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COMPUTING THE MINIMAL EFFICIENCY OF DESIGNS
BY A DIFFERENTIABLE APPROXIMATION

OF ΦEk
-OPTIMALITY CRITERIA

L. BUŠOVÁ

Abstract. Consider the linear regression model with uncorrelated errors and an experimental design
ξ. In the paper, we propose a numerical method for calculating the minimal efficiency of ξ in the
class O of orthogonally invariant information criteria. For this purpose, we introduce the concept of

Φ
(m)
k,p -optimality criteria. Then we show that Φ

(m)
Ek

criteria can be differentiably approximated by Φ
(m)
k,p

criteria, therefore it allows us to use standard numerical procedures to arrive at boundaries for Φ
(m)
Ek

optimal values, and hence at the intervals for the minimal efficiency of designs under the class of all
orthogonally invariant information criteria. The approach is then illustrated on the polynomial model
of degrees 2, . . . , 8.

1. Introduction

The aim of this article is to numerically calculate boundaries for the minimal efficiency of de-
signs with respect to the class of orthogonally invariant information criteria O, containing many
well-known criteria, e.g. all Kiefer’s Φp-optimality criteria (see e.g. [8, p. 94 ] or [9, p. 139]).
For this purpose, it turns out to be useful to study partial sums of eigenvalues of information
matrices. As an example, the sums of k smallest (or largest) eigenvalues can be used to charac-
terize universal optimality in the class O, as was shown in the article of Bondar [1]. The sums
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of k smallest eigenvalues, viewed as special orthogonally invariant information functions Φ(m)
Ek

, are
studied in [3]. The main result of the paper [3] is that minimal efficiency of a given design with
respect to O can be calculated using the optimal values of Φ(m)

Ek
-criteria. In some simpler models,

the optimal values can be calculated exactly, with the help of equivalence theorem for criteria of
Φ(m)

Ek
-optimality based on special results from convex analysis (see [7]). Moreover, boundaries for

the optimal values of Φ(m)
Ek

-criteria can be calculated from Φp-optimal designs (see [4]), but these

boundaries are mostly very conservative. In general, calculation of the Φ(m)
Ek

-optimal values and
the minimal efficiency of designs is difficult, mainly because the criteria are nondifferentiable, and
the standard routines for calculating the optimal designs cannot be applied. In our article, we solve
this problem numerically by replacing Φ(m)

Ek
-criteria with suitable differentiable approximations.

Consider the linear regression model

y(x) = fT (x)θ + ε(1)

on a compact experimental domain X ⊆ Rn, where f : X → Rm is a vector of known continuous
regression functions, θ ∈ Rm is a vector of unknown parameters, and ε is a random error. The
errors are assumed to be uncorrelated for different observations.

By an experimental design we understand a probability measure ξ on X with a finite support
Xξ = {x ∈ X , ξ(x) > 0}. By Ξ we denote the set of all designs on X . The value ξ(x) is understood
as the relative frequency of replications to be taken in x. To be able to determine the quality of
the design, we need to define an optimality criterion measuring the amount of information about
parameters that can be gained from the experiment based on the design. As it is usual in the
optimal design literature, we will focus our attention on the information which is contained in the
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positive semidefinite information matrix defined as

M(ξ) =
∑

x∈Xξ

f(x)fT (x)ξ(x)

for ξ ∈ Ξ.
Optimality criterion Φ is a real-valued function defined on the set Sm

+ of all positive semidefinite
matrices of type m × m. A design ξ∗ is Φ-optimal iff ξ∗ = arg maxξ∈Ξ Φ(M(ξ)), and M(ξ∗) is
called a Φ-optimal information matrix.
Through the article, we will use the following special type of optimality criteria.

Function Φ : Sm
+ → 〈0,∞) is called an information function ([9]), if it is not identically zero

and if it satisfies the following conditions:
• isotonicity:

D − C ∈Sm
+ ⇒ Φ(C) ≤ Φ(D) ∀C,D ∈ Sm

+

• concavity:

Φ(αC + (1− α)D) ≥ αΦ(C) + (1− α)Φ(D) ∀C,D ∈ Sm
+ , α ∈ (0, 1)

• positive homogeneity:

Φ(αC) = αΦ(C) ∀C ∈ Sm
+ , α ≥ 0

• upper semicontinuity: the sets {C ∈ Sm
+ ; Φ(C) ≥ c} are closed for all c ∈ R

In this class we can find almost all commonly used criteria in their concave and positive homo-
geneous versions.

