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ON PSEUDO-SEQUENCE-COVERING π-IMAGES OF LOCALLY
SEPARABLE METRIC SPACES

NGUYEN VAN DUNG

Abstract. In this paper, we characterize pseudo-sequence-covering π-images of locally sep-

arable metric spaces by means of fcs-covers and point-star networks. We also investigate
pseudo-sequence-covering π-s-images of locally separable metric spaces.

1. Introduction

Determining what spaces the images of “nice” spaces under “nice” mappings are is one
of the central questions of general topology [3]. In the past, some noteworthy results on
images of metric spaces have been obtained [9, 15]. Recently, π-images of metric spaces
have attracted attention again [4, 5, 7, 11, 16]. It is known that a space is a pseudo-
sequence-covering π-image of a metric space (resp. separable metric space) if and only if it
has a point-star network of fcs-covers (resp. countable fcs-covers) [4, 5]. This leads us to
investigate pseudo-sequence-covering π-images of locally separable metric spaces. That is,
we have the following question.
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Question 1.1. How are pseudo-sequence-covering π-images of locally sparable metric
spaces characterized?

On the other hand, pseudo-sequence-covering π-s-images of metric spaces have been
characterized by means of point-star networks of point-countable fcs-covers (see [11], for
example). This leads us to consider the following question.

Question 1.2. How are pseudo-sequence-covering π-s-images of locally sparable metric
spaces characterized?

Taking these questions into account, we characterize pseudo-sequence-covering π-images
of locally separable metric spaces by means of fcs-covers and point-star networks. Then
we give a complete answer to Question 1.1. As the application of this result, we get a
characterization of pseudo-sequence-covering π-s-images of locally separable metric spaces
to answer Question 1.2.

Throughout this paper, all spaces are assumed to be Hausdorff, all mappings are assumed
continuous and onto, a convergent sequence includes its limit point, N denotes the set of
all natural numbers. Let f : X −→ Y be a mapping, x ∈ X, and let P be a collection
of subsets of X, we denote st(x,P) =

⋃
{P ∈ P : x ∈ P},

⋃
P =

⋃
{P : P ∈ P},

(P)x = {P ∈ P : x ∈ P} and f(P) = {f(P ) : P ∈ P}. We say that a convergent sequence
{xn : n ∈ N} converging to x is eventually (resp. frequently) in A if {xn : n ≥ n0}∪{x} ⊂ A
for some n0 ∈ N (resp. {xnk

: k ∈ N} ∪ {x} ⊂ A for some subsequence {xnk
} of {xn}).

Note that some notions are different in different references, and some different notions in
different references are coincident. Please, terms which are not defined here, see [2, 15].
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2. Main results

Let P be a collection of subsets of a space X and let K be a subset of X.
P is point-countable [15] if every point of X meets only countably many members of P.
For each x ∈ X, P is a network at x [8] if x ∈ P for every P ∈ P, and if x ∈ U with U

open in X, there exists P ∈ P such that x ∈ P ⊂ U .
P is a k-cover for K in X, if for each compact subset H of K, there exists a finite

subfamily F of P such that H ⊂
⋃
F . When K = X, a k-cover for K in X is a k-cover for

X.
P is a cfp-cover for K in X if for each compact subset H of K, there exists a finite

subfamily F of P such that H ⊂
⋃
{CF : F ∈ F} where CF is closed and CF ⊂ F for

every F ∈ F . Note that such F is a full cover in the sense of [1], and if K is closed, F is a
cfp-cover for K in the sense of [8]. When K = X, a cfp-cover for K in X is a cfp-cover
for X [16].
P is an fcs-cover for K in X if for each convergent sequence S converging to x in K,

there exists a finite subfamily F of (P)x such that S is eventually in
⋃
F . When K = X,

an fcs-cover for K in X is an fcs-cover of X [4], or an sfp-cover for X [11], or a wcs-cover
[5].
P is a cs∗-cover for K in X, if for each convergent sequence S in K, S is frequently in

some P ∈ P. When K = X, a cs∗-cover for K in X is a cs∗-cover for X [16].
A k-cover (resp. cfp-cover, fcs-cover, cs∗-cover) for K in X is also called a k-cover (resp.

cfp-cover, fcs-cover, cs∗-cover) in X for K, and a k-cover (resp. cfp-cover, fcs-cover, cs∗-
cover) for X is abbreviated to a k-cover (resp. cfp-cover, fcs-cover, cs∗-cover).

