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COUNTING ALL EQUILATERAL TRIANGLES IN {0, 1, ..., n}3

E. J. IONASCU

Abstract. We describe a procedure of counting all equilateral triangles in the three dimensional space

whose coordinates are allowed only in the set {0, 1, ..., n}. This sequence is denoted here by ET (n)

and it has the entry A102698 in “The On-Line Encyclopedia of Integer Sequences”. The procedure
is implemented in Maple and its main idea is based on the results in [3]. Using this we calculated
the values ET (n) for n = 1 . . . 55 extending previous calculations known for n ≤ 34. Some facts and

conjectures about this sequence are stated. The main conjecture raised here is that lim
n→∞

ln ET (n)

ln n + 1
exists.

1. Introduction

If we restrict the vertices of an equilateral triangle to be in Z3 we obtain a typical element in
ET (Z). It is not that hard to see that there are no such triangles whose vertices are contained
in the coordinate planes or any other plane parallel to one of them. Also, the sides of a triangle
in ET (Z) cannot be of an arbitrary length. If one such triangle is considered, a whole family in
ET (Z) can be generated from it with vertices in the same plane. Moreover, we have shown in [3]
the following theorems that we are going to use in our construction here.

Theorem 1.1. If the triangle 4OPQ ∈ ET (Z) with O the origin and l = ||
→

OP || then:
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(i) the points P and Q are contained in a plane of the equation ax + by + cz = 0, where

a2 + b2 + c2 = 3d2, a, b, c, d ∈ Z(1)

and l2 = 2q;
(ii) the side length l is of the form

√
2(m2 −mn + n2) with m,n ∈ Z.

It is important to be able to generate all primitive solutions of (1):

Theorem 1.2. The following formulae give a three integer parameter solution of (1):



a = −x2
1 + x2

2 + x2
3 − 2x1x2 − 2x1x3

b = x2
1 − x2

2 + x2
3 − 2x2x1 − 2x2x3

c = x2
1 + x2

2 − x2
3 − 2x3x1 − 2x3x2

d = x2
1 + x2

2 + x2
3, x1, x2, x3 ∈ Z.

(2)

Moreover, every solutions of (1), a, b, c, d can be found from (2) with x1, x2, x3 ∈ Z[ 1√
k
] and

k = (3d− a− b− c)/2 ∈ N.

We include some general remarks about the solutions of (1) which are discussed in [3]:
• if we assume that gcd(a, b, c) = 1 then all a, b, c, d must be odd integers
• for every d odd there exists at least one solution which is not trivial (i.e. a = b = c = d)
• [Gauss] a positive integer n can be written as a sum of three squares iff n is not of the form

4k(8l + 7) with k, l ∈ Z (see [1] for an elementary proof)
Our construction depends essentially on a particular solution, (r, s) ∈ Z2, of the equation:

2(a2 + b2) = s2 + 3r2.(3)
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It turns out that this Diophantine equation has always solutions if a, b, c and d are integers sat-
isfying (1). The family of equilateral triangles we have mentioned can be described more precisely
as another parametrization.

Theorem 1.3. Let a, b, c, d be odd positive integers such that a2 + b2 + c2 = 3d2, with
gcd (d, c) = 1. Then a triangle 4OPQ ∈ ET (Z) has its vertices in the plane of the equation
aα + bβ + cγ = 0 if and only if P (u, v, w) and Q(x, y, z) are given by

u = mum− nun,

v = mvm− nvn,

w = mwm− nwn,

and


x = mxm− nxn,

y = mym− nyn,

z = mzm− nzn,

(4)

with 
mx = − 1

2 [db(3r + s) + ac(r − s)]/q, nx = −(rac + dbs)/q

my = 1
2 [da(3r + s)− bc(r − s)]/q, ny = (das− bcr)/q

mz = (r − s)/2, nz = r

and
mu = −(rac + dbs)/q, nu = − 1

2 [db(s− 3r) + ac(r + s)]/q

mv = (das− rbc)/q, nv = 1
2 [da(s− 3r)− bc(r + s)]/q

mw = r, nw = (r + s)/2

(5)

where q = a2 + b2, (r, s) is a suitable solution of (3) and m,n ∈ Z.
Moreover, the side-lengths of such a triangle are equal to d

√
2(m2 −mn + n2).
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Let us observe that one can use Theorem 1.3 as long as min(gcd(q, c),
gcd(q, a), gcd(d, b)) = 1. However, we have calculated that this property holds true for all so-
lutions a, b, c, d of (1) such that gcd(a, b, c) = 1 and with all odd d < 1105. In fact, 1105 is the
first d for which the condition above fails with certain choices of a, b, c. This allows us to calculate
ET (n) for n = 1, . . . , 55 as we will see later.

