REGULARITY OF WEAK SOLUTIONS
OF DEGENERATE ELIPTIC EQUATIONS

A. C. CAVALHEIRO

ABSTRACT. In this article we establish the existence of higher order weak derivatives of weak solutions
of the Dirichlet problem for a class of degenerate elliptic equations.

1. INTRODUCTION

In this paper we shall study the existence of higher order weak derivatives (see Theorem 3.9) of
weak solutions of degenerate elliptic equations Lu = g, where L is an elliptic operator

(1.1) Lu=— Z Dj(aij(xz)D;u)(x))
i,j=1
whose coefficients a;; are measurable, real-valued functions, and whose coefficient matrix A = (a;;)
is symmetric and satisfies the degenerate ellipticity condition
n
(1.2) w@)E* < Y aij(@)éik; < v()IE”

2,5=1
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for all £ € R™ and almost every x € Q2 CR", where 2 is a bounded open set, w and v are weight
functions (that is, w and v are locally integrable and nonnegative functions on R™).

In general, the Sobolev spaces WP (Q) without weights occurs as spaces of solutions for elliptic
and parabolic partial differential equations. For degenerate partial differential equations, i.e.,
equations with various types of singularities in the coefficients it is natural to look for solutions in
weighted Sobolev spaces (see [1], [2], [3], [4], [5] and [8]).

2. DEFINITIONS AND BASIC RESULTS

By a weight, we shall mean a locally integrable function w on R™ such that 0 < w(z) < oo for
a.e. z€R™. Every weight w gives rise to a measure on the measurable subsets of R™ through
integration. This measure will also be denoted by w. Thus w(E) = [, wdz for measurable sets
ECR™

Definition 2.1. Let 2 C R™ be open and let w be a weight. For 1 < p < 0o, we define LP(Q, w),
the Banach space of all measurable functions f defined on 2 for which

1/p
”fHLP(Q,w) = (/Q |f(2)[Pw(z) dx) < o0.

Definition 2.2. Let 1 <p < oo.

(a) The weight w belongs to the Muckenhoupt class A4, (we€A,) if there is a constant C = C)
(called Ap-constant) such that

1 1 =
(E/ wdx) (E/ w /-1 dx) <C, when 1 < p < oo
B B

<|Ti|/ wdx) (esssup 5) <C, when p =1,
B B



for every ball B C R™, where |B]| is the n-dimensional Lebesgue measure of B.
(b) Let w and v be weights. We shall say that the pair of weights (v,w) satisfies the condition
Ap, 1 < p < o0, if there is a constant C' such that

p—1
<% /Bv(x) dx) <|T£|/Bw_1/(p_1)(m) d:c) <C, when 1 < p < oo,
1
E/ v(z)de < C essi%fw, when p = 1,
B

for every ball B in R™. The smallest constant C' will be called the Ay,-constant for the pair
(w,v).

Remark 2.3. If (v,w)€A4, and w < v then weA, and vEA,.

Example 2.4. The function w(z) = |z|%, x€R™, is a weight A4, if and only if —n < a < n(p—1)
(see [7, Chapter 15]).

Remark 2.5. If weA,, 1 < p < oo, then since w1/ ®P=1) ig Jocally integrable, when p > 1,
and 1/w is locally bounded, when p = 1, we have L?(Q,w) C L{,.() for every open set {2 and such
that convergence in LP(),w) implies local convergence in L(£2). If 2 is bounded, in the same way
one obtains LP(Q,w) C L*(Q). Tt thus makes sense to talk about weak derivatives of functions in
LP(Q,w).

Definition 2.6. We shall say that the pair of weights (v,w) satisfies the condition S, (1 < p <
00) if there is a constant C' (called the S,-constant) such that

p

/ \meB)(x) )l < OB < o5




1
for every ball B, where [M f](z) = sup Bl / | f(y)| dy is the Hardy-Littlewood maximal function,
B>z B
p=w" VP and u(B) = [, u(z)da.
Remark 2.7. If (v,w)€S,, 1 < p < oo, then (v, w)EA,.

Theorem 2.8 (Muckenhoupt generalized theorem). Let 1 < p < oo and let (v,w) be a pair of
weights in R™. Then M : LP(R™,w) — LP(R™, v) is bounded

||Mf||Lp(Rn,v) < CMHfHLp(Rn,w),

if and only if (v,w)€S,. The constant Cyr is called Muckenhoupt constant and Cyy depends only
on n, p and the S,-constant of (v,w).

