < p < oo, weA, and suppose there ezxists a
constant C' such that

(3-3) AR Lo (o) < C, k=1,2,...,n

for any Q' CCQ and 0 < |h| < dist(Y,09) (with C independent of h). Then there
exists ¥, €LP(Q,w) such that Dyu = U}, in the weak sense and || Dyul|1r (o) < C.

Proof. Since ||AZu||Lp(Q, v < C, using LP(Q,w) is reflexive (1 < p < 00), there
exists a sequence {h, }, hm— 0, and a function 9y € LP(Q, w), with [|Ux]|1rw) <
C, such that

(3.4) /Q AZu(x)(p(x)w(a:) dz — A I (z)p(z)w(z) dz
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for all p € LP' (Q, w). Since weA,, we have ¢ = ¢ /we ¥ (Q,w) for any YeCs® ().

In fact,
/|go\p/wdm:/ \w\p/w*p/wdw
Q Q

< Cw/ W' dz < oo (because weAp).
Q
Setting ¢ = ¢ /w in (3.4), we obtain
[ Alru@i@de — [ n@i@ds, voecF(@),
Q Q

Now for h,, < dist(supp,99), we have
/AZ’"U(I)d)(z)dx = 7/ u(x)A;h’"w(m) dx
Q Q

- — / u(x)Dp(x) de, with h,,— 0.
Q
Hence
[ @@ de = [ u@biwis) s, YoeCE@),
Q Q
Therefore Dyu = 19, in the weak sense. O

Remark 3.8. If the assumptions of Lemma 3.6 are satisfied and w < v, then
we have

HAZU“Lz(Q/,w) < ||AZU||L2(Q/,U) < C||DkuHL2(Q’,w)‘

We are able now to prove the main result of this paper.

Theorem 3.9. Let ucW2(Q,w,v) be a weak solution of the equation Lu = g
in Q, and assume that
(a) g/veL?(Q,v);
(b) The pair of weights (v,w) is uniformly Se in each coordinate;
(c) |ARa;;(z)| < Civ(z), 2€Q CCQ ae., 0 < |h| < dist(Q,00), with con-
stant Cy is independent of Q' and h.
Then for any subdomain Q' CC ), we have ueW?22(Y, w,v) and
(3.5) lullwz2@wu) < C (lullwrz@we + 19/vllL20,0)
for C=C(n,Cp,Cy,d"), and d' = dist(Q,00Q).

Proof. Since ueWh2(Q,w,v) is a weak solution of the equation Lu = g, then
by Definition 2.11 we have,

(3.6) /Qaij(a:)Diu(:r)nga(:r) dz:/g(x)ga(x)dx,

Q
for all peWy (2, w,v) (in particular for all peCg*(Q)).
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In (3.6) let us replace ¢ by A "¢ (1 < k < n), with p€Cg°(Q), supp(p) CCQ
and let |2h| < dist(supp (), 02). Then, by Lemma 3.2, we obtain

—/ g(m)A;hgo(x) dx:—/ aij(x)Diu(x)Dj(A;hgo(x)) dz
Q Q
— [ @@ (D)) ds
/Ak a;jDiu)(z)Djp(x) dz
—/Q( (z + hep) AR Diu(z) + Dyu(x )AZaij(x)) Djp(x)dx

(3.7) = [ (s (a) + s @) AL D) + Diu(e) My ()
’ -Djo(z)dx.

By Lemma 3.6, if uc W12(Q,w,v) we have

(3.8) AR ull 20y < CllDgul|z2(0.w) = C, vQ'ccQ.

Since u € L?(2,v) and v € Ay (see Remark 2.3 and Remark 2.7), by Lemma 3.7
we have that

(39) HDku||L2(Q’,v) S ||DkuHL2(Q}U) S é = CHD/CUHLQ(QM), VQ/ CcC Q

Consequently, in (3.7), we obtain
| as@)Di(Au() Dyel) da
= — [ @A ele)dn — [ Aay(@) D) Dypla) da
/QhAkalj( z) AN Dyu(x)Djp(z) de

(3.10) / 9(0)] |AT ()| do + / |Albas;(@)] | Dsua)] [ Dyla)] da

IA

+1n) / |Altas; ()] | A Dyua)| | Dyp(a)] da

We have, by Lemma 3.6,

[ la@ |87 oto)] as = [ ('ggg') 1V2(2) | Apt(a) | v (x) da
= ‘ vllL2.0

—h
) ALl 2 (suppep,o)

= D w)-
vz 1Dkl r2(0,0)
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And, using (3.9), we obtain
/Q |Alay; ()] |Diu()| | Dy(a)] da
<o / o(a) | Dsu()| | Dy()]| da
supp
<c / |Diu(a) [0 2(2)| Dypla) 0 (x) da
suppy

<0102(/|Du x)Pw(z dx)1/2< |Dip(z)[Pw(z) d )1/2

Hence, in (3.10), we obtain

| as)Di(Aute) Dyete) da

g
(3.11) < 0 (lulwracon + 2] .o ) PPl

+C’1|h\/ AhDu (@)||Djp(z)| dx

Let ' ccQ. To proceed further let us take a function n€ C§(Q) satisfying
0 <n<1,7n=1inQ and with | Dn| < 2/d’, where d’ = dist(€2’,0€) and set
© = n*Ahu (with |2h] < dist(supp(n), 02)). We have

