ON PSEUDO-SEQUENCE-COVERING T-IMAGES OF LOCALLY
SEPARABLE METRIC SPACES

NGUYEN VAN DUNG

ABSTRACT. In this paper, we characterize pseudo-sequence-covering m-images of locally sep-
arable metric spaces by means of fcs-covers and point-star networks. We also investigate
pseudo-sequence-covering 7-s-images of locally separable metric spaces.

1. INTRODUCTION

Determining what spaces the images of “nice” spaces under “nice” mappings are is one
of the central questions of general topology [3]. In the past, some noteworthy results on
images of metric spaces have been obtained [9, 15]. Recently, m-images of metric spaces
have attracted attention again [4, 5, 7, 11, 16]. It is known that a space is a pseudo-
sequence-covering m-image of a metric space (resp. separable metric space) if and only if it
has a point-star network of fecs-covers (resp. countable fes-covers) [4, 5]. This leads us to
investigate pseudo-sequence-covering m-images of locally separable metric spaces. That is,
we have the following question.
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Question 1.1. How are pseudo-sequence-covering mw-images of locally sparable metric
spaces characterized?

On the other hand, pseudo-sequence-covering 7-s-images of metric spaces have been
characterized by means of point-star networks of point-countable fcs-covers (see [11], for
example). This leads us to consider the following question.

Question 1.2. How are pseudo-sequence-covering w-s-images of locally sparable metric
spaces characterized?

Taking these questions into account, we characterize pseudo-sequence-covering m-images
of locally separable metric spaces by means of fcs-covers and point-star networks. Then
we give a complete answer to Question 1.1. As the application of this result, we get a
characterization of pseudo-sequence-covering w-s-images of locally separable metric spaces
to answer Question 1.2.

Throughout this paper, all spaces are assumed to be Hausdorff, all mappings are assumed
continuous and onto, a convergent sequence includes its limit point, N denotes the set of
all natural numbers. Let f : X — Y be a mapping, z € X, and let P be a collection
of subsets of X, we denote st(z,P) = J{P € P:z € P}, UP = U{P : P € P},
(P)r ={P €P:x € P}and f(P)={f(P): P € P} Wesay that a convergent sequence
{zn : n € N} converging to x is eventually (resp. frequently) in A if {z,, :n >no}U{z} C A
for some ng € N (resp. {x,, : k € N} U{z} C A for some subsequence {z,, } of {z,}).
Note that some notions are different in different references, and some different notions in
different references are coincident. Please, terms which are not defined here, see [2, 15].



2. MAIN RESULTS

Let P be a collection of subsets of a space X and let K be a subset of X.

P is point-countable [15] if every point of X meets only countably many members of P.

For each x € X, P is a network at z [8] if x € P for every P € P, and if x € U with U
open in X, there exists P € P such that x € P C U.

P is a k-cover for K in X, if for each compact subset H of K, there exists a finite
subfamily F of P such that H C |JF. When K = X, a k-cover for K in X is a k-cover for
X.

P is a cfp-cover for K in X if for each compact subset H of K, there exists a finite
subfamily F of P such that H ¢ J{Cr : F € F} where CF is closed and Crp C F for
every F' € F. Note that such F is a full cover in the sense of [1], and if K is closed, F is a
cfp-cover for K in the sense of [8]. When K = X, a cfp-cover for K in X is a c¢fp-cover
for X [16].

P is an fes-cover for K in X if for each convergent sequence S converging to x in K,
there exists a finite subfamily F of (P), such that S is eventually in | JF. When K = X,
an fcs-cover for K in X is an fes-cover of X [4], or an sfp-cover for X [11], or a wes-cover
[5].

P is a cs*-cover for K in X, if for each convergent sequence S in K, S is frequently in
some P € P. When K = X, a cs*-cover for K in X is a cs*-cover for X [16].

A k-cover (resp. cfp-cover, fes-cover, cs*-cover) for K in X is also called a k-cover (resp.
cfp-cover, fcs-cover, cs*-cover) in X for K, and a k-cover (resp. c¢fp-cover, fes-cover, cs*-
cover) for X is abbreviated to a k-cover (resp. c¢fp-cover, fes-cover, cs*-cover).

It is clear that if P is a k-cover (resp. cfp-cover, fes-cover, cs*-cover), then P is a k-cover
(resp. cfp-cover, fecs-cover, cs*-cover) for K in X.



Remark. The following statements hold.

1. closed k-cover for K in X = c¢fp-cover for K in X = k-cover for K in X,
2. cfp-cover for K in X = fes-cover for K in X = cs*-cover for K in X.

