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ITERATIVE SOLUTIONS OF NONLINEAR EQUATIONS WITH
qb-STRONGLY ACCRETIVE OPERATORS

SHIN MIN KANG, CHI FENG anxp ZEQING LIU

ABSTRACT. Suppose that X is an arbitrary real Banach space and T : X — X
is a Lipschitz continuous ¢-strongly accretive operator or uniformly continuous
¢-strongly accretive operator. We prove that under different conditions the three-
-step iteration methods with errors converge strongly to the solution of the equation
Tx = f for a given f € X.

1. INTRODUCTION

Let X be a real Banach space with norm || - || and dual X*, and J denote the
normalized duality mapping from X into 2%~ given by

J@)={f e X" |IfIP = lla|® = (=, )}, zeX

where (-, -) is the generalized duality pairing. In this paper, I denotes the identity
operator on X, Rt and §(K) denote the set of nonnegative real numbers and the
diameter of K for any K C X, respectively. An operator T' with domain D(T") and
range R(T) in X is called ¢-strongly accretive if there exists a strictly increasing
function ¢ : Rt — RT with ¢(0) = 0 such that for any =,y € D(T) there exists
jlx —y) € J(z — y) such that

(1.1) (Te =Ty, j(x —y)) = ¢(lz —yl)llz - yll.

If there exists a positive constant k& > 0 such that (1.1) holds with ¢(||x — y||)
replaced by k||x — y||, then T is called strongly accretive. The accretive operators
were introduced independently in 1967 by Browder [1] and Kato [8]. An early
fundamental result in the theory of accretive operator, due to Browder, states the
initial value problem

d
(1.2) ;§+Tu:Q u(0) = ug
is solvable if T is locally Lipschitz and accretive on X. Martin [11] proved that if
T : X — X is strongly accretive and continuous, then 7' is subjective so that the
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equation
(1.3) Tz =f

has a solution for any given f € X. Using the Mann and Ishikawa iteration
methods with errors, Chang [3], Chidume [4], [5], Ding [7], Liu and Kang [10]
and Osilike [12], [13] obtained a few convergence theorems for Lipschitz ¢-strongly
accretive operators. Chang [2] and Yin, Liu and Lee [16] also got some convergence
theorems for uniformly continuous ¢-strongly accretive operators.

The purpose of this paper is to study the three-step iterative approximation of
solution to equation (1.3) in the case when 7' is a Lipschitz ¢-strongly accretive
operator and X is a real Banach space. We also show that if T : X — X is a
uniformly continuous ¢-strongly accretive operator, then the three-step iteration
method with errors converges strongly to the solution of equation (1.3). Our
results generalize, improve the known results in [2]-[7], [10], [12], [13] and [15].

2. PRELIMINARIES

The following Lemmas play a crucial role in the proofs of our main results.

Lemma 2.1 ([7]). Suppose that ¢ : R* — RT is a strictly increasing function
with $(0) = 0. Assume that {r,}°2q, {sn}o2o, {kn}olo and {t,}52, are sequences
of nonnegative numbers satisfying the following conditions:

o0 o0 o0
(2.1) Zk‘n<oo, Ztn<oo, an:oo
n=0 n=0 n=0

and

¢(Tn+l)

2.2) rpa1 < (L +k,)ry — SnTn
(2:2) i1 < ( ) 1+rpp + ¢<rn+1)

+t, forn > 0.

Then lim,, oo = 0.

Lemma 2.2 ([10]). Suppose that X is an arbitrary Banach space and T : X —
X is a continuous ¢-strongly accretive operator. Then the equation Tx = f has a
unique solution for any f € X.

Lemma 2.3 ([9]). Let {an}220, {Bn}2y and {vn}2, be three nonnegative
real sequences satisfying the inequality

An41 S (1 - Wn)an + wnﬁn + Tn fO?” n Z 07

where {wy 152 C [0,1], Y07 jwn = 00, limy o By, = 0 and >0~ o vn < 00. Then
lim,, _, o @, = 0.

