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SOLVABLE LIE ALGEBRAS
AND MAXIMAL ABELIAN DIMENSIONS

Á. F. TENORIO

Abstract. In this paper some results on the structure of finite-dimensional Lie

algebras are obtained by means of the concept of maximal abelian dimension. More

concretely, a sufficient condition is given for the solvability in finite-dimensional Lie
algebras by using maximal abelian dimensions. Besides, a necessary condition for

the nilpotency is also stated for such Lie algebras. Finally, the maximal abelian

dimension is applied to characterize the n-dimensional nilpotent Lie algebras with
maximal abelian dimension equal to their codimension.

1. Introduction

Given a finite-dimensional Lie algebra g over the complex number field C, several
Lie subalgebras can be found in it. In this paper, we are interested in know-
ing how many abelian Lie subalgebras are contained in g. As there is a unique
non-isomorphic abelian algebra in each dimension, the number of non-isomorphic
abelian subalgebras in g can be computed starting from the maximum among the
dimensions of the abelian subalgebras in g. This maximum is called the maximal
abelian dimension of the Lie algebra g.

Our main goal in this paper is to prove some general results on the structure of
the Lie algebras whose maximal abelian dimension is the codimension of the Lie
algebra. More concretely, we are going to study some conditions on the solvability
and the nilpotency of these Lie algebras.

This paper extends other earlier papers in which the maximal abelian dimen-
sion of the nilpotent Lie algebras gn, formed by n × n strictly upper triangular
matrices, were studied (see [1, 2]). In those papers, an algorithm was constructed
to find abelian Lie subalgebras in gn up to a certain dimension which could not be
improved by using that algorithm. Then the authors proved that the dimension
of the obtained abelian Lie subalgebra was the maximal one and they called the
maximal abelian dimension of gn to that value.

After this introduction, the structure of this paper is the following: in Section 2
we remind the definitions and results on solvable and nilpotent Lie algebras used
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later in the paper. The concept of maximal abelian dimension is also explained
in this section. In the last section, we state and prove some general results which
relate the structure of a Lie algebra to its maximal abelian dimension.

2. Solvable and Nilpotent Lie Algebras

For a general overview on Lie algebras, the reader can consult [5], for instance.
We will consider several classes of Lie algebras over the complex number field C
in this paper: solvable, nilpotent and filiform Lie algebras.

Given a Lie algebra g, its lower central series is given by:

C1(g) = g, C2(g) = [g, g], C3(g) = [C2(g), g], . . . , Ck(g) = [Ck−1(g), g], . . .

and its commutator central series, by:

C1(g) = g, C2(g) = [g, g], C3(g) = [C2(g), C2(g)], . . . , Ck(g) = [Ck−1(g), Ck−1(g)], . . .

The Lie algebra g is called nilpotent if there exists a natural number m such
that Cm(g) ≡ 0. Analogously, the Lie algebra g is said to be solvable if there exists
a natural number m such that Cm(g) ≡ 0.

The third class of Lie algebras considered in this paper is a particular subclass of
nilpotent Lie algebras: filiform Lie algebras. An n-dimensional filiform Lie algebra
is an n-dimensional nilpotent Lie algebra g such that the dimensions of the ideals
C2(g), . . . , Ck(g), . . . , Cn(g) are, respectively, n− 2, . . . , n− k, . . . , 0.

For each dimension, there exists a particular filiform Lie algebra which is called
the model filiform Lie algebra and whose law is the following:

[e1, e2] = 0; [e1, ej ] = ej−1, j = 3, . . . , n.

The main properties of nilpotent Lie algebras and filiform ones can be checked
in [3] and [6], respectively.

Given a finite dimensional complex Lie algebra g, its maximal abelian dimension
is the maximum among the dimensions of all the abelian Lie subalgebras of g. This
natural number is denoted by M(g). This definition generalizes the one given in
[2] for a particular class of nilpotent Lie algebras.

As every Lie algebra g contains abelian Lie subalgebras, we ask ourselves what
is the largest dimension of such subalgebras. This is equivalent to determine how
many non-isomorphic abelian Lie algebras are contained in g, since there exists
only one non-isomorphic abelian Lie algebra in each dimension.

An abelian Lie subalgebra of g is said to be maximal if the dimension of this
subalgebra is equal to the maximal abelian dimension of g.

3. General Results

First, a sufficient condition is given for the solvability of a finite-dimensional com-
plex Lie algebra starting from its maximal abelian dimension.

Proposition 3.1. Given an n-dimensional complex Lie algebra g with maximal
abelian dimension M(g) = n− 1, the Lie algebra g is solvable.
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Proof. Let g be an n-dimensional complex Lie algebra such that M(g) = n−1.
Let h be a maximal abelian subalgebra of dimension n− 1. If g = s⊕ r is the Levi
decomposition of g, then s ∩ h is a subspace of dimension dim(s) − 1 or dim(s).
This subspace is an abelian subalgebra of s. As s is semi-simple, this is impossible.
Then s = {0} and g = r. This shows that g is solvable. �

The next proposition gives a necessary condition for the nilpotency in Lie alge-
bras under the same hypotheses of Proposition 3.1. The condition can be expressed
as follows:

Proposition 3.2. Let g be an n-dimensional complex nilpotent Lie algebra
satisfying M(g) = n − 1. Then g is a one-dimensional extension by derivation
of an (n − 1)-dimensional abelian Lie subalgebra a. In particular, the derived
subalgebra D(g) is contained in a and it is abelian.