If Φ is an information function, then a Φ-optimal design ξ∗ always exists and Φ(M(ξ∗)) > 0
([9, p. 117]).
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From the practical point of view, interesting characteristics of a design is its quality compared
to the Φ-optimal design. The measure of this quality is called the Φ-efficiency of the design ξ.

The Φ-efficiency of the design ξ is defined as follows ([9, p. 115]):

eff(M(ξ) | Φ) =
Φ(M(ξ))

maxζ∈Ξ Φ(M(ζ))
.(2)

Our aim in the article will be to propose a numerical method of computing minimal efficiency
of a design ξ with respect to the wide class of all orthogonally invariant information criteria which
will be defined in the next section.

2. The class of orthogonally invariant information criteria

Definition 2.1. We define the class O of all orthogonally invariant information criteria as the
set of information functions Φ : Sm

+ → 〈0,∞) which satisfy the condition of orthogonal invariance,
i.e. Φ(UCUT ) = Φ(C) for all C ∈ Sm

+ and orthogonal matrices U of type m×m.

This class encompasses many well-known optimality criteria, e.g. Kiefer’s Φp criteria with their
widely used special cases: D, A, and E criteria, as well as their convex combinations.
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Definition 2.2. For m-dimensional model and p ∈ 〈−∞, 1〉 the Kiefer’s criterion Φ(m)
p : Sm

+ →
〈0,∞) is defined as follows:

Φ(m)
p (M) =



(
1
m

m∑
i=1

λp
i (M)

)1/p

if p∈(−∞, 0) andM is regular or if p∈(0, 1〉(
m∏

i=1

λi(M)

)1/m

if p = 0

λ1(M) if p = −∞
0 if p ∈ (−∞, 0) and M is singular

where λ(A) = (λ1(A), λ2(A), . . . , λm(A))T is the vector of all eigenvalues of A in nondecreasing
order defined on the set Sm

+ , i.e.

0 ≤ λ1(A) ≤ λ2(A) ≤ . . . ≤ λm(A).

Note that Φ is orthogonally invariant iff its value depends only on the eigenvalues of the matrix,
i.e. iff λ(M1) = λ(M2) ⇒ Φ(M1) = Φ(M2).

For finding the minimal efficiency of a design in the set of all orthogonally invariant information
criteria we will use the Φ(m)

Ek
-optimality criteria, introduced in [3].

Definition 2.3. Φ(m)
Ek

: Sm
+ → 〈0,∞) is an optimality criterion defined as the sum of k smallest

eigenvalues of the information matrix:

Φ(m)
Ek

(M) =
k∑

i=1

λi(M).(3)
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Theorem 2.1. The minimal efficiency theorem ([3]). Let ξ ∈ Ξ. Then

inf
Φ∈O

eff(M(ξ) | Φ) = min
k=1,...,m

eff(M(ξ) | Φ(m)
Ek

).(4)

A consequence of the theorem is that for finding the minimal efficiency of the design ξ on the
whole class O we only need to find the minimal efficiencies for Φ(m)

Ek
, k = 1, . . . ,m. This can

be difficult because for k < m the criteria Φ(m)
Ek

are not differentiable everywhere and standard
numerical procedures can be impossible to apply.

In the article, we solve the problem by implementing a special class of criteria, which will be
used as a differentiable approximation of the Φ(m)

Ek
criteria.

3. Φ(m)
k,p -optimality criteria

Definition 3.1. For m-dimensional model, integer k ∈ {1, . . . ,m}, and p ∈ 〈−∞, 0〉 we define
the criterion Φ(m)

k,p : Sm
+ → 〈0,∞) as follows:

if rank(M) ≥ m− k + 1,

Φ(m)
k,p (M) =



(m

k

)−1 ∑
1≤i1<...<ik≤m

 k∑
j=1

λij
(M)

p1/p

if p ∈ (−∞, 0)

 ∏
1≤i1<...<ik≤m

k∑
j=1

λij (M)

(m
k )−1

if p = 0

k∑
j=1

λj(M) if p = −∞
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if rank(M) < m− k + 1, then Φ(m)
k,p (M) = 0

Substituting for k = 1 we get Kiefer’s Φ(m)
p criteria and for p = −∞ we get Φ(m)

Ek
criteria.

