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ON SOME ORDINARY AND FUZZY HOMOGENITY TYPES

S. AL GHOUR and K. AL-ZOUBI

Abstract. Finite SLH topological spaces are characterized as partition topological spaces. As a con-

sequence, two partial answers for a question raised in [3] are obtained. Closed-homogeneous topological
spaces are characterized. Having a minimal open set is proved to be a sufficient condition for a homo-
geneous topological space to be closed-homogeneous. Closed-homogeneity is extended to include fuzzy
topological spaces as a “good extension” according to Lowen’s sense of closed-homogeneity in ordinary
topological spaces. It is proved that homogeneity and closed-homogeneity in fuzzy topological spaces
are equivalent under some conditions. Various open questions are also given.

1. Introduction

Throughout this paper, we follow the notions and terminologies of [7]. Let X be a nonempty set,
A be a nonempty subset of X, λ be a fuzzy set in X, and (X, τ), (X,=) be two ordinary and fuzzy
topological spaces, respectively. We denote the relative topology on A by τA, the discrete topology
on X by τdisc, the group of all homeomorphisms from (X, τ) into itself by H(X, τ), and the group
of all fuzzy homeomorphisms from (X,=) into itself by FH(X,=). A fuzzy set p defined by

p(x) =
{

t if x = xp

0 if x 6= xp
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where 0 < t < 1 is called a fuzzy point in X, xp ∈ X is called the support of p and p(xp) = t the
value (level) of p [12]. Two fuzzy points p and q in X are said to be distinct iff their supports are
distinct, i.e., xp 6= xq. For a bijection h : X → Y and any fuzzy points p, q of X and Y respectively,
it is easy to see that h(p) = q iff p(xp) = q(xq) and h(xp) = xq.

Definition 1.1 ([11]). Associated with a given fuzzy topological space (X,=) and arbitrary
ordinary subset M of X, we define the induced topology on M or the relative topology on M by:

=M =
{
λ|M : λ ∈ =

}
The corresponding pair (M,=M ) is called a fuzzy open (closed) subspace iff the fuzzy set χM is

fuzzy open (closed) in (X,=).

Definition 1.2 ([4]). Let (X, τ) be a topological space and let τ̃ be the equivalence relation
on X defined by x τ̃ y if there exists h ∈ H(X, τ) such that h(x) = y. Then the equivalence class
Cτ

x = {y ∈ X : x τ̃y} is called the homogeneous component of (X, τ) determined by x.

It is known that homogeneous components are invariant under homeomorphisms.

Definition 1.3 ([8]). Let (X, τ) be a topological space and let β be a base for τ . Then we say
that β is a representable base for τ if for any nonempty U ∈ β and for any x, y ∈ U , there exists
h ∈ H(X, τ) such that h(x) = y and h(t) = t for all t ∈ X − U . A topological space (X, τ) is SLH
(strongly locally homogeneous) if it has a representable base.

Definition 1.4 ([6]). A topological space (X, τ) is called LH (locally homogeneous) at x in
X provided that there exists an open set U in X containing x such that for any y ∈ U there is
h ∈ H(X, τ) such that h(x) = y. A topological space (X, τ) is called LH if it is LH at each x ∈ X.

Definition 1.5 ([13]). Let (X,=) be a fuzzy topological space. A family β of fuzzy open sets
is called a base for = if each nonzero member of = can be written as a union of members of β.
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Definition 1.6 ([3]). Let (X,=) be a fuzzy topological space and let β be a base for =. Then
we say that β is a representable base for = if for any nonzero λ ∈ β and for any x, y ∈ S(λ), there
exists h ∈ FH(X,=) such that h(x) = y and h(t) = t for all t /∈ S(λ).

Definition 1.7 ([3]). A fuzzy topological space (X,=) is said to be SLH (strongly locally
homogeneous) if = has a representable base.

Definition 1.8 ([6]). A topological space (X, τ) is called closed-homogeneous provided that
for any x, y in X and for any K closed subset of X − {x, y} there exists h ∈ H(X, τ) such that
h(x) = y and h(t) = t for all t ∈ K.