2. Description of the procedure and some ingredients

The idea is based on the facts above and a few other results. One would like first to find the
side lengths of the triangles in ET (Z) ∩ Cn, where Cn is the cube [0, n]3. This will partition these
triangles into clear classes. For this purpose we will use the Proposition 1.2. Then for a given
side-length l we need to find all the possible planes that contain triangles of sides l. This gives
another criteria of sub-partition even further these triangles. Using the parametrizations given in
Theorem 1.3 then one finds such smallest triangle within a given plane that can fit in Cn after a
translation and rotation. Once that is obtained we rotate and translate it remaining in Cn in all
possible ways, but in a pairwise disjoint manner. A formula for the number of all these equilateral
triangles will be given. Finally all these numbers are added up to obtain ET (n).

The first fact that we will use is the following geometric observation.

Proposition 2.1. The largest side length of an equilateral triangle whose vertices are contained
in a cube of side lengths r is r

√
2.

Proof. If an equilateral triangle of side length l, has its vertices in the cube [0, r]3, we denote by
A1, A2, and A3 the areas of the three projections of this triangle on the three coordinate planes.
It is easy to see that A2 = A2

1 + A2
2 + A2

3 where A is the area of the given equilateral triangle. It
is easy to see that the maximum of the area of an arbitrary triangle inscribed in a square of side
length r is r2/2. Hence A2 = 3l4/16 ≤ 3r4/4. This gives l ≤ r

√
2. Certainly this maximum is
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attained when the vertices of the triangle are at the corners of the cube such that every two are
diagonally opposite on the face they belong. �

Let us work out a concrete example (n = 4) to exemplify our counting. Using Proposition 2.1
and the part (ii) of Theorem 1.1, the side lengths of the triangles in ET (Z) ∩ C4 can only be

√
2,√

6, 2
√

2,
√

14, 3
√

2, 2
√

6,
√

26 or 4
√

2. The d values here are 1 or 3. Since 3(12) = 12 + 12 + 12

and 3(32) = 12 + 12 + 52 are the only solutions of (1) for d = 1 or d = 3, the parametrizations we
need in this case are, as shown in [3]:

T1,1,1 = {[(0, 0, 0), (m,−n, n−m), (m− n,−m,n)] : m,n ∈ Z,m2 + n2 6= 0}

and
T1,1,5 = {[(0, 0, 0), (4m− 3n, m + 3n,−m), (3m + n,− 3m + 4n,−n)] :

m,n ∈ Z,m2 + n2 6= 0}.

Here we used the notation Ta,b,c for all triangles in ET (Z) having the origin as one its vertices and
the other two contained in the plane {(α, β, γ) : aα + bβ + cγ = 0}.

Using the first parametrization we find the m,n such that the triangle obtained after a transla-
tion fits in C4 and the side lengths are

√
2: T1 = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. This triangle can be

translated in various ways inside of C4, and together with all its cube symmetries and their transla-
tions contribute with a total of 512 in ET (4). We will prove formula (6) that gives in particular the
total of all different triangles generated by T1 inside of Cn under translations and rotations. The
first parametrization needs to be used also for all the side lengths

√
6, 2

√
2,
√

14, 3
√

2, 2
√

6,
√

26
and 4

√
2. The corresponding triangles obtained respectively are: T2 := {(1, 0, 2), (2, 1, 0), (0, 2, 1)},

2T1, T3 := {(2, 0, 3), (0, 3, 2), (3, 2, 0)}, 3T1, 2T2, T4 := {(1, 4, 0), (4, 0, 1), (0, 1, 4), } and 4T1. Using
formula (6) one can check that the contribution of each of these triangles to ET (4) is (respectively):
216, 216, 128, 64, 8, 16 and 8.
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There is a need to use the second parametrization since one can take d = 3 to obtain the side
length 3

√
2. This gives still a new triangle: T5 := {(0, 0, 1), (1, 4, 0), (4, 1, 0)}. This triangle and

all the ones generated inside of C4 by its transformations described before are different of the ones
above because they are contained in planes having different normals. The contribution of T5 to
ET (4) is 96. If tallying all these classes one gets that ET (4) = 1264.