3.1. Properties of Φ(m)
k,p criteria

In this subsection, we will prove that Φ(m)
k,p criteria belong to the class O and we will derive the

gradient of Φ(m)
k,p .

Definition 3.2. For p ∈ 〈−∞, 0〉, s ∈ N we define a function ϕ
(s)
p : 〈0,∞)s → 〈0,∞) :

ϕ(s)
p (λ1, . . . , λs) =



(
1
s

s∑
i=1

λp
i

)1/p

if p ∈ (−∞, 0) and λi > 0 ∀i(
s∏

i=1

λi

)1/s

if p = 0

min(λ1, . . . , λs) if p = −∞

0 if p ∈ (−∞, 0) and λi = 0 for some i

Lemma 3.1. The function ϕ
(s)
p is continuous and concave on 〈0,∞)s.

Proof. To prove continuity of ϕ
(s)
p , we will use the continuity of Φ(s)

p criteria, which is a well-
known fact in optimal design. The function diag(·) : 〈0,∞)s → Ss

+, mapping the vector a onto a
diagonal matrix of type s× s with diagonal elements equal to the components of a, is continuous
on 〈0,∞)s. Because ϕ

(s)
p (λ) = Φ(s)

p (diag(λ)) ∀λ ∈ 〈0,∞)s, ϕ
(s)
p is composed of two continuous

functions, i.e ϕ
(s)
p is continuous itself.
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Next, we show that ϕ
(s)
p : 〈0,∞)s → 〈0,∞) is concave. Let Ψ(s)

p (M) = Φ(s)
p (M) for M ∈ Ss

+ and
Ψ(s)

p (M) = −∞ for M ∈ Ss\Ss
+, where Ss is the set of all symmetric matrices of type s× s. Using

the concavity of Φ(s)
p , it is easy to show that Ψ(s)

p is concave on the linear space Ss. Moreover,
the function diag : Rs → Ss is linear. Hence the composition Ψ(s)

p ◦ diag : Rs → R ∪ {−∞} is a
concave function ([11, p. 38]) (the linear space Ss

+ can be considered as R(s2+s)/2). But ϕ
(s)
p is a

restriction of Ψ(s)
p ◦ diag on the set 〈0,∞)s, therefore ϕ

(s)
p is concave itself. �

Lemma 3.2.
Φ(m)

k,p (M) = ϕ
(m

k )
p (L(m)

k (λ(M))), ∀M ∈ Sm
+

where L
(m)
k : Rm → R(m

k ) is a linear function such that

L
(m)
k : (λ1, . . . , λm) → (

∑
j∈I1

λj , . . . ,
∑

j∈I(m
k )

λj)

I1, . . . , I(m
k ) are all subsets of {1, . . . ,m} with k elements.

Theorem 3.1. The optimality criterion Φ(m)
k,p belongs to the class of orthogonally invariant

information criteria.

Proof.
1. Isotonicity and orthogonal invariance follow from [3, Proposition 1].
2. Positive homogeneity: it is obvious that for every M ∈ Sm

+ and for every α > 0: λ(αM) =
αλ(M). Hence positive homogeneity follows directly from the definition of Φ(m)

k,p criteria.

3. Continuity: the function λ : Sm
+ → Rm

+ is continuous ([6, p. 540]). The function ϕ
(m

k )
p is

continuous (Lemma 3.1), as well as the function L
(m)
k , because it is linear. As it is evident
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from Lemma 3.2, Φ(m)
k,p is composed of continuous functions ϕ

(m
k )

p , L
(m)
k and λ which means

that Φ(m)
k,p is continuous itself.

4. Concavity: ϕ
(m

k )
p is concave, therefore ϕ

(m
k )

p ◦ L
(m)
k is concave. Using the Davis theorem [2]

and Lemma 3.2, it follows that Φ(m)
k,p is concave.

�

Now we will use [2] to derive a formula for the gradient of the function Φ(m)
k,p . Note that by a

symmetric function we mean a function f : Rn → Rn with a property f(x) = f(y), if the vector
y ∈ Rn is a permutation of the vector x ∈ Rn.

Lemma 3.3. [2, p. 105] Let f : 〈0,∞)s → 〈0,∞) be symmetric, concave, and differentiable
function on (0,∞)s and let Φ : Ss

++ → 〈0,∞) be defined as Φ = f ◦ λ. Then Φ is differentiable on
Ss

++ and:

5 Φ(M) = U diag(5f(λ(M)))UT(5)

where U is a matrix, for which M = U diag(λ(M))UT and 5f denotes the gradient of f .