For each n € N, let P, be a cover for X. {P,, : n € N} is a refinement sequence for X, if
Prt1 is a refinement of P, for each n € N. A refinement sequence for X is a refinement of
X in the sense of [3].

Let {P, : n € N} is be refinement sequence for X. {P, : n € N} is a point-star network
for X, if {st (z,Pn) : n € N} is a network at x for each x € X. A point- -star network
for X is a o-strong network for X in the sense of [16], and, without the assumption of a
refinement sequence, a point-star network in the sense of [12]. It is easy to see that if each
P, is countable, every members of P,, can be chosen closed in X.

Let {P, : n € N} be a point-star network for a space X. For every n € N, put P, =
{P,:a€ A,}, and A, is endowed with discrete topology. Put

M = {a= (o) € H Ay : {Ps, : n € N} forms a network at some point z, in X }.
neN

Then M, which is a subspace of the product space [ ],y An, is a metric space with a metric
d described as follows.

Let a = (ap),b = (Bn) € M. If a = b, then d(a,b) = 0. If a # b, then d(a,b) =
1/(min{n € N : o, # Bn}).

Define f : M — X by choosing f(a) = z,, then f is a mapping, and (f, M, X,{P,})
is a Ponomarev’s system [16], and without the assumption of a refinement sequence in the
notion of point-star networks, (f, M, X, {P,}) is a Ponomarev’s system in the sense of [12].

Let f: X — Y be a mapping; Then,
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f is a w-mapping [4] if for every y € Y and for every neighborhood U of y in Y,
d(f~Y(y), X — f~1(U)) > 0, where X is a metric space with a metric d.

f is an s-mapping [11], if for each y € Y, f~1(y) is a separable subset of X.

f is a w-s-mapping [11], if f is both m-mapping and s-mapping.

f is a pseudo-sequence-covering mapping [3], if every convergent sequence of Y is the
image of some compact subset of X.

f is a subsequence-covering mapping [3], if for every convergent sequence S of Y, there
is a compact subset K of X such that f(K) is a subsequence of S.

f is a sequentially-quotient mapping [3], if for every convergent sequence S of Y, there is
a convergent sequence L of X such that f(L) is a subsequence of S.

f is a quotient mapping [14], if U is open in Y whenever f~1(U) is open in X.

f is a pseudo-open mapping [9], if y € intf(U) whenever f~1(y) C U with U open in X.
A pseudo-open mapping is a hereditarily quotient mapping in the sense of [2].

Let X be a space and let A be a subset of X. A is sequential open [16], if for each z € A
and each convergent sequence S converging to x, S is eventually in A. X is a sequential
space [16], if every sequential open subset of X is open in X. X is a Fréchet space, if for
each x € A, there exists a sequence in A converging to .

For a mapping f : X — Y, f is a pseudo-sequence-covering or sequentially-quotient —>
a f is subsequence-covering. Also, a f is quotient if and only if a f is subsequence-covering
such that Y is sequential [17].

Lemma 2.1. Let P be a countable cover for a convergent sequence S in a space X. Then
the following propositions are equivalent.

1. P is a cfp-cover for S in X,
2. P is an fes-cover for S in X,
3. P is a cs*-cover for S in X.
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Proof. (1) = (2) = (3). Obviously.

(3) = (1). Let H be a compact subset of S. We can assume that H is a subsequence
of S. Since P is countable, put (P), = {P, : n € N} where z is the limit point of S.
Then H is eventually in |J,,., P, for some k& € N. If not, then for any k € N, H is not
eventually in (J, <, Pn. So, for every k € N, there exists Zn, € S — Up<k Pn. We may
assume 1y < Ny < ... < Np_1 < Mg < Npg1 < .... Put H' = {zn, 1 k€ N}_U {z}, then H'
is a subsequence of S. Since P is a c¢s*-cover for S in X, there exists m € N such that H’ is
frequently in P,,. This contradicts the construction of H'. So H is eventually in |J, -, Pn
for some k € N. It implies that P is a cfp-cover for S in X. a

Lemma 2.2. Let f: X — Y be a mapping.

1. If P is a k-cover in X for a compact set K, then f(P) is a k-cover for f(K) inY.
2. If P is a cfp-cover in X for a compact set K, then f(P) is a cfp-cover for f(K) in
Y.

Proof. (1). Let H be a compact subset of f(K). Then G = f~1(H) N K is a compact
subset of K and f(G) = H. Since P is a k-cover for K in X, there is a finite subfamily F
of P such that G C |JF. Hence f(F) is a finite subfamily of f(P) such that H C |J f(F).
It implies that f(P) is a k-cover for f(K) in Y.