As we can see from this example, one has to derive a way of finding how many other triangles can
generate from a given one, say T , inside of Cn under all possible translations, cube symmetries and
their translations. We are going to call these transformations of a triangle allowed transformations
since we have to make this a little more precise. We are going to assume that the given triangle
T that is inside Ct is minimal in the sense that at least one of the coordinates of the vertices in T
is zero and t is the smallest dimension k of the cube Ck containing T or one of its images given by
an allowed transformations on it.

Let us denote by O(T ) the orbit generated by T within Ct under all allowed transformations.
We also need to introduce the standard unit vectors e1 = (1, 0, 0), e2 = (0, 1, 0) and e3 = (0, 0, 1).

It is actually surprising that in order to compute the number f , of all distinct triangles generated
by T (union of all translations of O(T )) within Cn (n ≥ t) one just needs the following five variables
that depend only on T :

(i) n – the dimension of the cube,
(ii) t – the maximum of all the coordinates in T ,
(iii) α(T ) – the cardinality of O(T ),
(iv) β(T ) – the cardinality of O(T ) ∩ [O(T ) + e1],
(v) γ(T ) – the cardinality of [O(T ) + e1] ∩ [O(T ) + e2].

Theorem 2.1. The function f(T, n) described above is given by

f(T, n) = (n + 1− t)3α− 3(n + 1− t)2(n− t)β

+ 3(n + 1− t)(n− t)2γ,
(6)
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for all n ≥ t.

Proof. Let us consider the cube Cs = {0, 1, . . . , s}3 where s = n − t. Clearly the number of
points in this set is (s + 1)3. Each point p in the set Cs is considered here as a vector. So,
f = | ∪

p∈Cs

O(T ) + p|. One essential observation here is such that |[O(T ) + p] ∩ [O(T ) + q]| = 0 for

every p, q such that ||p− q|| ≥ 1, where ||p− q|| = min
i=1,2,3

(|pi − qi|). This is due to the minimality

of T .
Let us write the elements of Cs in lexicographical order: p1, p2, . . . , pk where k = (s + 1)3. We

look now at Cs as the three dimensional grid graph. Faces in this graph are simply unit squares
formed by vertices from Cs. One can look at the cardinality of ∪

i=1..j
O(T )+pi and show by induction

on j that this is equal to

jα− (#edges(Cs(j))β + (#faces(Cs(j))γ

where Cs(j) is the graph induced in Cs by the vertices p1, p2, . . . , pj . Hence we just need to compute
the number of edges and faces in Cs. There are eight vertices in this graph that have degree 3 (the
corners), there are (s − 1)3 vertices of degree 6, also 6(s − 1)2 vertices with degree 5 and finally
12(s− 1) of degree 4. This gives a total of

1
2

[
24 + 6(s− 1)3 + 30(s− 1)2 + 48(s− 1)

]
= 3s(s + 1)2

edges. The number of faces is equal to 1
2

[
6s3 + 6s2

]
= 3s2(s + 1). �

Example. Suppose we take T = T5. Then clearly t = 4. One can use a symbolic calculator to
find α(T ) = 96, β(T ) = 24 and γ(T ) = 0. So, the contribution of T5 to an arbitrary cube Cn is
f(T5, n) = 96(n− 3)3 − 72(n− 3)2(n− 4) = 24n(n− 3)2.
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Remark. These facts give a way to find lower bounds for ET (n). For instance, if we put the
contribution of T1 and T2 together we obtain that ET (n) ≥ 8(2n− 1)(n2 − n + 1) for all n ≥ 2.

To generate the side lengths we would like to use a well-known result due to Euler (see [4,
pp. 568] and [2, pp. 56]).

Proposition 2.3 (Euler’s 6k + 1). An integer t can be written as m2 − mn + n2 for some
m,n ∈ Z if and only if in the prime factorization of t, 2 and the primes of the form 6k− 1 appear
to an even exponent.