Proof. Let g be nilpotent and let h be an abelian subalgebra of dimension n−1.
If {e1, e2, · · · , en} is a basis of g such that {e2, · · · , en} is a basis of h, we have:

[e1, ei] = λie1 +
n∑

j=2

aj
iej ,

where λi ∈ C and aj
i ∈ C, for i, j = 2, . . . , n. Then, as h is abelian, it holds

(ad ei)p(e1) = −λp
i e1 − λi

 n∑
j=2

aj
iej

 , ∀p ∈ N.

As ad ei is a nilpotent operator, λi = 0 for i = 2, . . . , n and, therefore, ad e1 is
an endomorphism of h. In consequence, the operator ad e1 is a derivation of the
abelian Lie algebra h and the derived subalgebra D(g) is contained in h. �

Note that the reciprocal of Proposition 3.2 is false as can be seen in the following:

Example 3.3. Let g be the 2-dimensional complex Lie algebra whose law is
given by the bracket [e1, e2] = e2. This Lie algebra is solvable since C3(g) ≡ 0;
but it is not nilpotent since Ck(g) ≡ 〈e2〉, for all k ∈ N \ {1}. However, a maximal
abelian subalgebra is 〈e2〉 and, hence, it is satisfied D(g) = 〈e2〉.

Proposition 3.2 can be used to determine whether the maximal abelian dimen-
sion of an n-dimensional complex nilpotent Lie algebra is equal to n− 1 or not.

Example 3.4. Let g be the 6-dimensional complex nilpotent Lie algebra defined
by the following brackets:

[e1, e6] = e5, [e1, e5] = e4, [e1, e4] = e3, [e1, e3] = e2;
[e4, e5] = e2, [e4, e6] = e3, [e5, e6] = e4.

Since the derived algebra D(g) = 〈e2, e3, e4, e5〉 is not abelian, the maximal
abelian dimension M(g) is not equal to 5. Indeed, M(g) ≤ 4.
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We conclude this section giving a sufficient and necessary condition for nilpotent
Lie algebras satisfying M(g) = codim(g). This result allows us to classify the full
class of nilpotent Lie algebras with that property.

Theorem 3.5. Let g be an n-dimensional complex nilpotent Lie algebra satis-
fying M(g) = n− 1. Then there exists an ordered sequence (s1, . . . , sp) such that
g is isomorphic to the Lie algebra gs1,...,sp

defined by the following law:
[Y, X1

i ] = X1
i+1, with i = 1, . . . , s1 − 1, [Y, X1

s1
] = 0

[Y, X2
i ] = X2

i+1, with i = 1, . . . , s2 − 1, [Y, X2
s2

] = 0

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
[Y, Xp

i ] = Xp
i+1, with i = 1, . . . , sp − 1, [Y, Xp

sp
] = 0

Proof. As g is an n-dimensional complex nilpotent Lie algebra such thatM(g) =
n − 1, then g is an extension by derivation of an (n − 1)-dimensional abelian Lie
algebra h in virtue of Proposition 3.2. Since any derivation of h is given by an
endomorphism of h, the one-dimensional extensions of h are classified by the char-
acteristic sequence of nilpotent endomorphisms. Recall that the characteristic
sequence is the ordered sequence of the dimensions of Jordan blocks. If such a
sequence is denoted by (s1, . . . , sp), the corresponding one-dimensional extension
by derivation of h is the Lie algebra gs1,...,sp

. �

As an immediate application of Theorem 3.5, we can prove that the model fili-
form Lie algebras are those filiform Lie algebras whose maximal abelian dimension
is the largest one among the filiform Lie algebras of a fixed dimension. Indeed,
they are the only filiform ones satisfying M(g) = codim(g).

Corollary 3.6. Let g be an n-dimensional complex filiform Lie algebra satis-
fying M(g) = n− 1. Then g is isomorphic to the filiform model Lie algebra.

Proof. If g is filiform, then we have the ordered sequence (s1, . . . , sp) = (n− 1)
and, in virtue of Theorem 3.5, g is isomorphic to the Lie algebra gn−1, which is
precisely the n-dimensional model filiform Lie algebra. �

Filiform Lie algebras do not usually appear expressed with respect to an adapted
basis. Then it is not trivial to set if such algebras are isomorphic to the model one
or not.

Example 3.7. Let g be the 5-dimensional complex Lie algebra defined by the
following brackets:

[e1, e2] = −[e1, e4] = −[e2, e3] = −[e3, e4] = 1/2 · (e3 − e1);
[e1, e5] = [e3, e5] = 1/2 · (e4 − e2); [e1, e3] = −(e2 + e4).

By computing its lower central series, we can prove that this Lie algebra is
filiform. But it is not possible to answer whether it is the model one or not. To
assert that this algebra as the model filiform one in dimension 5, we prove that
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M(g) = 4. But this is true because the following 4-dimensional subalgebra is
abelian:

〈e1 − e3, e2 + e4, e2 − e4, e5〉.

Proposition 3.2 and Corollary 3.6 can be also used to prove that a given n-
dimensional filiform Lie algebra is not the model one in that dimension as can be
seen in the following:

Example 3.8. Let g be the 6-dimensional complex Lie algebra considered in
Example 3.4. In that example, we have proved that the maximal abelian dimension
M(g) is less than 5 in virtue of Proposition 3.2.

By computing the lower central series of g, we can prove that this algebra is
filiform. According to Corollary 3.6, g cannot be the 6-dimensional model filiform
Lie algebra.
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