Theorem 3.2. Let k ∈ {1, . . . ,m}, p ∈ (−∞, 0), rank(M) ≥ m−k+1. Denote for 1 ≤ i ≤ m:

δi,k(λ) =
∑

1≤i1<...<ik≤m
i∈{i1,...,ik}

 k∑
j=1

λij

p−1

, λ ∈ (0,∞)m.
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Then the gradient of the function Φ(m)
k,p is:

5Φ(m)
k,p (M)

= (Φ(m)
k,p (M))1−p

(
m

k

)−1

U · diag (δ1,k(λ(M)), . . . , δm,k(λ(M))) · UT
(6)

where U is a matrix, for which M = U diag(λ(M))UT .

Proof. First we will calculate the gradient of f = ϕ
(m

k )
p ◦ L

(m)
k .

∂f(λ(M))
∂λl(M)

=
1
p

(m

k

)−1 ∑
1≤i1<...<ik≤m

 k∑
j=1

λij
(M)

p
1
p−1

p

(
m

k

)−1

δl,k(λ(M))

=
(

ϕ
(m

k )
p ◦ L

(m)
k (λ(M))

)1−p(
m

k

)−1

δl,k(λ(M)).

Therefore

5f(λ(M)) =
(

ϕ
(m

k )
p ◦ L

(m)
k (λ(M))

)1−p(
m

k

)−1

(δ1,k(λ(M)), . . . , δm,k(λ(M)))T
.

Now we can calculate the gradient of Φ according to Lemmas 3.2 and 3.3:

5Φ(m)
k,p (M) = U(diag5f(λ(M)))UT

= (Φ(m)
k,p (M))1−p

(
m

k

)−1

U diag (δ1,k(λ(M)), . . . , δm,k(λ(M)))UT .
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3.2. Boundaries for Φ(m)
Ek

-optimal values

In this subsection, we prove some relationships between Φ(m)
Ek

and Φ(m)
k,p criteria, which will be used

to numerically determine the boundaries for Φ(m)
Ek

-efficiencies based on Φ(m)
k,p -efficiencies.

Theorem 3.3. Let k ∈ {1, . . . ,m} and let rank(M) ≥ m− k + 1. Then for all p ∈ (−∞, 0):

1 ≤
Φ(m)

k,p (M)

Φ(m)
Ek

(M)
≤
(

m

k

)−1/p

.(7)

Proof. Let n =
(
m
k

)
and p < 0. Let aj =

∑
i∈Ij

λi(M) for j = 1, . . . , n, where I1, . . . , In are all
subsets of {1, . . . ,m} with k elements and I1 = {1, . . . , k}. Note that a1 ≤ aj for all j and a1 > 0,
because rank(M) ≥ m− k + 1.
Note also that

Φ(m)
k,p (M)

Φ(m)
Ek

(M)
=
(

m

k

)−1/p


∑

1≤i1<...<ik≤m

 k∑
j=1

λij (M)

p

(
k∑

i=1

λi(M)

)p



1/p

=
(

m

k

)−1/p(
1 +

(
a2

a1

)p

+ . . . +
(

an

a1

)p)1/p

.

(8)
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At the same time we have(
m

k

)1/p

≤
(

1 +
(

a2

a1

)p

+ . . . +
(

an

a1

)p)1/p

≤ 1(9)

because 0 ≤
(

aj

a1

)p

≤ 1 for all j = 1, . . . , n and p < 0. Combining (8) and (9) we get both
inequalities of the theorem. �

Note that the Theorem 3.3 implies that Φ(m)
k,p converges for p → −∞ to Φ(m)

Ek
uniformly on the

set of all information matrices.
More importantly, we have the following corollary:

Corollary 3.1. ∀M ∈ Sm
+ , ∀k ∈ {1, . . . ,m}, ∀p ∈ (−∞, 0):

eff(M | Φ(m)
Ek

) ≥
(

m

k

)1/p

eff(M | Φ(m)
k,p ).

Proof. If eff(M | Φ(m)
k,p ) = 0, the proof is trivial.