3. The code

Using Proposition 2.3 and Proposition 2.1 we have the following procedure in Maple to compute
the side lengths modulo a factor of two and the square root:

> sides:=proc(n)

local i,j,k,L,a,m,p,q,r,ms;

> L:={1}; ms:=n^2;

> for i from 2 to ms do

a:=ifactors(i); k:=nops(a[2]); r:=0;

> for j from 1 to k do m:=a[2][j][1]; p:=m mod 6;

q:=a[2][j][2] mod 2; if r=0 and (m=2 or p=5) and q=1

then r:=1 fi;

> if r=0 then L:=L union {i}; fi;

> od; L:=convert(L,list); end:

This procedure gives for n = 10: [1, 3, 4, 7, 9, 12, 13, 16, 19, 21, 25, 27, 28, 31, 36, 37, 39, 43,
48, 49, 52, 57, 61, 63, 64, 67, 73, 75, 76, 79, 81, 84, 91, 93, 97, 100]. This gives the corresponding
side-lengths
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[
√

2,
√

6,2
√

2,
√

14, 3
√

2, 2
√

6,
√

26, 4
√

2,
√

38,
√

42, 5
√

2, 3
√

6, 2
√

14,
√

62, 6
√

2,
√

74,
√

78,√
86, 4

√
6, 7

√
2, 2

√
26,

√
114,

√
122, 3

√
14, 8

√
2,
√

134,
√

146, 5
√

6, 2
√

38,
√

158, 9
√

2, 2
√

42,√
182,

√
186,

√
194, 10

√
2]

We need a procedure that will give the odd values of d that “divide” a certain side length in
the sense it is possible to write it as d

√
m2 −mn + n2 with m,n ∈ Z:

> dkl:=proc(side)

> local i,x,noft,div,y,y1,z;

> x:=convert(divisors(side),list); noft:=nops(x); div:={ };

> for i from 1 to noft do z:=x[i] mod 2;

> if z=1 then y:=side/x[i]^2;y1:=floor(y); if y=y1

then div:=div union {x[i]}; fi; fi;

> od;

> convert(div,list); end:

For instance, if the side =
√

882 this procedure gives [1, 3, 7, 21] which means we have at least four
possible parametrizations that we can use to find minimal equilateral triangles.

Next we need to find all the nontrivial solutions [a, b, c] of (1), given and odd positive integer d,
with the property gcd(a, b, c) = 1, 0 < a ≤ b ≤ c which is based on an internal procedure to solve
Diophantine equation A = X2 + Y 2:
> abcsol:=proc(q) local i,j,k,u,x,y,sol,cd; sol:={};

> for i from 1 to q do

u:=[isolve(3*d^2-i^2=x^2+y^2)]; k:=nops(u);

> for j from 1 to k do

if rhs(u[j][1])>=i and rhs(u[j][2])>=i then

cd:=gcd(gcd(i,rhs(u[j][1])),rhs(u[j][2]));

if cd=1 then sol:=sol union

{sort([i,rhs(u[j][1]),rhs(u[j][2])])}; fi; fi;

> od; od; convert(sol,list); end:
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For d = 17, abcsol finds four different solutions, [[11, 11, 25], [13, 13, 23], [1, 5, 29], [7, 17, 23]], and
in a few seconds sends out 333 solutions for d = 2007. One interesting solution in this last case is

19372 + 19732 + 21072 = 3(2007)2.

Now based on the Theorem 1.3 we take a solution of (1) as given by the procedure above and
calculate the general parametrization:
> findpar:=proc(a,b,c,m,n)

> local i,j,r,s,sol,mx,nx,my,ny,mu,nu,mv,nv,mz,nz,mw,nw,q,d,u,v,

w,x,y,z,ef,ns,om,l,t;

> q:=a^2+b^2; sol:=convert({isolve(2*q=x^2+3*y^2)},list);

ns:=nops(sol); d:=sqrt((a^2+b^2+c^2)/3); ef:=0;

> for i from 1 to ns do

if ef=0 then r:=rhs(sol[i][1]); s:=rhs(sol[i][2]);

> uu:=(s^2+3*r^2-2*q)^2; if uu>0 then t:=s;

> s:=r; r:=t; fi;

> mz:=(r-s)/2; nz:=r; mw:=r; nw:=(r+s)/2;

mx:=-(d*b(3*r+s)+a*c(r-s))/(2*q);

nx:=-(r*a*c+d*b*s)/q; my:=(d*a(3*r+s)-b*c(r-s))/(2*q);

ny:=-(r*b*c-d*a*s)/q;

mu:=-(r*a*c+d*b*s)/q; nu:=-(d*b(s-3r)+a*c(r+s))/(2*q);

mv:=(d*a*s-r*b*c)/q; nv:=-(d*a(3r-s)+b*c(r+s))/(2*q);