It is clear that if P is a k-cover (resp. cfp-cover, fcs-cover, cs∗-cover), then P is a k-cover
(resp. cfp-cover, fcs-cover, cs∗-cover) for K in X.
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Remark. The following statements hold.

1. closed k-cover for K in X =⇒ cfp-cover for K in X =⇒ k-cover for K in X,
2. cfp-cover for K in X =⇒ fcs-cover for K in X =⇒ cs∗-cover for K in X.

For each n ∈ N, let Pn be a cover for X. {Pn : n ∈ N} is a refinement sequence for X, if
Pn+1 is a refinement of Pn for each n ∈ N. A refinement sequence for X is a refinement of
X in the sense of [3].

Let {Pn : n ∈ N} is be refinement sequence for X. {Pn : n ∈ N} is a point-star network
for X, if {st (x,Pn) : n ∈ N} is a network at x for each x ∈ X. A point- -star network
for X is a σ-strong network for X in the sense of [16], and, without the assumption of a
refinement sequence, a point-star network in the sense of [12]. It is easy to see that if each
Pn is countable, every members of Pn can be chosen closed in X.

Let {Pn : n ∈ N} be a point-star network for a space X. For every n ∈ N, put Pn =
{Pα : α ∈ An}, and An is endowed with discrete topology. Put

M =
{
a = (αn) ∈

∏
n∈N

An : {Pαn
: n ∈ N} forms a network at some point xa in X

}
.

Then M , which is a subspace of the product space
∏

n∈N An, is a metric space with a metric
d described as follows.

Let a = (αn), b = (βn) ∈ M . If a = b, then d(a, b) = 0. If a 6= b, then d(a, b) =
1/(min{n ∈ N : αn 6= βn}).

Define f : M −→ X by choosing f(a) = xa, then f is a mapping, and (f,M,X, {Pn})
is a Ponomarev’s system [16], and without the assumption of a refinement sequence in the
notion of point-star networks, (f,M,X, {Pn}) is a Ponomarev’s system in the sense of [12].

Let f : X −→ Y be a mapping; Then,



JJ J I II

Go back

Full Screen

Close

Quit

f is a π-mapping [4] if for every y ∈ Y and for every neighborhood U of y in Y ,
d(f−1(y), X − f−1(U)) > 0, where X is a metric space with a metric d.

f is an s-mapping [11], if for each y ∈ Y , f−1(y) is a separable subset of X.
f is a π-s-mapping [11], if f is both π-mapping and s-mapping.
f is a pseudo-sequence-covering mapping [3], if every convergent sequence of Y is the

image of some compact subset of X.
f is a subsequence-covering mapping [3], if for every convergent sequence S of Y , there

is a compact subset K of X such that f(K) is a subsequence of S.
f is a sequentially-quotient mapping [3], if for every convergent sequence S of Y , there is

a convergent sequence L of X such that f(L) is a subsequence of S.
f is a quotient mapping [14], if U is open in Y whenever f−1(U) is open in X.
f is a pseudo-open mapping [9], if y ∈ intf(U) whenever f−1(y) ⊂ U with U open in X.

A pseudo-open mapping is a hereditarily quotient mapping in the sense of [2].
Let X be a space and let A be a subset of X. A is sequential open [16], if for each x ∈ A

and each convergent sequence S converging to x, S is eventually in A. X is a sequential
space [16], if every sequential open subset of X is open in X. X is a Fréchet space, if for
each x ∈ A, there exists a sequence in A converging to x.

For a mapping f : X −→ Y , f is a pseudo-sequence-covering or sequentially-quotient =⇒
a f is subsequence-covering. Also, a f is quotient if and only if a f is subsequence-covering
such that Y is sequential [17].

Lemma 2.1. Let P be a countable cover for a convergent sequence S in a space X. Then
the following propositions are equivalent.