Let eff(M | Φ(m)
k,p ) > 0. Then Φ(m)

k,p (M) > 0, i.e. rank(M) ≥ m−k+1. Let Mk,p be a Φ(m)
k,p -optimal

matrix and let MEk
be a ΦEk

-optimal matrix. Then:

eff(M | Φ(m)
Ek

)

eff(M | Φ(m)
k,p )

=
Φ(m)

Ek
(M)

Φ(m)
Ek

(MEk
)
·
Φ(m)

k,p (Mk,p)

Φ(m)
k,p (M)

=
Φ(m)

Ek
(M)

Φ(m)
k,p (M)

·
Φ(m)

k,p (Mk,p)

Φ(m)
k,p (MEk

)
·
Φ(m)

k,p (MEk
)

Φ(m)
Ek

(MEk
)
≥
(

m

k

)1/p



JJ J I II

Go back

Full Screen

Close

Quit

since the first factor in this product is greater than or equal to
(
m
k

)1/p from the right inequality
of Theorem 3.3, the second factor is greater than or equal to 1, because Mk,p is Φk,p-optimal, and
the third factor is greater than or equal to 1 from the left inequality of Theorem 3.3. �

4. Algorithm for computing the boundaries of Φ(m)
Ek

-optimal values

The following theorem tells us that for finding a design whose Φ(m)
Ek

-efficiency is at least α, we

only need to find a design whose Φ(m)
k,p -efficiency is at least β > α, where p ≤ lnα/β

(
m
k

)
. But the

criterion Φ(m)
k,p is differentiable, therefore such design can be constructed using standard iterative

algorithms.

Theorem 4.1. If eff(M(ξ) | Φ(m)
k,p ) ≥ β for some design ξ and p ≤ lnα/β

(
m
k

)
, p ∈ (−∞, 0),

then eff(M(ξ) | Φ(m)
Ek

) ≥ α

Proof. We can easily see that p ≤ lnα/β

(
m
k

)
implies α ≤ β

(
m
k

)1/p.
Using Corollary 3.1 we obtain

eff(M(ξ) | Φ(m)
Ek

) ≥
(

m

k

)1/p

eff(M(ξ) | Φ(m)
k,p ) ≥

(
m

k

)1/p

β ≥ α.

�

Now we can proceed to constructing the boundaries for Φ(m)
Ek

-optimal values. In the first step,

we will iteratively compute Φ(m)
k,p -optimal design.

The following algorithm is based on the algorithms described in [8, chapter V].
As an input, we need:
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• the required Φ(m)
Ek

efficiency α, from which using the Theorem 4.1, we get β and p
• model function f
• experimental domain X
• starting information matrix M1 ∈ Sm

++

• k (the parameter of Φ(m)
Ek

)
The sequence of the information matrices {Mi} is constructed in the following way:
1. let i = 1
2. if

Φ(m)
k,p (Mi)

maxx∈X fT (x)5 Φ(m)
k,p (Mi)f(x)

> β,

stop
else go to 4.

3. compute the information matrix Mi+1 according to the formula

Mi+1 =
i

i + 1
Mi +

1
i + 1

f(xi+1)fT (xi+1)

where xi+1 = arg maxx∈X fT (x)5 Φ(m)
k,p (Mi)f(x)

let i = i + 1
4. go to 3.

Note: If the inequality in 2. holds, then eff(M(ξi) | Φ(m)
k,p ) > β.

Let M be a matrix obtained by iterative computation of the Φ(m)
k,p -optimal design described

above. Then the lower and upper boundaries for Φ(m)
Ek

-optimal values are as follows:

• lower boundary: Φ(m)
Ek

(M)
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• 1st upper boundary: Φ(m)
k,p (M)/β follows from

eff(M | Φ(m)
k,p ) ≥ β ⇒

Φ(m)
k,p (M)

Φ(m)
k,p (Mk,p)

≥ β

⇒ Φ(m)
k,p (Mk,p) ≤

Φ(m)
k,p (M)

β
,

(10)

where Mk,p is a Φ(m)
k,p -optimal matrix. Therefore:

Φ(m)
Ek

(M) ≤ ΦEk
(M (m)

Ek
) ≤ Φ(m)

k,p (MEk
) ≤ Φ(m)

k,p (Mk,p) ≤
Φ(m)

k,p (M)
β

• 2nd upper boundary:
max fT (x)Y f(x),

where Y is the subgradient of Φ(m)
Ek

in the point M obtained as follows:
Y =

∑k
i=1 uiu

T
i , ui is an eigenvector of M corresponding to the eigenvalue λi(M) (it

follows from the form of the subdifferential of ΦEk
and the theorem on the boundary of