> if mx=floor(mx) and nx=floor(nx) and my=floor(my) and

ny=floor(ny) and mu=floor(mu) and nu=floor(nu) and

mv=floor(mv) and nv=floor(nv) then

u:=(mu)m-(nu)n; v:=(mv)m-(nv)n; w:=(mw)m-(nw)n;

x:=(mx)m-(nx)n; y:=(my)m-(ny)n; z:=(mz)m-(nz)n;

om:=[[u,v,w],[x,y,z]];

> ef:=1; fi; fi; od; om; end:
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For the solution, [1, 5, 29], found earlier for the case d = 17, findpar gives

[[−11m− 13n,−21m + 20n, 4m− 3n], [−24m + 11n,−m + 21n, m− 4n]].

Next, using this parametrization we would like to find if there is any equilateral triangle in
ET (Z) which after a translation fits inside Cstopp.

1: minimaltr:=proc(s,a,b,c,stopp)

2: local i,z,u,nt,d,m,n,T,alpha,beta,gamma,tr,out,L,tri,noft,

tria,orb,avb,length,lengthn;

3: d:=sqrt((a^2+b^2+c^2)/3); $z:=s/d^2;

u:=convert({isolve(z=q^2-qr+r^2)},list); nt:=nops(u);

4: for i from 1 to nt do

5: T:=findpar(a,b,c,rhs(u[i][1]),rhs(u[i][2]));

6: alpha:=min(T[1][1],T[2][1],0); beta:=min(T[1][2],T[2][2],0);

gamma:=min(T[1][3],T[2][3],0);

7: tr[i]:={[T[1][1]-alpha,T[1][2]-beta,T[1][3]-gamma],

[T[2][1]-alpha,T[2][2]\beta,T[2][3]-gamma],

[-alpha,-beta,-gamma]};

8: out[i]:=max(tr[i][1][1],tr[i][1][2],tr[i][1][3],tr[i][2][1],

tr[i][2][2],tr[i][2][3],tr[i][3][1],tr[i][3][2],tr[i][3][3]);

9: od; L:=sort([seq(out[i],i=1..nt)]); tri:={};

10: for i from 1 to nt do if out[i]<= stopp then

tri:=tri union {tr[i]}; fi; od;

11: tri:=convert(tri,list); tria:={};

12: if nops(tri)>0 then noft:=nops(tri); tria:={tri[1]};

orb:=transl(tri[1]);

13: for i from 1 to noft do avb:=evalb(tri[i] in orb);

14: if avb=false then orb:=orb union transl(tri[i]);
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tria:=tria union {tri[i]};

15: fi; od; fi; tria; end:

The minimal triangle given by this procedure for s = 17
√

2, a = 1, b = 5, c = 29, stopp = 30:
{[11, 21, 0], [24, 1, 3], [0, 0, 4]}. The last part of the procedure is actually searching for a set of
triangles that generate all the triangles in ET (Z) that lay in planes of normal (a, b, c) or all other
23 possibilities obtained by permuting the coordinates and changing signs. The next procedure is
used above and later in order to compute the parameters α(T ), β(T ) and γ(T ).

> transl:=proc(T)

> local S,Q,i,j,k,a2,b2,c2,a,b,c,d;

> Q:=convert(T,list); a:=max(Q[1][1],Q[2][1],Q[3][1]);

b:=max(Q[1][2],Q[2][2],Q[3][2]);

c:=max(Q[1][3],Q[2][3],Q[3][3]); d:=max(a,b,c); a2:=d-a;

b2:=d-b; c2:=d-c; S:=orbit(T);

> for i from 0 to a2 do

for j from 0 to b2 do

for k from 0 to c2 do

S:=S union orbit(addvect(T,[i,j,k]));

> od; od; od; S; end:

Here the procedure addvect and orbit are:
1: addvect:=proc(T,v) local Q,a,b,c;

2: Q:=convert(T,list); a:=v[1]; b:=v[2]; c:=v[3];

3: {[Q[1][1]+a,Q[1][2]+b,Q[1][3]+c],[Q[2][1]+a,Q[2][2]+b,

Q[2][3]+c],[Q[3][1]+a,Q[3][2]+b,Q[3][3]+c]};