Djo = 2nDnAju+n>D;(Afu).

g\
v

. In (3.11) we obtain

We denote by a = [[ullw1.2(0,uw,0) +
L2 (Q,v)

/Q (AqD(Alu),nD(Abu)) dz
_ /Q a1 (@) () Di( Albu())] () Dy (Alu(z))] da
¢ (e + 2]

+ AN (D0)| 2y + 2 / sy (@) [nD; Al|| Dy Al

IA

2nDnAl
Lz(m) 12nD;nAju

+Cl|h|/v|AhD ul|2nDnAfu + 12D Alu| da

IN

Ca (2HnDjnAku”L2(suppn,w) + ||77Dj (AZU)”LQ(suppn,w))

+ 215 + Cl|h‘[3

Ca (||Dj77HOOHAZU||L2(SUppn,w) + HnDjAZu”LQ(SUppn,w))

+ 21, + Cy|h|I3

Cal|Djnlloo | Drull 229wy + CallnD; Aful| 2 @.w) + 212 + C1|h| I3,

IN

IN
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i. e.
(3l2)j@(AnD(AZULnD(AZu»dx
< C @®|Djnllos + CalnDjAful| p2(0,w) + 212 + Ci|h| L.

Let us estimate the integrals Iy and I3. By (1.2), we have that |a;;(z)| < Cv(x)
a.e. in . Using (3.8), (3.9) and Remark 3.8, we obtain

&:/mmmﬁwmmwm
Q

< C/ v[nD; Afu||DjnAjul| da
suppn

< C|nDi ARul| L2 suppn.o) 1D 1AR U] 12 (suppn.0)

< C|IDi(nAfw) — DinAjul| 2 suppn.o) | Dl oo | AR 22 (suppm,v)

< C(CullDinAku +nDiAfu] L2 (suppn.wy + Cllullw2@,0,0)
Nullwrz@.w,v)

< O (IIDrull L2 @) + [nDidFull 20wy + lullwr2(0.0,0))
Nullwr2@.w,v)

< C(lullwr2@w) + IMDidgul L2(9.0)) w2 w0

< Cllulliyr 2@, + CllnDidiull 20,0 [ullwiz 0.0

(3.13) < Cd®+ Ca|nD;Aful L2(0.)-

We also have,

I; = /U|A2Diu||2nDjnAZu+772DjAZu|dz
Q

< 2/ v\AZDianDjnAZdeJr/ v| Al Dl [n? Dy Au| dx
suppn suppmn
= 2/ v\nAzDiuHDjnAZde—l—/ vnD; Afu||nD; Afu|da
suppn supp”n
< 2||nDiAZu||L2(Suppn,v)||Dj77AZu||L2(suppn,v)
(3'14) + ”nDiAZUHLQ(suppn,v)||77DjAZu”L2(suppn,v)~

Using (3.8) and (3.9), we obtain
HDj'r]AIZu”Lz(suppn,v) < ”DjnHOOHAZU||L2(SUPP777U)
< CODjnlloo | Drull L2 (0.w)

< ClIDjnlloollullwr2(@.w,v)
(3.15) < CallDjnloo-

And we also have,
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||nDiAZu||L2(suppn,v) = ||Di(77AZU) - AQUDWHL%Suppn,v)
||Di(77AZU)||L2(suppn,v) + ||AZ’U’D1"'7||L2(SUDP77’U)

Cur 1D (AR W) L2 suppneo) + 1Dimlloo | AR 2 (suppn,o)
COwm || DinAfu + nDi Afu| 12 (suppn )

+ Cul|Dinll oo |1 D] 2 (02,00)

Ca|| Djnllos + Crr[nDs Al L2 (suppn,w)-

INIA A

(3.16)

IN

By condition (1.2) we have,
/Qaij(x)[n(w)Dj(AZU(fﬂ))][ﬁ(x)Di(AZu(ﬂﬁ))] dz 2/ [n(2)D(Afu(2))w(z) do
(317) = [ In@) A (Dufa)) Pes(o)

We denote by b = |[nD(Alu)|| 120w By (3.12), (3.13), (3.14), (3.15), (3.16) and
(3.17), and using Young’s inequality, we obtain

b? < Ca? + Cab + C|h|a® + Cablh| 4 C|h|b?
5—2 62 6_2 52 9
S Ca2 + 07042 + C|h|a2 + CEbQ + 07a2 + C§b2|h| + C|h|b2
2 2 e €2 2
= (C+Ce?+Clh|)a® + (02 + C§|h\ + C|h> b

Choose € > 0 and A such that
Ce? C£ 1
= = P+ c hl| < =
we obtain,

2
/ [nAlDufwdr < C <||UW12 Q,0,0) Hg’ >
L2(Q,v)
Using n=1 in ', we have
|ArDu’wdz < C (IuIIWI»zm,w) + Hg‘
Q/

2
v LQ(QW))
Then we conclude that
1D (AR )72 o) = IAF D72 0y < IARDuUlT2 (00 0

2
L2(Q, v))
v Lz(Q,u)>'

g
Datlzzara < © (Il + |2

g
< C (Jullwr oo + 2]

By Lemma 3.7, we have there exists D;,u and

Therefore ue W22(Y,w, v), V' CcC Q. O
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