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A MEAN VALUE PROPERTY OF HARMONIC FUNCTIONS
ON PROLATE ELLIPSOIDS OF REVOLUTION

E. SYMEONIDIS

Abstract. We establish a mean value property for harmonic functions on the interior of a prolate
ellipsoid of revolution. This property connects their boundary values with those on the interfocal
segment.

1. Introduction

Let D be a bounded domain in Rn (n ≥ 2), let be f a continuous real-valued function on its
boundary ∂D. The classical Dirichlet problem consists in the determination of a harmonic function
Hf on D which can be continuously extended into ∂D by f . If ∂D is sufficiently smooth, the
Dirichlet solution Hf possesses an integral representation of the form

Hf (z) =
1

µ(∂D)

∫
∂D

PD(z, x)f(x)dµ(x),

where PD is the so-called Poisson kernel of D and µ is an adequate measure on ∂D (see [2,
Theorem 21,VI]). The Poisson kernel can be explicitly given only in some few cases. However, it
often may be worth to try to find an explicit connection between distinguished interior points z
and the boundary values f(x). In the case of a ball such a connection is given by the mean value
property of harmonic functions, when z is the centre of the ball. (Here, of course, the Poisson kernel
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is easily written down). Generally, it is reasonable to expect that whenever similar connections
exist, they always have to do with the geometric properties of the domain D.

In this work we study the domain class of prolate balls, that is, interiors of prolate ellipsoids
of revolution (the latter are also called “prolate spheroids”) in Rn (n ≥ 3). The two-dimensional
case of elliptic discs (i. e. interiors of ellipses) has been studied in the context of complex analysis
before. The Poisson kernel for such discs can be explicitly given in terms of an infinite series, which
takes a closed form under the use of the Jacobi zeta function ([3]). In the course of the derivation
of this Poisson kernel it is observed that there exists a purely elementary “mean value property”
connecting the boundary values of the harmonic function with those on the interfocal segment of
the ellipse. For the elliptic disc x2

a2 + y2

b2 ≤ 1 (a > b) with foci at (−c, 0) and (c, 0) (c =
√

a2 − b2)
and a harmonic function h on an open neighbourhood of it the property states (see [3]):

1
π

∫ c

−c

h(x, 0)√
c2 − x2

dx =
1
2π

∫ π

−π

h(a cos s, b sin s)ds .(1)

This property can be traced back at least up to the 1960’s.
The goal of this work is a generalization of (1) to higher dimensions. (This is achieved at equation

(11).) As already mentioned, we restrict ourselves to prolate ellipsoids of revolution, because they
still have well-defined foci. We are led to the result by imposing the Dirichlet boundary condition
on the generic solution of Laplace’s equation obtained by separation of variables.

2. The Mean Value Property

Let ER ⊆ Rn (n ≥ 3) be the normalized prolate ball

x2
1

cosh2 R
+

x2
2 + . . . + x2

n

sinh2 R
< 1
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with foci at (−1, 0, . . . , 0) and (1, 0, . . . , 0). A parametrization is given by the mapping

α : (r, s1, . . . , sn−1) 7→(cosh r cos s1, sinh r sin s1 cos s2, sinh r sin s1 sin s2 cos s3, . . . ,

sinh r sin s1 . . . sin sn−2 cos sn−1, sinh r sin s1 . . . sin sn−2 sin sn−1)

for r ∈ [0, R[, s1, . . . , sn−2 ∈ [0, π] and sn−1 ∈ ]− π, π]. The computation of the Laplacian in these
elliptic coordinates requires the coefficients of the metric tensor

g11 =
∣∣∣∣∂α

∂r

∣∣∣∣2 , g1j =
〈

∂α

∂r
,

∂α

∂sj−1

〉
, gij =

〈
∂α

∂si−1
,

∂α

∂sj−1

〉
for 2 ≤ i, j ≤ n. We compute: g11 = sinh2 r + sin2 s1 = g22; gkk = sinh2 r sin2 s1 . . . sin2 sk−2 for
3 ≤ k ≤ n; gij = 0 for i 6= j. The Laplacian of a function u is given by