Φ(m)
Ek

-efficiency in [5])

5. Example: Polynomial model on 〈−1, 1〉

The polynomial model for the measurement in the point x is defined as

y(x) = θ0 + θ1x + θ2x
2 + . . . + θdx

d + ε

where d is the degree of the model and θ0, . . . , θd are the parameters of the model, i.e. the number
of parameters is m = d + 1. Thus we have f(x) = (1, x, x2, . . . , xd).
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Suppose the measurements are carried out on the set X = 〈−1, 1〉. We will estimate the O-
minimal efficiency of the D-optimal, E-optimal and uniform arcsine designs.

Table 1. Lower and upper boundaries for Φ
(m)
Ek

-optimal values for the degrees d = 2, . . . , 8 of polynomial regression

and k = 1, . . . , d + 1. Optimum values are indicated by bold face. The upper boundaries are computed as the

minimum of the 1st and 2nd upper boundaries in (10).

k/degree 2 3 4 5

1 0.194595 0.201389 0.039198 0.042363 0.007482 0.008072 0.001413 0.001577

2 0.976261 1.043871 0.192313 0.201618 0.039069 0.042727 0.007562 0.008249

3 2.852 3 1.98444 2.208806 0.32073 0.347491 0.082466 0.090713

4 3.804006 4 1.957065 2.110195 0.31006 0.354067

5 4.754523 5 2.978997 3.346387

6 5.704555 6

k/degree 6 7 8

1 0.000263 0.000287 4.86E-05 5.43E-05 8.83E-06 9.86E-06

2 0.001426 0.001579 0.000267 0.000283 4.75E-05 5.31E-05

3 0.018261 0.019762 0.003891 0.004303 0.000807 0.000891

4 0.083396 0.090054 0.018156 0.020106 0.00389 0.00431

5 0.408581 0.45114 0.127203 0.1391 0.03028 0.032078

6 2.940145 3.163073 0.428754 0.468567 0.126843 0.139165

7 6.654964 7 3.977078 4.469847 0.509199 0.53346

8 7.607143 8 3.918662 4.218915

9 8.565743 9
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Table 2. Lower and upper boundaries for the minimal efficiencies of arcsine, D-optimal, and E-optimal designs for
various degrees of polynomial regression.

k/degree 2 3 4 5

arcsine 0.7257 0.751 0.5573 0.6202 0.5858 0.6257 0.4683 0.526

D-optim 0.7257 0.751 0.5513 0.6137 0.5723 0.6078 0.4505 0.506

E-optim 0.5747 0.6145 0.3589 0.3995 0.4104 0.4425 0.3142 0.3529

k/degree 6 7 8

arcsine 0.502 0.528 0.4168 0.4685 0.4408 0.4632

D-optimal 0.4801 0.5049 0.3966 0.4457 0.4189 0.4401

E-optimal 0.3525 0.3792 0.2838 0.319 0.3095 0.3276

Note: The uniform arcsine design is understood to be the uniform design on the points of the
arcsine support in the sense of the definition in [9, p. 217]. The construction of D-optimal design
is based on [9, Chapter 9]. The construction of E-optimal design follows from the theorems in [10]
and [9, Part 9.13].

The results were obtained in the following way:

• we computed the D-optimal design ξ∗D, E-optimal design ξ∗E and uniform arcsine design ξ∗A
• using the eigenvalues of M(ξ∗D), M(ξ∗E) and M(ξ∗A) we determined the values of Φ(m)

Ek
criteria

• then we calculated the Φ(m)
Ek

-optimal design with the help of the Theorem 4.1 (putting

β = 0.95 and α = 0.9) and determined boundaries for Φ(m)
Ek

-optimal values (Table 1)
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• finally, we constructed the intervals containing the minimal efficiencies ξ∗D, ξ∗E , ξ∗A according
to O (Table 2)

Note: The minimal efficiencies for the degrees 2, 3, 4, which were computed precisely in [3], are
in agreement with our numerical boundaries in the Table 2.

Figure 1. The boundaries for minimal efficiencies of the arcsine, D-optimal and E-optimal designs for various

degrees of polynomial regression. The vertical lines denote the interval from the lower to the upper boundary of the
corresponding minimal efficiency. To improve readability, the graphs of individual design are slightly shifted.
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