(2). Let H be a compact subset of f(K). Then L = f~}(H) N K is a compact subset of
K satistying f(L) = H. Since P is a c¢fp-cover for K in X, there is a finite subfamily F of P
such that L C |J{Cp : F € F} where Cr C F, and CF is closed for every F' € F. Because L
is compact, every C'r can be chosen compact. It implies that every f(CF) is closed (in fact,
every f(Cr) is compact), and f(Cr) C f(F). We get that H = f(L) C U{f(CF) : F € F},
and f(F) is a finite subfamily of P. Then P is a cfp-cover for f(K) in Y. O

Theorem 2.3. The following propositions are equivalent for a space X



1. X is a pseudo-sequence-covering mw-image of a locally separable metric space,

2. X has a cover {Xy : X € A}, where each X has a refinement sequence {Py ,, : n € N}
of countable covers for X, satisfying the following conditions:
(a) For each x € U with U open in X, there is n € N such that

(J{st (2, Pan) s A € A with z € X3} C T,

(b) For each convergent sequence S of X, there is a finite subset Ag of A such that
S has a finite compact cover {Sy : A € Ag}, and, for each A € Ag and n € N,
Pxrn ts an fcs-cover for Sy in X.

Proof. (1) = (2). Let f: M — X be a pseudo-sequence-covering m-mapping from a
locally separable metric space M with a metric d onto X. Since M is a locally separable
metric space, M = @,., Mx where each M) is a separable metric space by [2, 4.4.F].
For each A € A, let Dy be a countable dense subset of My, and put fn = f|m, and
Xx = fa(My). For each a € My and n € N, put B(a,1/n) = {b € M, : d(a,b) < 1/n},
Bxn ={B(a,1/n):a € Dy}, and Py, = fa(Bxn). It is clear that {Py,, : n € N} is a cover
sequence of countable covers for Xy and Py 1 is a refinement of Py ,, for every n € N. We
only need to prove that conditions (a) and (b) are satisfied.

Condition (a): For each x € U with U open in X. Since f is a m-mapping, d(f~!(z), M —
f71(U)) >2/(n—1) for some n € N. Then, for each A € A with z € X, we get

d(fy (@), Ma = £ (UN) > 2/(n 1)
where Uy = UN X\. Let a € Dy and z € f\(B(a,1/n)) € Pr,. We shall prove that
B(a,1/n) C fy'(Uy). In fact, if B(a,1/n) ¢ fy '(Uy), then pick b € B(a,1/n) — f5 '(Uy).
Note that fy'(z) N B(a,1/n) # 0, pick ¢ € f; ' (z) N B(a,1/n), then

d(fy (@), My — £ H(UY) < d(e,b) < d(c,a) +d(a,b) < 2/n < 2/(n—1).



It is a contradiction. So B(a,1/n) C fy ' (Uy), thus fr(B(a,1/n)) C Ux. Then st (z,Py,,) C
U,. It implies that

U{st (@, Pan) : A€ A with z € X} CU.

Condition (b): For each convergent sequence S of X, since a f is pseudo-sequence-
covering, S = f(K) for some compact subset K of M. By compactness of K, K = KN M),
is compact and Ag = {\ € A : K # 0} is finite. For each A\ € Ag, put Sy = f(K)), then
{Sx : XA € Ag} is a finite compact cover for S. For each n € N, since B} ,, is a cfp-cover for
Ky in My, Py, is a cfp-cover for Sy in X by Lemma 2.2. It follows from Lemma 2.1 that
Px.n is an fes-cover for Sy in Xy

(2) = (1). For each A € A, let x € Uy with Uy open in X,. We get that Uy = U N X
with some U open in X. Since [J{st (z,Prn,) : A € A with 2 € X} C U for some n € N,
st (x,Pan) C Ux. It implies {Px, : n € N} is a point-star network for X,. Then the
Ponomarev’s system (fx, Mx, Xx,{Pxn}) exists. Since each Py, is countable, M) is a
separable metric space with a metric d) described as follows.

Let a = (a,),b = (Bn) € My. If a = b, then dy(a,b) = 0. If a # b, then dy(a,b) =
1/(min{n € N: a, # Bn}).

Put M = @xca M) and define f : M — X by choosing f(a) = fi(a) for every a € M),
with some A € A. Then f is a mapping and M is a locally separable metric space with a
metric d as follows.

Let a,b € M. If a,b € M, for some A € A, then d(a,b) = dx(a,b). Otherwise, d(a,b) = 1.
We only need to prove that f is a pseudo-sequence-covering m-mapping.