3. MAIN RESULTS

Theorem 3.1. Suppose that X is an arbitrary real Banach space and T : X —
X is a Lipschitz ¢-strongly accretive operator. Assume that {u,}°2, {vn}22,,
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{wn }22, are sequences in X and {a,}22 ¢, {bn}2, and {c,}22, are sequences in
[0,1] such that {||w,|[}32, s bounded and

o0 o0 o0 o0
(3.1) Zai < 00, Zanbn < 00, Z lun|| < oo, Z lon ]| < oo,
n=0 n=0 n=0 n=0

(3.2) Z ap, = 00.
n=0

For any given f € X, define S : X — X by Sc=f+x—Tx for allx € X. Then
the three-step iteration sequence with errors {x, 52, defined for arbitrary xo € X
by

zn = (1 = cp)xpn + cn STy + Wy,
(3.3) Yn = (1 = bp)xp + by Szn + vn,

Tnt1 = (1 —ap)xn + anSyn + tn, n>0
converges strongly to the unique solution q of the equation Tx = f. Moreover
|Zne1 —ql| < [1+ 3+ 3L+ LYa2 + L(1 + L*)anb,)||zn — 4|
(3.4) — A(nt1, Q)anllzn — gl + anby L*(3 + L)|Jwy||
+ anL(3 + L)|Jvall + (3 + L) ||un|

forn >0, where A(z,y) = w20 =y € 0.1) forz,y € X.

Proof. Tt follows from Lemma 2.2 that the equation Tx = f has a unique
solution ¢ € X. Let L’ denote the Lipschitz constant of T. From the definition
of S we know that ¢ is a fixed point of S and S is also Lipschitz with constant
L =1+ L' Thus for any z,y € X, there exists j(z — y) € J(x — y) such that

(I =8)z— (I = 8)y.j(x—y)) = Az, y) |z — yl*
This implies that
(I=S—A(z,y))z—(I =5 = Az,y)y,j(z —y)) 20

and it follows from Lemma 1.1 of Kato [8] that
3:5) |z —yll <lle—y+r[I =5 - Alz,y))z = (I = 5 = A(z,y))y]
for ,y € X and r > 0. From (3.3) we conclude that for each n >0

Ty = Tptl + AnTp — A SYn — Up
=14+ an)Tny1 +an(I =S — A(Tnt1,9)Tn+1 — (I — A(Tn+1,9))anzn

+ an(S2nt1 = Syn) + (2 = Alwnt1,9))as (zn — Syn)

— 14 (2 - A(znt1, q))an]un

(3.6)

and

B.7) ¢=00+an)g+an(l =5 = Al@ni1,9))qg — (I = A(@n41,9))ang.
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It follows from (3.5)—(3.7) that
[#n — qll
=111+ an)xpnt1 + an(I =S — A(xpt1,9))Tnt1 — (L — A(Znt1,9))any
+ an(STpi1 — Syn) + (2 - A(xn-i-lvq))ai(xn — Syn)
— [T+ (2 = A@nt1,9))an]un — (1 +an)g —an(l — S — A(2nt1,9))q
+ (I = A(Znt1,9))ang|l

An

> (14 an)||Tn1 — g+ (I =S —A(@n+1,9))Tnt1

1+ay

<ISAme@»4a41A@mmqmwnm

— (2 Alzp41, Q))aiuxn = Synll — anl|Szni1 — Syul|
=1+ 2= Al@ns1, 0)an]|uall
> (1+an)l|nt1 — qll = an(l = A(@ni1,9) |20 — 4
— (2 Alzp41, q))ai\lwn = Synll — anl|Szni1 — Synl|
-1+ 2= A(@n+1,9)an]uall,
which implies that
[zn+1 — qll
< 14+ (1 - A(znt1,9)
- 1+a,
B8+ anllSenss = Syall + [+ (2 = A1, 0))an] funl
< (1= Awpi1,9)an + ai)”xn —q|l + 2a721||$n — Synll
+ an[|STrt1 — Syn|l + (1 + 2an)||us||
for n > 0. By (3.3) we get that
o —all < (1= ea)l2n — all + nll Sz — gl + ]
(3.9) < (L =cn)llzn = qll + Lenflzn — gl + [Jwa]
< Lllen — gll + lwnll,

an
2n — gl + (2 — A(Tnt1,9))a |20 — Syn|

(1 =bn)llzn = qll + ballSzn — gl + [lvn]]

[ym —all <
< (L= ba)llzn = gl + Loullzn — gl + l[vall,

(3.10)

B11) zn = Sznll < llzn — all + (1520 — gll < [lzn — gl + Lllzn — qll;

(3.12) 2n = Ynll < bnlln — Sznll + [on]]
and
(3.13) 1Sy — ynll < 1Sy — all + lyn — all < (1 + L)||yn — 4l

for n > 0. From (3.9)—(3.13) we obtain that
(3.14) lzn = Synll < (1 + L*)[l2n — gll + L2bn|wn | + Lilvn||
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and
[Snt1 — Synll < (Lbyp + L%by — Lanby, — Layby, + L?ayn, + L'ay)|2n — q||
(3.15) + (L?by + LPanby)||wn || + (L + L?an)|val| + Llun||
for n > 0. It follows from (3.8), (3.14) and (3.15) that
[2n41 =gl <1+ (34 3L% + L)ap + L(1 + L*)anby,]||lzn — g
(3.16) = A(@n41, @)anllzn — all + anbnL?(3 + L) | w||
+ B+ L)an[lvn|l + (3 + L)|uall

for n > 0. Set

o= 20 —ql, kn=(34+3L>+LYa? + L(1+ L*)axb,, 5, = an,

tn = anby L*(3 + L)||wy|| + anL(3 + L)||va| + (3 + L)|lun|  for n > 0.
Then (3.16) yields that