Definition 1.9 ([10]). Let (X, τ) be a topological space. A nonempty open set A of X is called
a minimal open set in X if any open set in X which is contained in A is ∅ or A, i.e., τA is the
indiscrete topology on A.

It is known that the homeomorphic image of a minimal open set is a minimal open set.
Mathematicians extended many notions of general topology to the fuzzy set theory. Some of

these notions are separation and countability axioms, compactness, connectedness, paracompact-
ness, metric space. Recently some homogeneity types have been extended to include fuzzy topo-
logical spaces. In [1], the author extended homogeneity, n-homogeneity, weakly n-homogeneity,
countable dense homogeneity, densely homogeneity and strong local homogeneity as known ordi-
nary topological concepts to include fuzzy topological spaces. Results concerning homogeneity,
n-homogeneity and weakly n-homogeneity appeared in [7], in which the authors introduced some
open questions, Al Ghour in [2] solved two of them. The results in [1] concerning homogeneous
components and strong local homogeneity appeared in [3].

In this paper, we characterize finite SLH topological spaces, which will be useful to introduce
two partial answers for the question which raised in [3], and we extend closed-homogeneity to
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include fuzzy topological spaces as a “good extension” for closed-homogeneity in ordinary topo-
logical spaces. Closed-homogeneity in both ordinary and fuzzy topological spaces will be charac-
terized. We give a sufficient condition for homogeneous ordinary topological spaces to be closed-
homogeneous. Finally, in one of the main results, we provide conditions to insure that homogeneity
implies closed-homogeneity in the fuzzy case.

The following lemmas will be needed in the sequel.
Lemma 1.1 ([10]). Let (X, τ) be a topological space and let A be a minimal open set in X.

Then

A =
⋂
{O : O is open in X with x ∈ O}

for any element x of A.
Lemma 1.2 ([9]). Let (X, τ) be a topological space and let f : (X, τ) → (X, τ) be a function.

Then the following are equivalent.
(i) f : (X, τ) → (X, τ) is continuous.
(ii) f : (X, ω(τ)) → (X, ω(τ)) is fuzzy continuous.
Lemma 1.3 ([6]). Every closed-homogeneous topological space is SLH, but not conversely.
Lemma 1.4 ([6]). Every closed-homogeneous topological space is homogeneous, but not con-

versely.
Lemma 1.5 ([3]). The SLH property in fuzzy topological spaces is a “good extension” of SLH

property in ordinary topological spaces.
Lemma 1.6 ([7]). The homogeneity property in fuzzy topological spaces is a “good extension”

of homogeneity property in ordinary topological spaces.
Lemma 1.7 ([5]). Let (X, τ) be a topological space which contains a minimal open set. Then

the following are equivalent.
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(i) (X, τ) is a homogeneous topological space.
(ii) (X, τ) has a partition base consisting of minimal open sets all of which is homeomorphic to

one another.

The following result follows easily.

Lemma 1.8. Let (X,=) be a fuzzy topological space. Then for each a ∈ [0, 1), FH(X,=) ⊆
H(X,=a).

2. Finite SLH ordinary and fuzzy topological spaces

Let (X, τ) be a topological space. Denote by m(X, τ) the set of all minimal open subsets of (X, τ).
For each x ∈ X, denote the intersection of all open sets in X containing x, by Ux i.e.,

Ux =
⋂
{O : O is open in X with x ∈ O}

Theorem 2.1. Let (X, τ) be a topological space and x ∈ X. Then the following are equivalent.

(i) Ux ∈ m(X, τ).
(ii) Ux ⊆ Cτ

x and Cτ
x is a union of minimal open sets of (X, τ) all of which are homeomorphic

to one another.