1. P is a cfp-cover for S in X,
2. P is an fcs-cover for S in X,
3. P is a cs∗-cover for S in X.
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Proof. (1) =⇒ (2) =⇒ (3). Obviously.
(3) =⇒ (1). Let H be a compact subset of S. We can assume that H is a subsequence

of S. Since P is countable, put (P)x = {Pn : n ∈ N} where x is the limit point of S.
Then H is eventually in

⋃
n≤k Pn for some k ∈ N. If not, then for any k ∈ N, H is not

eventually in
⋃

n≤k Pn. So, for every k ∈ N, there exists xnk
∈ S −

⋃
n≤k Pn. We may

assume n1 < n2 < . . . < nk−1 < nk < nk+1 < . . .. Put H ′ = {xnk
: k ∈ N} ∪ {x}, then H ′

is a subsequence of S. Since P is a cs∗-cover for S in X, there exists m ∈ N such that H ′ is
frequently in Pm. This contradicts the construction of H ′. So H is eventually in

⋃
n≤k Pn

for some k ∈ N. It implies that P is a cfp-cover for S in X. �

Lemma 2.2. Let f : X −→ Y be a mapping.
1. If P is a k-cover in X for a compact set K, then f(P) is a k-cover for f(K) in Y .
2. If P is a cfp-cover in X for a compact set K, then f(P) is a cfp-cover for f(K) in

Y .

Proof. (1). Let H be a compact subset of f(K). Then G = f−1(H) ∩K is a compact
subset of K and f(G) = H. Since P is a k-cover for K in X, there is a finite subfamily F
of P such that G ⊂

⋃
F . Hence f(F) is a finite subfamily of f(P) such that H ⊂

⋃
f(F).

It implies that f(P) is a k-cover for f(K) in Y .
(2). Let H be a compact subset of f(K). Then L = f−1(H) ∩K is a compact subset of

K satisfying f(L) = H. Since P is a cfp-cover for K in X, there is a finite subfamily F of P
such that L ⊂

⋃
{CF : F ∈ F} where CF ⊂ F , and CF is closed for every F ∈ F . Because L

is compact, every CF can be chosen compact. It implies that every f(CF ) is closed (in fact,
every f(CF ) is compact), and f(CF ) ⊂ f(F ). We get that H = f(L) ⊂

⋃
{f(CF ) : F ∈ F},

and f(F) is a finite subfamily of P. Then P is a cfp-cover for f(K) in Y . �

Theorem 2.3. The following propositions are equivalent for a space X
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1. X is a pseudo-sequence-covering π-image of a locally separable metric space,
2. X has a cover {Xλ : λ ∈ Λ}, where each Xλ has a refinement sequence {Pλ,n : n ∈ N}

of countable covers for Xλ satisfying the following conditions:
(a) For each x ∈ U with U open in X, there is n ∈ N such that⋃

{st (x,Pλ,n) : λ ∈ Λ with x ∈ Xλ} ⊂ U,

(b) For each convergent sequence S of X, there is a finite subset ΛS of Λ such that
S has a finite compact cover {Sλ : λ ∈ ΛS}, and, for each λ ∈ ΛS and n ∈ N,
Pλ,n is an fcs-cover for Sλ in Xλ.

Proof. (1) =⇒ (2). Let f : M −→ X be a pseudo-sequence-covering π-mapping from a
locally separable metric space M with a metric d onto X. Since M is a locally separable
metric space, M =

⊕
λ∈Λ Mλ where each Mλ is a separable metric space by [2, 4.4.F].

For each λ ∈ Λ, let Dλ be a countable dense subset of Mλ, and put fλ = f |Mλ
and

Xλ = fλ(Mλ). For each a ∈ Mλ and n ∈ N, put B(a, 1/n) = {b ∈ Mλ : d(a, b) < 1/n},
Bλ,n = {B(a, 1/n) : a ∈ Dλ}, and Pλ,n = fλ(Bλ,n). It is clear that {Pλ,n : n ∈ N} is a cover
sequence of countable covers for Xλ and Pλ,n+1 is a refinement of Pλ,n for every n ∈ N. We
only need to prove that conditions (a) and (b) are satisfied.