A(141)
T+ 7rne1 +0(rnsr)

It follows from (3.1), (3.2), (3.17) and Lemma 2.1 that r,, — 0 as n — oo. That is
T, — q as n — o0o. This completes the proof. O

(3.17) rpp1 < (L+kp)rn — SnTn +t, forn >0.

Remark 3.2. Theorem 3.1 extends Theorem 5.2 of [3], Theorem 1 of [4],
Theorem 2 of [5], Theorem 1 of [6], Theorem 3.1 of [10], Theorem 1 of [12],
Theorem 1 of [13] and Theorem 4.1 of [15].

Theorem 3.3. Let X, {un}22 o, {vn}S0, {wn}2y, {an}y, {0}, and
{en}22, be as in Theorem 3.1 and T : D(T) C X — X be a Lipschitz ¢-strongly
accretive operator. Suppose that the equation Tx = f has a solution ¢ € D(T)
for some f € X. Assume that the sequences {xn}2 ., {yn}>y and {z,}22,
generated from an arbitrary xo € D(T) by (3.3) are contained in D(T). Then
{2350, {Un}sey and {z,}22, converge strongly to q and satisfied (3.4).

The proof of Theorem 3.3 uses the same idea as that of Theorem 3.1. So we
omit it.

Remark 3.4. Theorem 3.1 in [7] and Theorem 3.2 in [10] are special cases of
our Theorem 3.3.

Theorem 3.5. Suppose that X is an arbitrary real Banach space andT : X — X
is a uniformly continuous ¢-strongly accretive operator, and the range of either
(I =T) orT is bounded. For any f € X, define S: X - X by Se=f+x—Tx
for all x € X and the three-step iteration sequence with errors {x,}5% by

T, U, Vo, Wo € X,

Zn = a'z, + b’ Sz, + cw,,
(3.18) e e iy
Yn = QpTn + b, Sz, + ¢, Un,

T+l = QnTp + b SYn + cpn, n >0,
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where {un 152, {vn}22, and {w,}°2, are arbitrary bounded sequences in X and

{an}nzo, {bn}nlo: {en}nZo, {an}nlo {Uh}nto, {cn}nio, {an}iio, {On}nio and
{ch}o2 ) are real sequences in [0,1] satisfying the following conditions

an+bn+cn:17 aiz+bil+6/n:1’

3.19
(3.19) ar + b +cr =1, bp+ec, €(0,1), n>0,
= c
3.20 E b, =400, lim b, = lim b}, = lim ¢/, = lim =0
( ) o n—oo n—oo n— o0 n—oo bn +cn

Then the sequence {x,}52, converges strongly to the unique solution of the equa-
tion Tx = f.

Proof. 1t follows from Lemma 2.2 that the equation Tx = f has a unique
solution ¢ € X. By (1.2) we have

(Tw =Ty, j(z —y)) = (I = S)z = (I = Sy, j(z —y)) = Az, y)llz — y|*,

where A(z,y) = 1+”£f2‘”ﬁf¢y(lll‘)x_y”) € [0,1) for z,y € X. This implies that

(I =5 —=Alz,y))r = (I =5 = Az, )y, j(z —y)) > 0
for z,y € X. It follows from Lemma 1.1 of Kato [8] that
B21) |z =yl <llz—y+r[(l =5 = Alz,y))x — (I =5 = Az, )yl

for 2,y € X and r > 0. Now we show that R(S) is bounded. If R(I — T) is
bounded, then

Sz — Syll = (I = Tz — (I - T)yll < 8(R(L —T))
for z,y € X. If R(T) is bounded, we get that
1Sz = Syll = [z —y) = (Tz = Ty)|
<o~ (IT2 = Tyl)) + || Tz — Ty||
< ¢ (O(R(T))) + 6(R(T))
for z,y € X. Hence R(S) is bounded. Put
dy = by + Cp, d, =V, +c, Al =b+cr forn>0