∆u =
1√
ḡ

n∑
k=1

∂k

 n∑
j=1

gjk√ḡ ∂ju

 ,(2)

where gjk are the coefficients of the inverse matrix (here equal to g−1
jk δjk),ḡ = det(gij)i,j and ∂j

denotes the partial derivative with respect to the j-th coordinate. Thus,

∆u =
1√
ḡ

n∑
k=1

∂k

(
gkk√ḡ∂ku

)
= g11 ∂2u

∂r2
+

n∑
k=2

gkk ∂2u

∂s2
k−1

+
∂
∂r

(
g11√ḡ

)
√

ḡ
· ∂u

∂r
+

n∑
k=2

∂
∂sk−1

(
gkk√ḡ

)
√

ḡ
· ∂u

∂sk−1
.

For the mean value property it suffices to restrict ourselves to functions u which are invariant with
respect to rotations about the x1-axis. Such functions do not depend on s2, . . . , sn−1, so in this
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case we have

∆u = g11 ∂2u

∂r2
+ g22 ∂2u

∂s2
1

+
∂
∂r

(
g11√ḡ

)
√

ḡ
· ∂u

∂r
+

∂
∂s1

(
g22√ḡ

)
√

ḡ
· ∂

∂s1

=
1

sinh2 r + sin2 s1

(
∂2u

∂r2
+

∂2u

∂s2
1

)
+

(n− 2) coth r

sinh2 r + sin2 s1

· ∂u

∂r

+
(n− 2) cot s1

sinh2 r + sin2 s1

· ∂u

∂s1

after the computations, ḡ being equal to(
sinh2 r + sin2 s1

)2 (
sinh2 r sin2 s1

)n−2 (
sin2 s2

)n−3
. . .

(
sin2 sn−2

)1
.

Thus, the harmonic functions of r and s1 are characterized by the equation

∂2u

∂r2
+ (n− 2) coth r · ∂u

∂r
+

∂2u

∂s2
1

+ (n− 2) cot s1 ·
∂u

∂s1
= 0 .(3)

Now let f : ∂ER → R be a continuous function. First we assume that f is invariant with respect
to rotations about the x1-axis. For shortness we write f(s1) instead of f (α(R, s1, . . . , sn−1)). We
shall solve the Dirichlet problem for ER by separation of variables, so it is necessary to determine
all harmonic functions of the form u(r, s1) = U(r)V (s1). Equation (3) implies:

U ′′

U
+ (n− 2) coth r · U ′

U
= −V ′′

V
− (n− 2) cot s1 ·

V ′

V
=: λ ∈ R .(4)

After substituting x = 1−cos s1
2 = sin2 s1

2 , the second equation becomes

x(1− x)Ṽ ′′ +
[
n− 1

2
− (n− 1)x

]
Ṽ ′ + λṼ = 0 , Ṽ (x) = V (s1).(5)
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It can be shown that this equation has a bounded solution for 0 ≤ x ≤ 1 if and only if λ is of the
form k(k + n− 2) with k ∈ N∪ {0} (see [4], [5, p.11] or, for another way of solving, [1, Intro.3.1]).
Then, (5) becomes a hypergeometric differential equation

x(1− x)Ṽ ′′ + [c− (a + b + 1)x]Ṽ ′ − abṼ = 0

with a = −k, b = k + n− 2 and c = n−1
2 . The solution which is regular at x = 0 and takes there

the value 1 is given by the function

F (a, b; c;x) :=
∞∑

j=0

(a)j(b)j

(c)j
· xj

j!
,

where (η)0 := 1, (η)j+1 := (η)j(η + j) for j ∈ N∪{0}, the so-called Pochhammer symbol (classical
notations). Thus, (5) implies

Ṽ = Ṽk(x) = F

(
−k, k + n− 2;

n− 1
2

;x
)

.