4: end:

and
> orbit:=proc(T)local S,Q,T1;

> Q:=convert(T,list);
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> T1:={[Q[1][3],Q[1][2],Q[1][1]],[Q[2][3],Q[2][2],Q[2][1]],

[Q[3][3],Q[3][2],Q[3][1]]};

> S:=orbit1(T) union orbit1(T1); S;

> end:

The orbit1 takes care of the cube symmetries:
> orbit1:=proc(T) local

i,k,T1,a,b,c,x,T2,T3,T4,T5,T6,T7,T8,T9,T10,T11,T12,T13,T14,

T15,T16,T17,T18,T19,T20,T21,T22,T23,T24,S,Q,d,a1,b1,c1;

> Q:=convert(T,list);

> a:=max(Q[1][1],Q[2][1],Q[3][1]);

a1:=min(Q[1][1],Q[2][1],Q[3][1]);

> b:=max(Q[1][2],Q[2][2],Q[3][2]);

b1:=min(Q[1][2],Q[2][2],Q[3][2]);

> c:=max(Q[1][3],Q[2][3],Q[3][3]);

c1:=min(Q[1][3],Q[2][3],Q[3][3]);

> d:=max(a,b,c); T1:=T;

> T2:={[Q[1][2],Q[1][3],Q[1][1]],[Q[2][2],Q[2][3],Q[2][1]],

[Q[3][2],Q[3][3],Q[3][1]]};

> T3:={[Q[1][1],Q[1][3],Q[1][2]],[Q[2][1],Q[2][3],Q[2][2]],

[Q[3][1],Q[3][3],Q[3][2]]};

> T4:={[Q[1][1],Q[1][2],d-Q[1][3]],[Q[2][1],Q[2][2],d-Q[2][3]],

[Q[3][1],Q[3][2],d-Q[3][3]]};

> T5:={[Q[1][2],Q[1][3],d-Q[1][1]],[Q[2][2],Q[2][3],d-Q[2][1]],

[Q[3][2],Q[3][3],d-Q[3][1]]};

> T6:={[Q[1][1],Q[1][3],d-Q[1][2]],[Q[2][1],Q[2][3],d-Q[2][2]],

[Q[3][1],Q[3][3],d-Q[3][2]]};

> T7:={[Q[1][1],d-Q[1][2],Q[1][3]],[Q[2][1],d-Q[2][2],Q[2][3]],

[Q[3][1],d-Q[3][2],Q[3][3]]};
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> T8:={[Q[1][2],d-Q[1][3],Q[1][1]],[Q[2][2],d-Q[2][3],Q[2][1]],

[Q[3][2],d-Q[3][3],Q[3][1]]};

> T9:={[Q[1][1],d-Q[1][3],Q[1][2]],[Q[2][1],d-Q[2][3],Q[2][2]],

[Q[3][1],d-Q[3][3],Q[3][2]]};

> T10:={[d-Q[1][1],Q[1][2],Q[1][3]],[d-Q[2][1],Q[2][2],Q[2][3]],

[d-Q[3][1],Q[3][2],Q[3][3]]};

> T11:={[d-Q[1][2],Q[1][3],Q[1][1]],[d-Q[2][2],Q[2][3],Q[2][1]],

[d-Q[3][2],Q[3][3],Q[3][1]]};

> T12:={[d-Q[1][1],Q[1][3],Q[1][2]],[d-Q[2][1],Q[2][3],Q[2][2]],

[d-Q[3][1],Q[3][3],Q[3][2]]};

> T13:={[Q[1][1],d-Q[1][2],d-Q[1][3]],[Q[2][1],d-Q[2][2],

d-Q[2][3]],[Q[3][1],d-Q[3][2],d-Q[3][3]]};

> T14:={[Q[1][2],d-Q[1][3],d-Q[1][1]],[Q[2][2],d-Q[2][3],

d-Q[2][1]],[Q[3][2],d-Q[3][3],d-Q[3][1]]};

> T15:={[Q[1][1],d-Q[1][3],d-Q[1][2]],[Q[2][1],d-Q[2][3],

d-Q[2][2]],[Q[3][1],d-Q[3][3],d-Q[3][2]]};