(a) f is a m-mapping. Let © € U with U open in X, then

{st (@, Pan) : A€ Awithz € X3} CU



for some n € N. So, for each A € A with z € X, we get
st (x,Pan) C Uy
where Uy = U N X,. It implies that
dr(fy (@), My — £ H(UY)) > 1/n.

In fact, if @ = (i) € M) such that dy(fy '(z),a) < 1/n, then there is b = (8x) € f; '(z)
such that dy(a,b) < 1/n. So ay, = By if k < n. Note that € P, C st(z,Px,) C Ux.
Then

fr(a) € P, = Pg, Cst(x,Pxn) C Us.

Hence a € f5 '(Uy). It implies that dy(fy ' (z),a) > 1/nif a € My — f5 ' (Uy). So
da(fy (@), My = [ H(UN) = 1/n.

Therefore
d(f~H(x),M — f~1(U)) = inf{d(a,b) : a € f~(z),b€ M — f~1(U)}
= min {1,inf{dx(a,b) : a € f5 " (z),b € My — f~'(Ux),A € A}} > 1/n> 0.
It implies that f is a m-mapping.

(b) f is pseudo-sequence-covering. For each convergent sequence S of X, there is a finite
subset Ag of A such that S has a finite compact cover {Sy : A € Ag} and for each A € Ag
and n € N, Py ,, is an fcs-cover for S in X). By Lemma 2.1 Py ,, is a cfp-cover for Sy in
X,. It follows from Lemma 13 in [12] that Sy = f\(K)) with some compact subset K of

M. Put K = | J{K) : A € Ag}, then K is a compact subset of M and f(K) = S. It implies
that f is a pseudo-sequence-covering. O

Remark. 1. For each A € A, {Px, : n € N} is a point-star network for X .



2. Since each P, , is countable, every member of P, , can be chosen closed in X.
Hence, it is possible to replace the prefix “fes-” in (b) of Theorem 2.3.(2) by “k-”,
“Cfp_”’ or “CS*_H

By [2, 2.4.F, 2.4.G], [3, Proposition 2.1], and Theorem 2.3, we get a characterization of
pseudo-sequence-covering quotient (resp. pseudo-open) m-images of locally separable metric
spaces as follows.

Corollary 2.4. The following propositions are equivalent:
1. a space X is a pseudo-sequence-covering quotient (resp. pseudo-open) w-image of a
locally separable metric space,
2. a space X is a sequential (resp. Fréchet) space having a cover {X, : X € A}, where
each Xy has a refinement sequence {Px , : n € N} of countable covers for Xy satis-
fying conditions (a) and (b) in Theorem 2.3.(2).

In the next, we investigate pseudo-sequence-covering m-s-images of locally separable met-
ric spaces.

Corollary 2.5. The following propositions are equivalent:

1. a space X is a pseudo-sequence-covering w-s-image of a locally separable metric space,

2. a space X has a point-countable cover {X : A € A}, where each X has a refinement
sequence {Px, : n € N} of countable covers for X, satisfying conditions (a) and (b)
in Theorem 2.5.(2).

Proof. (1) = (2). By using notations and arguments in proof (1) = (2) of Theorem 2.3
again, X has a cover {X : A € A}, where each X has a refinement sequence {Py ,, : n € N}
of countable covers for X satisfying conditions (a) and (b) in Theorem 2.3.(2). It suffices
to prove that {X) : A € A} is point-countable. For each z € X, since f is an s-mapping,



f~1(x) is separable in M. Then f~!(x) meets only countably many M,’s. It implies that
x meets only coutably many X,’s, i.e., {X, : A € A} is point-countable.

(2) = (1). By using notations and arguments in proof (2) = (1) of Theorem 2.3
again, X is a pseudo-sequence-covering m-image of a locally separable metric space under
the mapping f. We shall prove that f is also an s-mapping. For each x € X, since
{X : A € A} is point-countable, A, = {\ € A : z € X} is countable. Note that each M)
is separable metric, fy '(z) is separable. It implies that f~'(z) = J{fy '(z) : A € A} is
separable, i.e., f is an s-mapping. O

Similar to Corollary 2.4, we get the following.

Corollary 2.6. The following propositions are equivalent:
1. a space X is a pseudo-sequence-covering quotient (resp. pseudo-open) m-s-image of
a locally separable metric space,
2. a space X is a sequential (resp. Fréchet) space having a point-countable cover { X :
A € A}, where each X has a refinement sequence {Px , : n € N} of countable covers
for X satisfying conditions (a) and (b) in Theorem 2.5.(2).
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