and
D = max{||xo — ¢,
(3.22) {llzo — 4l
sup{||x - (]” HES {unvvmmefmSymSZn in > 0}}}
By (3.18) and (3.22) we conclude that
(323)  max{zn—all, lvn —all 5 —al} <D forn>0.
Using (3.18) we obtain that
(1 - dn>$n = Tp+4+1 — dnsyn - Cn(un - Syn)
(324) = [1 - (1 - A(xn+17Q))dn]xn+1 + dn(I -5 - A(xn-‘rla Q))xn+1
+dn(Szpi1 — Syn) — cn(un — Syn).
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Note that
(325) (1 - dn)q = [1 - (1 - A(‘rnJrlv Q))dn]q + dn(I -5 - A(anrlv Q))q~
It follows from (3.21) and (3.23)—(3.25) that
(1 - dn)”xn - QH
> [1— (1= A(@nt1,9)dn]l|Tni1 — g
d
+ n I—-8—A(zni1,9))Tn
= (1= Awnys,a)dn (@nt1,0))nts
(I -8~ A(xn—i-lv(I))Q]” — dp||STrt1 — Synll — cnllun — Syall
> [1—(1—A(zny1,9)dn]llTn1 — qll = dullSTri1 — Synll — 2Dc,.

That is

||xn+1 - QH
< L d 2 — gl
ST Alwad,
(3.26)
i dn 152 msr — Syall + 2Dcn
Xy —
T— (1= A@urn)dn 2 T T 0 = A, 0)da

< [1=(1 = A@nt1,0))dn]llzn — gl + Mdy||Stri1 — Synl| + Men
for n > 0, where M is some constant. In view of (3.18)—(3.20) we infer that
[Zn41 = Ynll < [2n+1 = @nll + lyn — znl|
< bullSyn — znll + enllun — zpll + 0,120 — zall + ¢ lvn — 24l
< bullSyn — x|l + enllun — zall + 0, [1S2n — zall + e llvn — @4l
+ b, (0n 1Sz — 2| + e l|wn — za])
<2D(d, +d,, + b}, d)) — 0
as n — 0o. Since S is uniformly continuous, we have
(3.27) [Sxpt1 — Synll — 0 asn — oc.

Set inf{A(xnt1,9) : n > 0} = r. We claim that » = 0. If not, then r > 0. It is
easy to check that

lXner — ¢l < (1 =rdu)||lzn — ql| + Mdy||Srni1 — Synll + Me, for n > 0.

Put
Cp =tndp, ap= ”xn - Q||7 Wp = Tdy,

B = Mr=*(|Szns1 — Synll +tn), Yn=0 forn >0.
(3.2) ensures that t, — 0 as n — oo. It follows from (3.20), (3.27) and Lemma 2.3
that w,, € (0,1] with >° jw, = o0, limy e By = 0, Y0’ g < 0. So
|z — ¢q|| — 0 as n — oo, which means that » = 0. This is a contradiction.
Thus r = 0 and there exists a subsequence {||zn,+1 — ¢l/}720 of {||zn+1 — qll}2%0
satisfying

(3.28) |€n,+1 — ¢l = 0 asi— oco.
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From (3.28) and (3.29) we conclude that for given e > 0 there exists a positive
integer m such that for n > m,

(3.29) [€n,+1 =gl <e

and

1
(3.30) M| Szpt1 — Syn| + M;i < min {257 qﬁ(g)g}

Now we claim that
(3.31) |z, +; —ql| <e forj>1.
In fact (3.29) means that (3.31) holds for 7 = 1. Assume that (3.31) holds for
j=k If ||xn,,+k+1 — ql| > €, we get that
[E—— ]|
S wn,+& = all + Mdn,, 4 kll STn,, +k41 = SYntkll + Men,, 4k

3.32 4L ¢(€>€}
( ) S6+mm{26’1+¢(§’5)+§6 dn,, +k

| o

< —e¢.

S o

Note that ¢(||zn,, +x+1 — ql]) > ¢(g). From (3.32) we get that

L 6E)
= 3 3.
By virtue of (3.26) (3.30) and (3.33) we obtain that

(3.33) A(Tp,, +k+159)

T+ kt1 — 4l

oe): )
<(1- - dn Ttk —
(1 ot lmsn

+ Mdp,, +k1STn,, +k+1 — SYn 1kl + Men,, 1k

p(e)e ) . {1 b(e)e }
<|\l1—-———F———=d,, e+ming —e, ——="——=— ¢dp, +k
—( 1+ ¢(3e) + 3c " ** 27 1+ ¢(3e) + 3¢ h
<e.
That is

€ < |lzn,,+k+1 — ¢l <,

which is a contradiction. Hence ||z, +x+1 —¢|| < €. By induction (3.29) holds for
j > 1. Thus (3.31) yields that x,, — ¢ as n — oo. This completes the proof. [

Remark 3.6. Theorem 3.5 extends and improves Theorem 3.4 in [2] and The-
orem 3.1 in [16].
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