Condition (a): For each x ∈ U with U open in X. Since f is a π-mapping, d(f−1(x),M−
f−1(U)) > 2/(n− 1) for some n ∈ N. Then, for each λ ∈ Λ with x ∈ Xλ, we get

d(f−1
λ (x),Mλ − f−1

λ (Uλ)) > 2/(n− 1)

where Uλ = U ∩ Xλ. Let a ∈ Dλ and x ∈ fλ(B(a, 1/n)) ∈ Pλ,n. We shall prove that
B(a, 1/n) ⊂ f−1

λ (Uλ). In fact, if B(a, 1/n) 6⊂ f−1
λ (Uλ), then pick b ∈ B(a, 1/n)− f−1

λ (Uλ).
Note that f−1

λ (x) ∩B(a, 1/n) 6= ∅, pick c ∈ f−1
λ (x) ∩B(a, 1/n), then

d(f−1
λ (x),Mλ − f−1

λ (Uλ)) ≤ d(c, b) ≤ d(c, a) + d(a, b) < 2/n < 2/(n− 1).
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It is a contradiction. So B(a, 1/n) ⊂ f−1
λ (Uλ), thus fλ(B(a, 1/n)) ⊂ Uλ. Then st (x,Pλ,n) ⊂

Uλ. It implies that ⋃
{st (x,Pλ,n) : λ ∈ Λ with x ∈ Xλ} ⊂ U.

Condition (b): For each convergent sequence S of X, since a f is pseudo-sequence-
covering, S = f(K) for some compact subset K of M . By compactness of K, Kλ = K ∩Mλ

is compact and ΛS = {λ ∈ Λ : Kλ 6= ∅} is finite. For each λ ∈ ΛS , put Sλ = f(Kλ), then
{Sλ : λ ∈ ΛS} is a finite compact cover for S. For each n ∈ N, since Bλ,n is a cfp-cover for
Kλ in Mλ, Pλ,n is a cfp-cover for Sλ in Xλ by Lemma 2.2. It follows from Lemma 2.1 that
Pλ,n is an fcs-cover for Sλ in Xλ

(2) =⇒ (1). For each λ ∈ Λ, let x ∈ Uλ with Uλ open in Xλ. We get that Uλ = U ∩Xλ

with some U open in X. Since
⋃
{st (x,Pλ,n) : λ ∈ Λ with x ∈ Xλ} ⊂ U for some n ∈ N,

st (x,Pλ,n) ⊂ Uλ. It implies {Pλ,n : n ∈ N} is a point-star network for Xλ. Then the
Ponomarev’s system (fλ,Mλ, Xλ, {Pλ,n}) exists. Since each Pλ,n is countable, Mλ is a
separable metric space with a metric dλ described as follows.

Let a = (αn), b = (βn) ∈ Mλ. If a = b, then dλ(a, b) = 0. If a 6= b, then dλ(a, b) =
1/(min{n ∈ N : αn 6= βn}).

Put M = ⊕λ∈ΛMλ and define f : M −→ X by choosing f(a) = fλ(a) for every a ∈ Mλ

with some λ ∈ Λ. Then f is a mapping and M is a locally separable metric space with a
metric d as follows.

Let a, b ∈ M . If a, b ∈ Mλ for some λ ∈ Λ, then d(a, b) = dλ(a, b). Otherwise, d(a, b) = 1.
We only need to prove that f is a pseudo-sequence-covering π-mapping.

(a) f is a π-mapping. Let x ∈ U with U open in X, then⋃
{st (x,Pλ,n) : λ ∈ Λ with x ∈ Xλ} ⊂ U
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for some n ∈ N. So, for each λ ∈ Λ with x ∈ Xλ, we get

st (x,Pλ,n) ⊂ Uλ

where Uλ = U ∩Xλ. It implies that

dλ(f−1
λ (x),Mλ − f−1

λ (Uλ)) ≥ 1/n.

In fact, if a = (αk) ∈ Mλ such that dλ(f−1
λ (x), a) < 1/n, then there is b = (βk) ∈ f−1

λ (x)
such that dλ(a, b) < 1/n. So αk = βk if k ≤ n. Note that x ∈ Pβn

⊂ st (x,Pλ,n) ⊂ Uλ.
Then

fλ(a) ∈ Pαn = Pβn ⊂ st (x,Pλ,n) ⊂ Uλ.

Hence a ∈ f−1
λ (Uλ). It implies that dλ(f−1

λ (x), a) ≥ 1/n if a ∈ Mλ − f−1
λ (Uλ). So

dλ(f−1
λ (x),Mλ − f−1

λ (Uλ)) ≥ 1/n.