Proof. See Theorem 4.9, Chapter IV in [6]. O
Definition 2.9. Let 2 C R™ be a bounded domain and let v, w be weights. We define the space
Wr2(Q,w,v)

= {uELQ(Q,v) : / (AVu, Vu) dr < oo and D*ueLl?(Q,w), 2 < |a] < k}
Q
with the norm
1/2

“’UJHWk,z(Q,w,v) = / fu,21) dx +/ <AV’U,, V’u,> dz =+ Z / |Dau|2w dz
Q Q Q

2< ol <k

where A = (ai;)i,j=1,...,n is the coefficient matrix of the operator L.



Remark 2.10. If (v,w)€S2 and w < v then C°°(Q) is dense in W*2(Q, w,v) (see [1, Theorem
4.7]). In this case, we define Wéc 2(Q,w,v) as the closure of C§°(£2) with respect to the norm
1/2

g2 = | [ AVa Vi e+ 3 [ |DouPuds
“ 2<]al<k 7@

Note that, by (1.2), we have

/|Vu|2wdx < / (AVu, Vu) dz < / |Vu)®vdz.
Q Q Q

Definition 2.11. We say that an element u€W12(Q,w,v) is a weak solution of the equation

Lu = g if
/ Z aijDiungodxz/ggodm
Q, Q

i,j=1
for every cpEWOLQ(Q,w,v).
Remark 2.12. The existence and uniqueness result for the Dirichlet problem
Lu=g, in
(P 1,2
u—YeW,; " (Q,w,v)
where ¢ € W12(Q,w,v), can be found in [1, Theorem 4.9].

3. DIFFERENTIABILITY OF WEAK SOLUTIONS

In this section we prove that weak solutions u€ W12(Q, w, v) of the equation Lu = g, with some hy-
potheses, are twice weakly differentiable and D;;u€L?(Q,w) (that is, ue W*2(,w, v), V' CC Q).



Definition 3.1. Let u be a function on a bounded open set 2 C R™ and denote by e; the unit
coordinate vector in the z; direction. We define the difference quotient of u at = in the direction
€; by
u(z + heg) — u(x)

h

Lemma 3.2. Let 'CCQ and 0 < |h| < dist(Q,09). If u,peLE (Q,w), supp(p) C QY and g
is a measurable function with |g(z)| < Cw(x), then

(a) Al(up)(z) = u(x + hek) Alp(z) + p(z)Alu(z), with1 < k < n.

(3.1) Aly(z) =

, (0 < |h| < dist (z,00)).

) | s@u@are@ do == [ o)Al da

(c) If p€ CH(Q), then AL(Djep)(x) = Dj(Akp)(x).
Proof. The proof of this lemma follows trivially from the Definition 3.1. O

Definition 3.3. Let w be a weight in R”. We say that w is uniformly A, in each coordinate if
(a) wed,(R™);

(b) wi(t) = w(1,...,Ti—1,t,Tiy1,...,2,) s in Ay(R), for xi,...,2i—1,Tit1,...,
..., Zp a.e., 1 <i<n, with A, constant of w; bounded independently of x1, ..., Z;—1,Zit1,
.y Ty

1/2

Example 3.4. Let w(z,y) = wi(z)wa(y), with wy(z) = |.’L‘|1/2 and wa(y) = |y| ’°. We have w is

uniformly A, in each coordinate.

Definition 3.5. Let v,w be weights in R™.



(a) We say that (v,w) is uniformly A, in each coordinate if (v,w)€A,R") and (v;,w;) € A, (R)

(1<i¢<n) with constant A, of (v;,w;) bounded independently of x1,...,Zi—1,Zit1,...,Tn.
(b) We say that (v,w) is uniformly S, in each coordinate if (v, w)€S,(R™) and (v;,w;)€S,H(R)
(1<i<n) with S,-constant of (v;,w;) bounded independently of z1,...,&i—1,Zit1,...,ZTn.

Lemma 3.6. Let ucW12(Q,w,v) and let (w,v) be uniformly So in each coordinate. Then for
any Q' CCQ and 0 < |h| < dist(,09Q), we have

(3.2) [ ARull 20y < CllDrul|r2(.w)

where C' = 2C)y, and Cyy is the Muckenhoupt constant.

Proof. Case 1: Let us suppose initially that ueC>°(€2). We have,

h
M) = Uathe)—uw) 1 /0 Dy (x + Gex) d¢

1 h
E/ Dyu(zy, ... Tp—1,2k + C, Tht1, - - -, Tpn) dC.
0

For 1 < k < n, we define the functions

Gr(z) =

Dyu(z), if x€Q
0, if x€Q.