For solutions of the second part of (4) we choose the functions

V = Vk(s1) := Ṽk

(
1− cos s1

2

)
·
(

k + n− 3
k

)
= C

n−2
2

k (cos s1) ,

where C
n−2

2
k is the so-called Gegenbauer (or “ultraspherical”) polynomial of degree k:

C
n−2

2
k (x) :=

(
k + n− 3

k

)
· F

(
−k, k + n− 2;

n− 1
2

;
1− x

2

)
.
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The first part of (4) being equal to λ = k(k + n − 2) leads after the substitution z = − sinh2 r
2 ,

Q(z) = U(r) to the hypergeometric differential equation

z(1− z)Q′′ +
[
n− 1

2
− (n− 1)z

]
Q′ + k(k + n− 2)Q = 0 ,(6)

the same one as in (5). For solutions we take the functions

Q = Qk(z) =
(

k + n− 3
k

)
F

(
−k, k + n− 2;

n− 1
2

; z
)

= C
n−2

2
k (1− 2z) ,

which lead to
U = Uk(r) = C

n−2
2

k (cosh r) .

For the functions

u = uk(r, s1) = Uk(r)Vk(s1) = C
n−2

2
k (cosh r)C

n−2
2

k (cos s1) , k ∈ N ∪ {0},
to be harmonic, it remains to show that they are everywhere smooth, since the parametrization α is
not diffeomorphic on the interfocal segment. To this end we recall that the Gegenbauer polynomial
C

n−2
2

k (x) has the parity of xk.1 Therefore, there are polynomials Pk and Qk such that

C
n−2

2
2k (cosh r)C

n−2
2

2k (cos s1) = Pk(cosh2 r)Pk(cos2 s1) ,

C
n−2

2
2k+1(cosh r)C

n−2
2

2k+1(cos s1) = cosh r cos s1 ·Qk(cosh2 r)Qk(cos2 s1) .

According to the fundamental theorem on symmetric polynomials, the right sides can be written
as polynomials in cosh r cos s1 and cosh2 r + cos2 s1. Since these expressions are recognized as the
smooth functions x1 and 1 + x2

1 + . . . + x2
n, everything is established.

1For the basic facts about Gegenbauer polynomials see for instance [7].
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The Dirichlet solution Hf is now assumed of the form

Hf (r, s1) =
∞∑

k=0

akC
n−2

2
k (cosh r)C

n−2
2

k (cos s1)(7)

(the left side is an abbreviation for Hf (α(r, s1, . . . , sn−1)). For r = R it should hold:

∞∑
k=0

akC
n−2

2
k (coshR)C

n−2
2

k (cos s1) = f(s1) .(8)

The Gegenbauer polynomials C
n−2

2
k (x) form an orthogonal system in

L2
(
[−1, 1] ; (1− x2)

n−3
2

)
. In fact,∫ 1

−1

C
n−2

2
k (x)C

n−2
2

l (x)(1− x2)
n−3

2 dx =
23−nπΓ(k + n− 2)

k!
(
k + n−2

2

)
Γ

(
n−2

2

)2 δkl(9)

([7, p. 179]). Since C
n−2

2
k has degree k, it follows from the approximation theorem of Weierstraß

that the system
(
C

n−2
2

k

)
k

is complete. For (8) being the Fourier expansion of f it must therefore
hold:

ak =
1

C
n−2

2
k (coshR)

·
k!

(
k + n−2

2

)
Γ

(
n−2

2

)2

23−nπΓ(k + n− 2)
·
∫ π

0

f(s1)C
n−2

2
k (cos s1) sinn−2 s1 ds1

for k ∈ N ∪ {0}. For the moment we assume that f is a polynomial in cos s1. In this case, only
finite number of the ak are nonzero and the right side of (7) is a finite sum which presents the
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solution to the Dirichlet problem for ER. From (7) and (9) it follows:∫ π

0

Hf (0, s1) sinn−2 s1ds1 = a0C
n−2

2
0 (1) · 23−nπΓ(n− 2)

n−2
2 Γ

(
n−2

2

)2 =
∫ π

0

f(s1) sinn−2 s1ds1

⇐⇒
∫ 1

−1

Hf (x, 0, . . . , 0)(1− x2)
n−3

2 dx =
∫ π

0

f(s1) sinn−2 s1ds1(10)

(the latter equation without the abbreviation in Hf ). If f is an arbitrary continuous bound-
ary function only depending on s1, then an approximation argument on the basis of Weierstraß’
approximation theorem and the maximum principle show that (10) still holds.