> T16:={[d-Q[1][1],d-Q[1][2],Q[1][3]],[d-Q[2][1],d-Q[2][2],

Q[2][3]],[d-Q[3][1],d-Q[3][2],Q[3][3]]};

> T17:={[d-Q[1][2],d-Q[1][3],Q[1][1]],[d-Q[2][2],d-Q[2][3],

Q[2][1]],[d-Q[3][2],d-Q[3][3],Q[3][1]]};

> T18:={[d-Q[1][1],d-Q[1][3],Q[1][2]],[d-Q[2][1],d-Q[2][3],

Q[2][2]],[d-Q[3][1],d-Q[3][3],Q[3][2]]};

> T19:={[d-Q[1][1],Q[1][2],d-Q[1][3]],[d-Q[2][1],Q[2][2],

d-Q[2][3]],[d-Q[3][1],Q[3][2],d-Q[3][3]]};

> T20:={[d-Q[1][2],Q[1][3],d-Q[1][1]],[d-Q[2][2],Q[2][3],

d-Q[2][1]],[d-Q[3][2],Q[3][3],d-Q[3][1]]};

> T21:={[d-Q[1][1],Q[1][3],d-Q[1][2]],[d-Q[2][1],Q[2][3],

d-Q[2][2]],[d-Q[3][1],Q[3][3],d-Q[3][2]]};
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> T22:={[d-Q[1][1],d-Q[1][2],d-Q[1][3]],[d-Q[2][1],d-Q[2][2],

d-Q[2][3]],[d-Q[3][1],d-Q[3][2],d-Q[3][3]]};

> T23:={[d-Q[1][2],d-Q[1][3],d-Q[1][1]],[d-Q[2][2],d-Q[2][3],

d-Q[2][1]],[d-Q[3][2],d-Q[3][3],d-Q[3][1]]};

> T24:={[d-Q[1][1],d-Q[1][3],d-Q[1][2]],[d-Q[2][1],d-Q[2][3],

d-Q[2][2]],[d-Q[3][1],d-Q[3][3],d-Q[3][2]]};

> S:={T1,T2,T3,T4,T5,T6,T7,T8,T9,T10,T11,T12,T13,T14,T15,

T16,T17,T18,T19,T20,\break T21,T22,T23,T24};

> S; end:

Finally, we are ready to calculate the parameters in Theorem 2.1. We have α(T ) = transl(T ),
β(T ) = inters(T ) where
> inters:=proc(T) local a,b,c,Q,d,S,m,i,S1,S2;

Q:=convert(T,list);

> a:=max(Q[1][1],Q[2][1],Q[3][1]);

> b:=max(Q[1][2],Q[2][2],Q[3][2]);

> c:=max(Q[1][3],Q[2][3],Q[3][3]);

> d:=max(a,b,c); S2:=transl(T); S:=convert(S2,list);

m:=nops(S); S1:={};

> for i from 1 to m do S1:=S1 union {addvect(S[i],[0,0,1])};

od;

> S2 intersect S1; end:

and γ(T ) = intersch(T ) where
> intersch:=proc(T) local a,b,c,Q,d,S,m,i,S1,S2,S3,S4;

> Q:=convert(T,list);

> S2:=transl(T); S:=convert(S2,list); m:=nops(S); S1:={};

> for i from 1 to m do

S1:=S1 union {addvect(S[i],[0,0,1])}; od; S3:={};
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> for i from 1 m do S3:=S3 union {addvect(S[i],[0,1,0])}; od;

> nops(S1 intersect S3); end:

The Theorem 2.1 is then implemented in
f := (n, d, α, β, γ) → (n− d + 1)3α− 3(n− d + 1)2(n− d)β + 3(n− d + 1)(n− d)2γ

> notrincn:=proc(T,n) local Q,a,b,c,x,a2,b2,c2,d,y,z,w;

> Q:=convert(T,list);

> a2:=max(Q[1][1],Q[2][1],Q[3][1]);

> b2:=max(Q[1][2],Q[2][2],Q[3][2]);

> c2:=max(Q[1][3],Q[2][3],Q[3][3]);

> d:=max(a2,b2,c2);

> x:=nops(transl(T)); y:=nops(inters(T)); w:=intersch(T);

> z:=f(n,d,x,y,w); end:

In the end one has to put all these procedures together and add the number of triangles together.
> main:=proc(p,lastside,nuptols)

> local i,j,k,s,nos,div,nod,nop,sol,x,netr,noft,l,z;

netr:=nuptols;