We have for ze) CC Q and h satisfying 0 < |h| < dist(€', 092),

1 h
|A2u(a¢)| < W/o |Dku(:c1,...,xk_1,xk+C,xk+1,...,xn)|d§‘
1 zr+h
= W/ |Gk(w1,...,xk_1,t,xk+1,...,:vn)|dt‘
T
1 zr+h
< W/ N |Gk(x15'"7xk—17t’xk+1a"'axn)|dt‘
T —

S 2M(G}:l7~"1$k—17wk+17“~7$n)(xk)7

where G tRTUERR T (0 ) = Gr(21, ..., Xk, ..., Tn).  Consequently, using the notation
dzy = dx;...dzg_1dagsq ... dz, (where the hat indicates the term that must be omitted in
the product) and by Theorem 2.8, we obtain

/ |Alu(z) Po(z) dz
Ql

<2 | (MG P (e, )
Go back <4 [ MG T R (i, Tk ) day . A 2,
]Rn
Full Screen —
< 4/11{7»—1 (C’%/I/R|Gil""’xkl’z’““""’x"(xk)|2w(a¢1,...,xk,...,a:n) dxk) dxy,

Close
— 40} [ 1Ge@)Pu(e)ds =4CY; [ |Dyu(o) () da,
Rn Q

Quit




Go back

Full Screen

Close

Quit

where C)y is independent of z1,...,Zk—1,%k41,...,Ty because (v,w) is uniformly S in each
coordinate. Therefore

||AZU||L2(Q’,1;) < C||DkU||L2(Q’w), where C' = 2CM.

Case 2: If ue W12(Q,w, v) then there exists a sequence {uy, }, u, € C*(£), Cauchy sequence in
the norm | - |lw1.r(0,w,v)- By Remark 2.10, we have

Um—u in L*(Q,v), and Ditty,— Drpu in L?(Q,w).

Since (v,w)€Sy and w < w, we have w€As and vEA;. Consequently, by Remark 2.5, there
exists a subsequence {umj} such that u,; —u a.e.and Dyuy,; — Dyu a.e.. This implies, for 0 <
|h] < dist(£Y,09), that

Aﬁum]. —Ahy ae.

We have {AJun,, } is a Cauchy sequence in L2(€',v), for any €' CC 2. In fact, using the first case,
we have
| AR, — Aftin, | 2(,0) = |1 AR (tm, — U, )l L2( )
< C||Di(um, — tm,)||lL2(@.w)
= C||Dkumr — Dkums ”L2(Q,w)

— 0, as My, Mg—00.

Therefore, there exists g € L?(€',v) such that Alu,,,— g in L2(€',v). Consequently, there exists
a subsequence AZum].T —g a.e.. We can conclude that Azu = g a.e.. Hence

AZuijAzu in L2(Q,v).



This implies that
[ARull2(e vy = lm || AFwm, |20, 0)
mJ—?OO
S C lim ||Dkum]. ||L2(Q,w)
= C||Dxul| L2(0,0)>
that is, ||Afullr2(a0) < CllDrullr2(.w)- O

Lemma 3.7. Let ueLP(Q,w), 1 < p < oo, weA, and suppose there exists a constant C such
that

(3:3) ”AZUHLT’(Q’,w) < C, k=1,2,...,n

for any Q' CCQ and 0 < || < dist(Q,09Q) (with C independent of h). Then there exists
VLELP(Q,w) such that Dyu = Iy in the weak sense and || Dyul|pr(,w) < C.

Proof. Since ||A2u||Lp(Q, » < O, using LP(Q,w) is reflexive (1 < p < o0), there exists a
sequence {h, }, hy,— 0, and a function 9y € LP(Q, w), with |[|[Ux[|zr(qw) < C, such that

(3.4) / Almoy(z)p(z)w(z)dz — / I (z)p(z)w(z) dz
Q Q
for all ¢ € L” (Q,w). Since weA,, we have ¢ = 1/weL? (Q,w) for any YeC®(Q). In fact,

/|<p|p/wdx=/ |1/J|p/w_p/wd:c
Q Q

< Cd)/ W' dz < 0o (because weAy).
Q



Setting ¢ = ¢/w in (3.4), we obtain
/ Azmu(az)w(x) dz — / I (z)(x) dz, Ve CF(R).
Q Q
Now for h,, < dist(supp,0), we have

Azmu(x)zb(x) dz = —/Qu(x)A,thQ/J(x) dx

Q
— —/u(l’)Dki/J(l‘) dz, with A, — 0.
Q

Hence
[ @@ o= [ u@Dwiz)ds,  YoeCE@).
Q Q
Therefore Dyu = 9% in the weak sense. O

Remark 3.8. If the assumptions of Lemma 3.6 are satisfied and w < v, then we have

1ARull 20wy < 1A%Ull 200y € ClDrUll p2(0r -

We are able now to prove the main result of this paper.