Proof. (i) =⇒(ii) Suppose that Ux ∈ m(X, τ). To see that Ux ⊆ Cτ
x , let y ∈ Ux and f : (X, τ) →

(X, τ) defined by f(x) = y, f(y) = x, and f(t) = t elsewhere. Let V ∈ τ . Then by Lemma 1.1, it
follows that either {x, y} ⊆ V or {x, y} ∩ V = ∅. Therefore, f(V ) = V and f−1(V ) = V . Hence
f is continuous and open. Since f is clearly bijective, it follows that f ∈ H(X, τ). Thus y ∈ Cτ

x

and hence Ux ⊆ Cτ
x . To complete the proof of this implication, let y ∈ Cτ

x , then there exists
f ∈ H(X, τ) such that f(x) = y and so y ∈ f(Ux) ⊆ f(Cτ

x ) = Cτ
x . Since f(Ux) ∈ m(X, τ) and

Ux
∼= f(Ux), the proof of this implication is completed.
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(ii) =⇒(i) Since Cτ
x is a union of minimal open sets of (X, τ), there exists A ∈ m(X, τ) such

that x ∈ A. Therefore by Lemma 1.1, it follows that A = Ux and hence Ux ∈ m(X, τ). �

Corollary 2.1. Let (X, τ) be a topological space. If for some x ∈ X, Ux ∈ m(X, τ) then (X, τ)
is LH at x.

Lemma 2.1. Let (X, τ) be a topological space such that |τ | < ∞. Then for any nonempty
U ∈ τ , there exists a minimal open set contained in U .

Proof. If possible, choose A1 ∈ τ − {∅} such that A1 ⊂ U , otherwise, U ∈ m(X, τ). Since
|τ | < ∞, inductively, we can find a sequence An ⊂ An−1 ⊂ · · · ⊂ A1 ⊂ U such that Ai ∈ τ − {∅}
for i = 1, 2, . . . , n and there is no A ∈ τ −{∅} such that A ⊂ An. Therefore, An is a minimal open
set contained in U . �

Theorem 2.2. Let (X, τ) be an LH topological space at x for which |τ | < ∞. Then Ux ∈
m(X, τ).

Proof. Since |τ | < ∞, then Ux ∈ τ . Since (X, τ) is LH at x, there exists an open set U in X
such that x ∈ U ⊆ Cτ

x , hence Ux ⊆ Cτ
x . Now by Lemma 2.1, there exists A ∈ m(X, τ) such that

A ⊆ Ux. Choose y ∈ A, then y ∈ Cτ
x and hence there exists h ∈ H(X, τ) such that h(y) = x.

Therefore, x ∈ h(A) and hence Ux ⊆ h(A). But h(A) ∈ m(X, τ), thus, Ux = h(A) ∈ m(X, τ). �

Recall that a topological space (X, τ) is called a partition topological space if it has a partition
base.

Theorem 2.3. Let (X, τ) be a topological space such that |τ | < ∞. Then the following are
equivalent.

(i) (X, τ) is SLH.
(ii) (X, τ) is LH.
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(iii) For every x ∈ X, Ux ∈ m(X, τ).
(iv) (X, τ) is a partition topological space.

Proof. (i) =⇒(ii) Obvious.
(ii) =⇒ (iii) Theorem 2.2.
(iii) =⇒(iv) By (iii), it follows that there exists a subset X1 ⊆ X such that β = {Ux : x ∈ X1}

is a partition on X. It is not difficult to see that β is a base for τ .
(iv) =⇒(i) Let β be a partition base for τ . To see that β is representable, let B ∈ β and let

x, y ∈ B. Define h : (X, τ) → (X, τ) by h(x) = y, h(y) = x, and h(t) = t elsewhere. Then
h ∈ H(X, τ), h(x) = y, and h(t) = t for every t ∈ X −B. Therefore, β is a representable base for
τ and hence (X, τ) is SLH. �

Corollary 2.2. Let (X, τ) be a topological space such that |X| < ∞. Then the following are
equivalent.

(i) (X, τ) is SLH.
(ii) (X, τ) is LH.
(iii) For every x ∈ X, Ux ∈ m(X, τ)
(iv) (X, τ) is a partition topological space.

The following two Lemmas are useful in the proof of our next main result.