Therefore

d(f−1(x),M − f−1(U)) = inf{d(a, b) : a ∈ f−1(x), b ∈ M − f−1(U)}
= min

{
1, inf{dλ(a, b) : a ∈ f−1

λ (x), b ∈ Mλ − f−1(Uλ), λ ∈ Λ}
}
≥ 1/n > 0.

It implies that f is a π-mapping.
(b) f is pseudo-sequence-covering. For each convergent sequence S of X, there is a finite

subset ΛS of Λ such that S has a finite compact cover {Sλ : λ ∈ ΛS} and for each λ ∈ ΛS

and n ∈ N, Pλ,n is an fcs-cover for Sλ in Xλ. By Lemma 2.1 Pλ,n is a cfp-cover for Sλ in
Xλ. It follows from Lemma 13 in [12] that Sλ = fλ(Kλ) with some compact subset Kλ of
Mλ. Put K =

⋃
{Kλ : λ ∈ ΛS}, then K is a compact subset of M and f(K) = S. It implies

that f is a pseudo-sequence-covering. �

Remark. 1. For each λ ∈ Λ, {Pλ,n : n ∈ N} is a point-star network for Xλ.
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2. Since each Pλ,n is countable, every member of Pλ,n can be chosen closed in Xλ.
Hence, it is possible to replace the prefix “fcs-” in (b) of Theorem 2.3.(2) by “k-”,
“cfp-”, or “cs∗-”

By [2, 2.4.F, 2.4.G], [3, Proposition 2.1], and Theorem 2.3, we get a characterization of
pseudo-sequence-covering quotient (resp. pseudo-open) π-images of locally separable metric
spaces as follows.

Corollary 2.4. The following propositions are equivalent:
1. a space X is a pseudo-sequence-covering quotient (resp. pseudo-open) π-image of a

locally separable metric space,
2. a space X is a sequential (resp. Fréchet) space having a cover {Xλ : λ ∈ Λ}, where

each Xλ has a refinement sequence {Pλ,n : n ∈ N} of countable covers for Xλ satis-
fying conditions (a) and (b) in Theorem 2.3.(2).

In the next, we investigate pseudo-sequence-covering π-s-images of locally separable met-
ric spaces.

Corollary 2.5. The following propositions are equivalent:
1. a space X is a pseudo-sequence-covering π-s-image of a locally separable metric space,
2. a space X has a point-countable cover {Xλ : λ ∈ Λ}, where each Xλ has a refinement

sequence {Pλ,n : n ∈ N} of countable covers for Xλ satisfying conditions (a) and (b)
in Theorem 2.3.(2).

Proof. (1) =⇒ (2). By using notations and arguments in proof (1) =⇒ (2) of Theorem 2.3
again, X has a cover {Xλ : λ ∈ Λ}, where each Xλ has a refinement sequence {Pλ,n : n ∈ N}
of countable covers for Xλ satisfying conditions (a) and (b) in Theorem 2.3.(2). It suffices
to prove that {Xλ : λ ∈ Λ} is point-countable. For each x ∈ X, since f is an s-mapping,
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f−1(x) is separable in M . Then f−1(x) meets only countably many Mλ’s. It implies that
x meets only coutably many Xλ’s, i.e., {Xλ : λ ∈ Λ} is point-countable.

(2) =⇒ (1). By using notations and arguments in proof (2) =⇒ (1) of Theorem 2.3
again, X is a pseudo-sequence-covering π-image of a locally separable metric space under
the mapping f . We shall prove that f is also an s-mapping. For each x ∈ X, since
{Xλ : λ ∈ Λ} is point-countable, Λx = {λ ∈ Λ : x ∈ Xλ} is countable. Note that each Mλ

is separable metric, f−1
λ (x) is separable. It implies that f−1(x) =

⋃
{f−1

λ (x) : λ ∈ Λx} is
separable, i.e., f is an s-mapping. �

Similar to Corollary 2.4, we get the following.

Corollary 2.6. The following propositions are equivalent:
1. a space X is a pseudo-sequence-covering quotient (resp. pseudo-open) π-s-image of

a locally separable metric space,
2. a space X is a sequential (resp. Fréchet) space having a point-countable cover {Xλ :

λ ∈ Λ}, where each Xλ has a refinement sequence {Pλ,n : n ∈ N} of countable covers
for Xλ satisfying conditions (a) and (b) in Theorem 2.3.(2).
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