Theorem 3.9. Let ucW12(Q,w,v) be a weak solution of the equation Lu = g in 2, and assume
that

(a) g/ve L*(Q,v);
(b) The pair of weights (v,w) is uniformly Sa in each coordinate;



(¢) |Ara(z)| < Cro(z), e CCQ ae., 0 < |h| < dist(Y,08), with constant C, is indepen-
dent of Q' and h.
Then for any subdomain Q' CC ), we have ueW?22(Y, w,v) and

(3.5) lullw22(@ we) < C (lullwrz@uww) + 19/0)l22 )
for C = C(n,Cyp,C1,d'), and d' = dist (', 09Q).

Proof. Since ueW12(Q,w,v) is a weak solution of the equation Lu = g, then by Definition 2.11
we have,

(3.6) | as@ D@Dy = [ s@ta)da.

for all peWy?(Q,w,v) (in particular for all peCge(Q)).
In (3.6) let us replace ¢ by A e (1 < k < n), with peC°(Q), supp(p) CCQ and let
|2h| < dist(supp (¢), 02). Then, by Lemma 3.2, we obtain

- [ s@a;"o(@) s = - [ as()Diulz) DA (o) do
Q Q
— - [ (@D AT (Drp)e) do
— | MbasDad(e)Djela) do
= /Q (a(z + hex) ApD;u(z) + Diju(z)Afas;(z)) Dyjp(z) dz

(3.7) = / ([nARai; (@) + ai(2)] AR Diu(z) + Dyu(z) Afaij(2)) - Dip(e) da.
Q




By Lemma 3.6, if ueW2(Q,w, v) we have

(3.8) ||AZU|IL2(Q/,’U) < C||Dku||L2(Q’w) = C’, vV ccQ.
Since u € L%(Q,v) and v € Ay (see Remark 2.3 and Remark 2.7), by Lemma 3.7 we have that
(3.9) ||DkU”L2(Q/’U) < ||DkU||L2(Q,U) < é = CHDku”L2(Q,w)7 vQ cc.

Consequently, in (3.7), we obtain
[ as(@)Di(Aku(@) Dyela) da
= - [ s@Aple)de — [ Alaiy(@)Diu(@)Dspla) da
- [ hAl;(@)ALD () Dyela) da

(3.10)

IA

/ l9()] | A7 ()| dz + / |Abay; ()| |Diu(e)| | Dyp(a)| de
Q Q

Y /Q |Akay;(2)] |ALDsu(e)| |Dje(a)] de

We have, by Lemma 3.6,

[ lo@lag @) as = [ (%) o2 (@) | Ag ()| vV (z) da

<[]
v

—h
L2(Q,0) ”Ak SDHLQ (suppyp,v)

<ol
v

D o
L) [ Dkl L2(.w)




And, using (3.9), we obtain
| 18k @) IDu@)l Do) do
<G [ u(@) D) IDip(a)] do
supp ¢
<G [ Pu@ @D (@) do
suppy
1/2 1/2
<Cc? (/ | Dsu(z) Pw(z) d:z:) (/ |Dso(x)|?w(x) dx)
Q Q
Hence, in (3.10), we obtain
| as(@)Diau@)Dip(e) da

(3.11) < ¢ (ulwraun + |2

D
LZ(Q,w)) Dol L2 (0w)

+Culh| /Q v() | AL Dyu() || Dy ()| de

Let Q' cC Q. To proceed further let us take a function n € C§°(Q) satisfying 0 < n < 1, n=1

in Q' and with ||Dn|, < 2/d, where d' = dist(Q,09Q) and set ¢ = n?Alu (wi
dist(supp(n), 992)). We have

Djp = 2nDnARu+n>D;(ARu).



. In (3.11) we obtain

— g
We denote by a = ||ullw1.2(Quww) + H v’ @)

/Q (AnD(Alu), nD(Alw)) dz

- /Q 033 (@)n(@) Dy(Au(@)][n(2) D (Alu())] de

IA

g
€ (s + 3

o2nD:nAl
me) 12nDjnAku
+ P A(D; )| L) + 2 /Q |z ()| [nDs Al | Dy Al dz

+ Cq|h] / v|AZD,~u||2nDjnAZu 4 172DjAZu| dx
Q

VAN

Ca (2llnDinAkull L2 suppn,w) + [1D;(ARU)| 22 (suppn,))
+ 215 + C4|h|I3

Ca (“Djn”OO||AII:’U‘||L2(suppn,w) + ”nDjAZuHLZ(suppn,w))
+ 215 + C]|h|I3

Ca||Djnllso|| Ditel| L2 (02, + CallnDjAfull 20wy + 212 + Ci|h|I5,

IA

IA

/Q (AnD(Af) qD(Afw) dz

< C @®||Djnlls + CallnD; Afull 2w + 212 + C1|h|Is.