Lemma 2.2. Let (X,=) be a fuzzy topological space and let β be a base for =. Then for each
a ∈ [0, 1), βa =

{
λ−1 (a, 1] : λ ∈ β

}
is a base for =a.

Proof. Let ∅ 6= U ∈ =a and let x ∈ U . Choose λ ∈ = such that U = λ−1 (a, 1]. Then λ(x) > a.
Consider the fuzzy point p with support xp = x and level p(xp) = (a+λ(x))/2. Then p ∈ λ. Since
β is a base for =, then there exists µ ∈ β such that p ∈ µ ⊆ λ. Therefore, we have µ−1 (a, 1] ∈ βa

and x ∈ µ−1 (a, 1] ⊆ λ−1 (a, 1]. Hence, βa is a base for =a. �
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Lemma 2.3. Let (X, τ) be a topological space and let β be a base for τ . If for some x ∈ X,
Ux ∈ τ then Ux ∈ β.

Proof. Since β is a base for τ and x ∈ Ux ∈ τ , there exists B ∈ β such that x ∈ B ⊆ Ux.
Therefore, by the definition of Ux we must have B = Ux. �

Theorem 2.4. Let (X,=) be an SLH fuzzy topological space. If for some a ∈ [0, 1), |=a| < ∞
then (X,=a) is SLH.

Proof. For each x ∈ X, let

Ux =
⋂
{O : O ∈ =a and x ∈ O} .

Then by Theorem 2.3, it is sufficient to show that Ux ∈ m(X,=a) for each x ∈ X. Let x ∈ X.
Since |=a| < ∞ then Ux ∈ =a. Thus by Lemma 2.1, it follows that there exists A ∈ m(X,=a)
such that A ⊆ Ux. Let β be a representable base for =, then by Lemma 2.2, it follows that
βa =

{
λ−1 (a, 1] : λ ∈ β

}
is a base for =a. Since Ux ∈ =a, then by Lemma 2.3, it follows that

there exists λ ∈ β such that Ux = λ−1 (a, 1]. Choose y ∈ A, then x, y ∈ S(λ) and so there exists
h ∈ FH(X,=) such that h(y) = x. Now by Lemma 1.8, we have h ∈ H(X,=a). Since x ∈ h(A)
and h(A) ∈ m(X,=a), it follows that Ux = h(A). Thus, Ux ∈ m(X,=a). �

Corollary 2.3. Let (X,=) be an SLH fuzzy topological space for which |X| < ∞ or |=| < ∞.
Then for every a ∈ [0, 1), (X,=a) is SLH.

Corollary 2.3 gives two partial answers to the following question, which raised by Al Ghour [3].

Question 2.1. Let X be a set with |X| > 2 and let (X,=) be an SLH fuzzy space. Is it true
that (X,=a) is SLH for all a ∈ [0, 1)?

This will leads us to propose the following question.
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Question 2.2. Let (X,=) be an SLH fuzzy topological space such that both X and = are infinite
sets. Is it true that (X,=a) is SLH for all a ∈ [0, 1)?

3. Closed homogeneous fuzzy topological spaces

We start this section by the following proposition which characterizes the closed-homogeneous
topological spaces.

Proposition 3.1. Let (X, τ) be a topological space. Then the following are equivalent.
(i) (X, τ) is closed-homogeneous.
(ii) τ is a representable base for τ .
(iii) Every base for τ is representable.

Proof. (i) =⇒(ii) Suppose that (X, τ) is a closed-homogeneous topological space. It is clear that
τ is a base for τ . To see that τ is representable, let ∅ 6= U ∈ τ and let x, y ∈ U . Let K = X − U .
Then K is a closed subset of X − {x, y}, hence there exists h ∈ H(X, τ) such that h(x) = y and
h(t) = t for all t ∈ K = X − U . Therefore, τ is a representable base for τ .

(ii) =⇒(iii) Obvious.
(iii) =⇒(ii) The proof of this direction is similar to that used in (i) =⇒(ii). �

Definition 3.1. A fuzzy topological space (X,=) is called closed-homogeneous provided that
for any x, y in X and for any C closed subset of (X,=0) with C ⊆ X − {x, y}, there exists
h ∈ FH(X,=) such that h(x) = y and h(t) = t for all t ∈ C.