> s:=sides(p); nos:=nops(s); print(s);

> for i from lastside to nos do

div:=dkl(s[i]); nod:=nops(div);

> for j from 1 to nod do

sol:=abcsol(div[j]); nop:=nops(sol);

> for k from 1 to nop do

> x:=minimaltr(s[i],sol[k][1],sol[k][2],sol[k][3],p);

> noft:=nops(x); if $noft>=1$ then

for l from 1 to noft do

z:=notrincn(x[l],p);
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> netr:=netr+z; print(s[i],div,sol[k],x[l],checkeq(x[l]),

z,netr,i);

> od; fi; od; od; od; netr; end:

The values ET (n) for n = 1 . . . 55 computed with main are given next:

8 80 368 1264 3448 7792
16176 30696 54216 90104 143576 220328

326680 471232 664648 916344 1241856 1655208
2172584 2812664 3598664 4553800 5702776 7075264
8705088 10628928 12880056 15496616 18523472 22003808

26000584 30567400 35756776 41631672 48278136 55753272
64134536 73495760 83924408 95513248 108379264 122607856

138315720 155613408 174622488 195478424 218279240 243169352
270288064 299786440 331832248 366610560 404253120 444911712
488902856

4. Some facts and conjectures

If we look at the sequence an = ln ET (n)
ln(n+1) , n ∈ N it seems to be increasing. This sequence is clearly

bounded from above since the number of all triangles in {0, . . . , n}3 is not more than (n + 1)9 and
so an ≤ 9. Numerically, the best upper-bound for an seems to be a value slightly bigger than 5.

From what we have seen before, each class of triangles determined by a, b, c, d, solutions of (1),
brings as a contribution i.e., a polynomial in terms of n. If we add these polynomials together, we
get a polynomial which can be expressed of the variable ζ = n− 1 (n = ζ + 1) as follows:

n = 1: p1(ζ) = 8ζ3 + 24ζ2 + 24ζ + 8,

ET (1) = p1(0) = 8;
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n = 2: p2(ζ) = p1(ζ) + 16 + 48(ζ − 1) + 16(ζ − 1)3 + 48(ζ − 1)2,
ET (2) = p2(1) = 80;

n = 3: p3(ζ) = p2(ζ) + 24 + 72(ζ − 2) + 24(ζ − 2)3 + 72(ζ − 2)2,
ET (3) = p3(2) = 368;

n = 4: p4(ζ) = p3(ζ) + 128 + 312(ζ − 3) + 56(ζ − 3)3 + 240(ζ − 3)2,
ET (4) = p4(3) = 1264;

n = 5: p5(ζ) = p4(ζ) + 40 + 120(ζ − 4) + 40(ζ − 4)3 + 120(ζ − 4)2,
ET (5) = p5(4) = 3448;

n = 6: p6(ζ) = p5(ζ) + 48 + 144(ζ − 5) + 48(ζ − 5)3 + 144(ζ − 5)2,
ET (6) = p6(5) = 7792;

n = 7: p7(ζ) = p6(ζ) + 776 + 1392(ζ − 6) + 128(ζ − 6)3 + 744(ζ − 6)2,
ET (7) = p7(6) = 16176;

n = 8: p8(ζ) = p7(ζ) + 232 + 552(ζ − 7) + 88(ζ − 7)3 + 408(ζ − 7)2,
ET (8) = p8(7) = 30696;

n = 9: p9(ζ) = p8(ζ) + 360 + 840(ζ − 8) + 120(ζ − 8)3 + 600(ζ − 8)2,
ET (9) = p9(8) = 54216;

n = 10: p10(ζ) = p9(ζ) + 80 + 80(ζ − 9)3 + 240(ζ − 9)2 + 240(ζ − 9),
ET (10) = p10(9) = 90104;

. . .
We conjecture that in general

pn(ζ) = pn−1(ζ) + un(ζ − n + 1)3 + vn(ζ − n + 1)2

+ wn(ζ − n + 1) + sn, n ∈ N,
(7)
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with un,vn,wn, and sn non-negative integers.

3

5040302010

4.5

5

0

3.5

4

As the graph above of n → ln ET (n)
ln(n+1) suggests, the second conjecture is that the following limit

exists

lim
n→∞

lnET (n)
ln(n + 1)

= C.(8)
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