Let us estimate the integrals I, and I3. By (1.2), we have that |a;;(z)] < Cv(z) a.e. in 2. Using
(3.8), (3.9) and Remark 3.8, we obtain

b= | JalnDisful DAkl ar

< C vinD; Aju||DjnAjul de
suppn

< C”T]DiAZu“LQ(supp'r],v)||DjnA}k1;u||L2(Suppnvv)

< C||Di(nAZu) — DmAZuHLz(suppn,v)||Dj77| oo||AZu“L2(SUPpmv)

< C (CullDinAju + 1D ARl L2 (suppn.w) + Cllullwrz@.w.e))
Nullwr2@,w,0)

< C (IDrullz2 0wy + IMDiAFull L2(0.w) + lullwr2@,w,0))
Nullwz@w,w)

< C(lulwrz@ww + InDidiull 2 .0) lullwrz.w)

< Cllulliyizww + ClnDiAfull L2 @.w lullwr2@,ww)

(3.13) < Ca® + Ca|nD; Aful r2(0,0)-

We also have,
I; = / v|AlDiu||2nDjnAfu + n* Dy Alu| dx
Q

< 2/ U|AZD¢u||77DjnAZu|dx+/ v|AlDiu||n? D Afu| da
suppn

supp”




= 2/ v|nA’,;‘D,-u||Dj7]AZu|dx+/ v[nD; Afu||nD; Alu|da
suppn)

suppn
< 2||77DiAZU||L2(suppn,v)“DjnAllzu”L%supWhU)
(3‘14) + ”nDiA;clu”L?(suppn,v)”nDjAzu||L2(suppn,v)-
Using (3.8) and (3.9), we obtain

”DjnAzu”Lz(SUppn,v) < ||Dj77||00”AZUHLz(suppn,v) < C||Dj77”00”Dku”L2(Q,W)
(3.15) < ClDmllsollullwrz(@.wwy < CallDjnlloo-

And we also have,

”nDiAZu“V(SUppmv) = ||Di(77AZU) - AZUDWHL?(suppn,v)

| Di (nARw) || L2 (suppn,v) + 1ARUD:N| L2 (suppn,v)

< Cum| Di(nARw)|| L2 suppn.w) + [1Dinlloo | ARl L2 (suppn,v)
Cum || DinAfu + nDi Afu| L2 (suppn w)

+ Cu | Dinllso | D]l L2(0,0)

Ca|D;jnllse + CorInDs Ajull 12 (suppn,w) -

VAN VAN

IA

(3.16)

IN

By condition (1.2) we have,
/ ai; (@) [n(z) D;(Aku(@))][n(2) Di(Aju(x))] do > / [n(2)D(Afu(@)) Pw(z) de
Q Q

(3.17) - /Q In(2)AL(Du()) Pu(z) da.




We denote by b = [nD(Alu)||2(0.w)- By (3.12), (3.13), (3.14), (3.15), (3.16) and (3.17), and using
Young’s inequality, we obtain

b?> < Ca® + Cab + C|hla® + Cablh| + C|h|b?
2 e?, 2 e 5 e?, €% 9112 2
— 5 &2 G2 9
= (C+Ce?+Clh|)a® + C?+C?|h| +C|h| ) b2
Choose € > 0 and h such that
Ce?

052 2 1
- = 4 == < =
— + | +Clhl < 5,

we obtain,

2
L2 (Q,v))

2
LZ(Q,v)) '

I1D;(Afu) 17200 0y = 1ARD Ul 3200wy < 1ARDuUl|T2 (00 0

2
LQ(Q,v))

/ |17A113Du|2wd:]3 < C <||u|lwl,2(ﬂyw’v) + H%‘
Q

Using n=1 in ', we have

/ |A2Du,|2wdx < C (II’U,HWI,Z(Q,LU’,U) — H%‘
Q/

Then we conclude that

g
< © (ulbwraan + |2




By Lemma 3.7, we have there exists D;u and

L?(Q,v)) '

Therefore ucW?22(Q',w,v), VQ' CC Q. O

g
IDsulzzer < © (Nulwraam + |2
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