Theorem 3.1. Let (X,=) be a fuzzy topological space. Then the following are equivalent.
(i) (X,=) is closed-homogeneous.
(ii) = is a representable base for =.
(iii) Every base for = is representable.
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(iv) For any non zero λ ∈ = and any two fuzzy points p, q ∈ λ with p(xp) = q(xq), there exists
h ∈ FH(X,=) such that h(p) = q and h(t) = t for all t ∈ X − S(λ).

Proof. (i) =⇒(ii) Suppose that (X,=) is a closed-homogeneous fuzzy topological space. It is
obvious that = is a base for =. To show that = is representable, let 0 6= λ ∈ = and x, y ∈ S(λ).
Since S(λ) ∈ =0, then C = X − S(λ) is a closed subset of (X,=0) and C ⊆ X − {x, y}. Since
(X,=) is closed-homogeneous, it follows that there exists h ∈ FH(X,=) such that h(x) = y and
h(t) = t for all t ∈ C = X − S(λ). Therefore, = is a representable base for =.

(ii) =⇒(iii) Obvious.
(iii) =⇒(iv) Similar to that used in [3, Theorem 3.4].
(iv) =⇒(i) Let C be any closed subset of (X,=0) with C ⊆ X − {x, y}. Then X − C is open

in (X,=0) and so there exists λ ∈ = such that X − C = S(λ). Let p, q be the fuzzy points such
that xp = x, xq = y and p(xp) = q(xq) = min {λ(x), λ(y)} /2. Then p, q ∈ λ and so by (iv), it
follows that there exists h ∈ FH(X,=) such that h(p) = q and h(t) = t for all t ∈ X − S(λ) = C.
Therefore, h(x) = y. Hence, (X,=) is closed-homogeneous. �

Corollary 3.1. Every closed-homogeneous fuzzy topological space is SLH.
Corollary 3.2. Every closed-homogeneous fuzzy topological space is homogeneous.

Proof. Let (X,=) be a closed-homogeneous fuzzy topological space and let x, y ∈ X. Since
x, y ∈ S(1) and by Theorem 3.1 = is representable, it follows that there exists h ∈ FH(X,=) such
that h(x) = y. Hence (X,=) is homogeneous. �

Theorem 3.2. Let (X, τ) be a topological space. Then (X, τ) is closed-homogeneous iff (X, ω(τ))
is closed-homogeneous.

Proof. Suppose that (X, τ) is a closed-homogeneous topological space. Let 0 6= λ ∈ ω(τ) and
x, y ∈ S(λ). Since S(λ) ∈ τ , then by Proposition 3.1, it follows that there exists h ∈ H(X, τ)
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such that h(x) = y and h(t) = t for all t ∈ X − S(λ). Using Lemma 1.2 we conclude that
h ∈ FH(X, ω(τ)). Therefore, by Theorem 3.1, it follows that (X, ω(τ)) is closed-homogeneous.
Conversely, suppose that (X, ω(τ)) is a closed-homogeneous fuzzy topological space, and ∅ 6= U ∈
τ , then χU ∈ ω(τ). Since (X, ω(τ)) is closed-homogeneous and x, y ∈ S(χU ) = U , then by
Theorem 3.1, it follows that there exists h ∈ FH(X, ω(τ)) such h(x) = y and h(t) = t for all
t ∈ X − U . Again, by Lemma 1.2 we conclude that h ∈ H(X, τ). Now, Proposition 3.1 completes
the proof of this direction. �

Corollary 3.3. The closed-homogeneity property in fuzzy topological spaces is a “good exten-
sion” of closed homogeneity property in ordinary topological spaces.

Remark 3.1. Lemmas 1.3, 1.6, and Corollary 3.3 show that the converse of Corollary 3.1 is
not true in general.

Question 3.1. Is there a sufficient condition for which SLH fuzzy topological spaces are closed-
homogeneous?