Next, we drop the assumption that f is rotationally invariant with respect to the x1-axis. We
denote by f̃ the “symmetrization” of f , that is,

f̃(x) :=
∫

SO(n−1)

f(Ax) dA for x ∈ ∂ER ,

where SO(n − 1) stands for the group of rotations about the x1-axis and dA for its normalized
Haar integral. Since rotations preserve harmonicity and because of the relation Hf ◦ A = Hf◦A
for A ∈ SO(n− 1), the function

z 7−→
∫

SO(n−1)

Hf (Az) dA

is harmonic and has boundary values equal to f̃ . Therefore,∫
SO(n−1)

Hf (Az) dA = Hf̃ (z) ,
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which implies that Hf (x, 0, . . . , 0) ≡ Hf̃ (x, 0, . . . , 0). Now (10) gives:

∫ 1

−1

Hf (x, 0, . . . , 0)(1− x2)
n−3

2 dx =
∫ π

0

f̃(s1) sinn−2 s1 ds1

=
∫ π

0

∫
SO(n−1)

f
(
A(coshR cos s1, sinhR sin s1, 0, . . . , 0)T

)
sinn−2 s1 dA ds1

=
1

Ωn−1

∫ π

0

. . .

∫ π

0

∫ 2π

0

f(coshR cos s1, sinhR sin s1 cos s2, . . . ,

sinhR sin s1 . . . sin sn−1) · sinn−2s1 sinn−3s2 . . . sin sn−2dsn−1dsn−2 . . .ds2ds1,

since the Haar integral induces the rotation invariant measure (= surface area measure) on the
sphere (Ωn−1 stands for the area of the unit sphere in Rn−1).

For an arbitrary prolate ball x2
1

a2 + x2
2+...+x2

n

b2 < 1 (a > b) with foci at (−c, 0, . . . , 0) and (c, 0, . . . , 0)
(c =

√
a2 − b2) the similarity x 7→ cx has to be employed. So, if h is a harmonic function on an

open neighbourhood of the closed prolate ball, it holds:

Γ
(

n
2

)
Γ

(
n−1

2

)√
πcn−2

∫ c

−c

h(x, 0, . . . , 0)(c2 − x2)
n−3

2 dx

=
Γ

(
n
2

)
2π

n
2

∫ π

0

. . .

∫ π

0

∫ 2π

0

h(a cos s1, b sin s1 cos s2, . . . , b sin s1 . . . sin sn−1)

sinn−2 s1 sinn−3 s2 . . . sin sn−2 dsn−1dsn−2 . . .ds1

(11)
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(the constants have been introduced according to Ωk = 2π
k
2

Γ( k
2 ) for each k and so that each side

equals one for h = 1). This equation generalizes (1) and presents the mean value property in all
dimensions.

It is important to find out the geometric meaning of the multiple integral on the right side of
(11). Let E denote the above prolate ball. The vector(x1

a2
,
x2

b2
, . . . ,

xn

b2

)
is orthogonal to the boundary ellipsoid at its point (x1, . . . , xn). Thus, the distance from the centre
to the tangent plane at (x1, . . . , xn) is equal to

x2
1

a2
+

x2
2 + . . . + x2

n

b2√
x2

1

a4
+

x2
2 + . . . + x2

n

b4

=
1√

x2
1

a4
+

1
b2

(
1− x2

1

a2

) =
1√

1
b2
− c2x2

1

a4b2

=
b√

1− c2x2
1

a4

=
b√

1− c2 cos2 s1

a2

=
ab√

b2 + c2 sin2 s1

.

The surface element of ∂E is given by√
b2 + c2 sin2 s1 bn−2 sinn−2 s1 sinn−3 s2 . . . sin sn−2 ds1 . . .dsn−1
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(in the normalized situation at the beginning of this section it is equal to det (gij)
1/2
2≤i,j≤n ds1 . . .

. . .dsn−1). Therefore, the integral on ∂E that measures the volume to the centre is given by
1
n

abn−1 sinn−2 s1 sinn−3 s2 . . . sin sn−2 ds1 . . .dsn−1

for s1, . . . , sn−2 ∈ [0, π] and sn−1 ∈ [−π, π]. Up to a constant factor, this is exactly the integral in
(11). The same observation can be made in the two-dimensional case (1), where the integral ds is
proportional to the area that the segment from the origin to the point (a cos s, b sin s) traces. Is
this phenomenon the key to discover mean value properties for other centrally symmetric domains?
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