Question 3.2. Is there a sufficient condition for which SLH topological spaces are closed-
homogeneous?

Remark 3.2. Lemmas 1.4, 1.6, and Corollary 3.3 show that the converse of Corollary 3.2 is
not true in general.

Question 3.3. Is there a sufficient condition for which homogeneous fuzzy topological spaces
are closed-homogeneous?

Question 3.4. Is there a sufficient condition for which homogeneous topological spaces are
closed-homogeneous?

Concerning Question 3.4, the author in [6] has the following result.

Proposition 3.2. Every zero-dimensional homogeneous space that is T0 is a closed-homogeneous.
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The following theorem gives another answer to Question 3.4.

Theorem 3.3. Let (X, τ) be a topological space which contains a minimal open set. Then the
following are equivalent.

(i) (X, τ) is closed-homogeneous.
(ii) (X, τ) is homogeneous.

Proof. (i) =⇒(ii) Corollary 3.2.
(ii) =⇒(i) Suppose that (X, τ) is a homogeneous topological space which contains a minimal

open set. Then by Lemma 1.7, it follows that (X, τ) has a partition base β consisting of minimal
open sets all of which are homeomorphic to one another. Let ∅ 6= U ∈ τ and x, y ∈ U , then
there exist B1, B2 ∈ β such that x ∈ B1 ⊆ U and y ∈ B2 ⊆ U . If B1 = B2, we define h :
(X, τ) → (X, τ) by h(x) = y, h(y) = x, and h(t) = t elsewhere to be the required homeomorphism.
If B1 ∩ B2 = ∅, choose a homeomorphism f : (B1, τB1) → (B2, τB2). Let z = f(x) and define
g : (B2, τB2) → (B2, τB2) by g(y) = z, g(z) = y, and g(t) = t elsewhere. Then g ∈ H(B2, τB2).
Define h : (X, τ) → (X, τ) by

h(t) =

 (g ◦ f)(t) if t ∈ B1

(g ◦ f)−1(t) if t ∈ B2

t if t ∈ X − (B1 ∪B2)

Then h ∈ H(X, τ), h(x) = y, and h(t) = t for all t ∈ X − U . Therefore, by Proposition 3.1, it
follows that (X, τ) is closed-homogeneous. �

The following result is a direct consequence of Lemma 2.1 and Theorem 3.3.

Corollary 3.4. Let (X, τ) be a topological space such that |τ | < ∞. Then the following are
equivalent.

(i) (X, τ) is closed-homogeneous.
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(ii) (X, τ) is homogeneous.

Corollary 3.5. Let (X, τ) be a topological space such that |X| < ∞. Then the following are
equivalent.

(i) (X, τ) is closed-homogeneous.
(ii) (X, τ) is homogeneous.

Theorem 3.4. Let (X,=) be a closed-homogeneous fuzzy topological space. If for some a ∈
[0, 1), |=a| < ∞ then (X,=a) is closed-homogeneous.

Proof. Since (X,=) is closed-homogeneous, then by Corollary 3.2, (X,=) is homogeneous, hence
by Lemma 1.8, it follows that (X,=a) is homogeneous. Since |=a| < ∞, then by Corollary 3.4 it
follows that (X,=a) is a closed-homogeneous. �

Corollary 3.6. Let (X,=) be a closed-homogeneous fuzzy topological space for which |X| < ∞
or |=| < ∞. Then for every a ∈ [0, 1), (X,=a) is closed-homogeneous.

Question 3.5. Let (X,=) be a closed-homogeneous fuzzy topological space with both X and
= are infinite sets. Is it true that (X,=a) is closed-homogeneous for all a ∈ [0, 1)?

One may raise the following question.
Suppose (X,=) is a fuzzy topological space such that for every a ∈ [0, 1), (X,=a) is closed-

homogeneous. Is it true that (X,=) is closed-homogeneous?
The following is a counter example for the above question.

Example 3.1. Let X = {a, b} and let = = {0, 1, λ1, λ2, λ3, λ4, 0.5} where

λ1(a) = 0.5, λ1(b) = 1,
λ2(a) = 1, λ2(b) = 0.5,
λ3(a) = 0.7, λ3(b) = 0.5,
λ4(a) = 0.7, λ4(b) = 1,

then = is a fuzzy topology on X, =a = {∅, X} if 0 ≤ a < 0.5 and =a = τdisc if a ≥ 0.5. Therefore,
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for each a ∈ [0, 1), (X,=a) is a closed-homogeneous. Now if (X,=) is closed-homogeneous, then
there exists h ∈ FH(X,=) such that h(a) = b, but (h(λ3))(a) = 0.5 and (h(λ3))(b) = 0.7 which
show that h(λ3) /∈ =.

A fuzzy topological space (X,=) is called T2 if for any two distinct fuzzy points p, q in X, there
exist λ1, λ2 ∈ = such that p ∈ λ1, q ∈ λ2 and λ1 ∩ λ2 = 0.

A fuzzy topological space (X,=) is called zero-dimensional if = has a base consisting of clopen
fuzzy sets.

Definition 3.2. A fuzzy topological space (X,=) is called a crisp zero-dimensional if it is
zero-dimensional and the support of each clopen fuzzy set in X is an open subspace of (X,=).

For Question 3.3, we give the following theorem.

Theorem 3.5. Every crisp zero-dimensional homogeneous T2 fuzzy topological space is closed-
homogeneous.

Proof. Let (X,=) be a crisp zero-dimensional homogeneous T2 fuzzy topological space. Let β
be a base for = which consists of clopen fuzzy sets. Let 0 6= λ ∈ = and let p, q be any two fuzzy
points in X such that p, q ∈ λ and p(xp) = q(xq). If p, q are not distinct, then p = q and so
the identity function on X is the required fuzzy homeomorphism. If p, q are distinct, then since
(X,=) is T2, there exist µ1, µ2 ∈ β such that p ∈ µ1, q ∈ µ2 and µ1 ∩ µ2 = 0. Choose υ1, υ2 ∈ β
such that p ∈ υ1 ⊆ λ and q ∈ υ2 ⊆ λ. Let υ = υ1 ∪ υ2, γ1 = µ1 ∩ υ, and γ2 = µ2 ∩ υ. Since
(X,=) is homogeneous, there exists f ∈ FH(X,=) such that f(xp) = xq and hence, f(p) = q. Let
λ1 = γ1 ∩ f−1(γ2) and λ2 = f(λ1). Define h : (X,=) → (X,=) by

h(t) =

 f(t) if t ∈ S(λ1)
f−1(t) if t ∈ S(λ2)
t if t ∈ X − (S(λ1) ∪ S(λ2))
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Let µ ∈ =. Then µ = µ ∩ (χS(λ1) ∪ χS(λ2) ∪ χ(X−S(λ1)∪S(λ2))), and so

h−1(µ) = h−1(µ ∩ χS(λ1)) ∪ h−1(µ ∩ χS(λ2)) ∪ h−1(µ ∩ χχ(X−S(λ1)∪S(λ2)))

= f(µ ∩ χS(λ1)) ∪ f−1(µ ∩ χS(λ2)) ∪ (µ ∩ χχ(X−S(λ1)∪S(λ2))).

Therefore, h−1(µ) ∈ = and hence h is fuzzy continuous. Similarly we can show that h−1 is a
fuzzy continuous. It is not difficult to see that h is a bijection, hence h ∈ FH(X,=). Now since
xp ∈ S(λ1) and f(p) = q, hence h(xp) = xq. Since p(xp) = q(xq), it follows that h(p) = q.
Since λ1 ∪ λ2 ⊆ λ, then S(λ1 ∪ λ2) ⊆ S(λ) and so for every t ∈ X − S(λ), h(t) = t. Thus, by
Theorem 3.1(iv) it follows that (X,=) is a closed-homogeneous. �

Question 3.6. Is it true that every T2 zero-dimensional homogeneous fuzzy topological space
is closed-homogeneous?
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