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ITERATIVE SOLUTIONS OF NONLINEAR EQUATIONS WITH
φ-STRONGLY ACCRETIVE OPERATORS

SHIN MIN KANG, CHI FENG and ZEQING LIU

Abstract. Suppose that X is an arbitrary real Banach space and T : X → X

is a Lipschitz continuous φ-strongly accretive operator or uniformly continuous
φ-strongly accretive operator. We prove that under different conditions the three-

-step iteration methods with errors converge strongly to the solution of the equation

Tx = f for a given f ∈ X.

1. Introduction

Let X be a real Banach space with norm ‖ · ‖ and dual X∗, and J denote the
normalized duality mapping from X into 2X∗

given by

J(x) = {f ∈ X∗ : ‖f‖2 = ‖x‖2 = 〈x, f〉}, x ∈ X,

where 〈·, ·〉 is the generalized duality pairing. In this paper, I denotes the identity
operator on X, R+ and δ(K) denote the set of nonnegative real numbers and the
diameter of K for any K ⊆ X, respectively. An operator T with domain D(T ) and
range R(T ) in X is called φ-strongly accretive if there exists a strictly increasing
function φ : R+ → R+ with φ(0) = 0 such that for any x, y ∈ D(T ) there exists
j(x− y) ∈ J(x− y) such that

〈Tx− Ty, j(x− y)〉 ≥ φ(‖x− y‖)‖x− y‖.(1.1)

If there exists a positive constant k > 0 such that (1.1) holds with φ(‖x − y‖)
replaced by k‖x− y‖, then T is called strongly accretive. The accretive operators
were introduced independently in 1967 by Browder [1] and Kato [8]. An early
fundamental result in the theory of accretive operator, due to Browder, states the
initial value problem

du

dt
+ Tu = 0, u(0) = u0(1.2)

is solvable if T is locally Lipschitz and accretive on X. Martin [11] proved that if
T : X → X is strongly accretive and continuous, then T is subjective so that the
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equation

Tx = f(1.3)

has a solution for any given f ∈ X. Using the Mann and Ishikawa iteration
methods with errors, Chang [3], Chidume [4], [5], Ding [7], Liu and Kang [10]
and Osilike [12], [13] obtained a few convergence theorems for Lipschitz φ-strongly
accretive operators. Chang [2] and Yin, Liu and Lee [16] also got some convergence
theorems for uniformly continuous φ-strongly accretive operators.

The purpose of this paper is to study the three-step iterative approximation of
solution to equation (1.3) in the case when T is a Lipschitz φ-strongly accretive
operator and X is a real Banach space. We also show that if T : X → X is a
uniformly continuous φ-strongly accretive operator, then the three-step iteration
method with errors converges strongly to the solution of equation (1.3). Our
results generalize, improve the known results in [2]–[7], [10], [12], [13] and [15].

2. Preliminaries

The following Lemmas play a crucial role in the proofs of our main results.

Lemma 2.1 ([7]). Suppose that φ : R+ → R+ is a strictly increasing function
with φ(0) = 0. Assume that {rn}∞n=0, {sn}∞n=0, {kn}∞n=0 and {tn}∞n=0 are sequences
of nonnegative numbers satisfying the following conditions:

∞∑
n=0

kn < ∞,
∞∑

n=0

tn < ∞,
∞∑

n=0

sn = ∞(2.1)

and

rn+1 ≤ (1 + kn)rn − snrn
φ(rn+1)

1 + rn+1 + φ(rn+1)
+ tn for n ≥ 0.(2.2)

Then limn→∞ rn = 0.

Lemma 2.2 ([10]). Suppose that X is an arbitrary Banach space and T : X →
X is a continuous φ-strongly accretive operator. Then the equation Tx = f has a
unique solution for any f ∈ X.

Lemma 2.3 ([9]). Let {αn}∞n=0, {βn}∞n=0 and {γn}∞n=0 be three nonnegative
real sequences satisfying the inequality

αn+1 ≤ (1− ωn)αn + ωnβn + γn for n ≥ 0,

where {ωn}∞n=0 ⊂ [0, 1],
∑∞

n=0 ωn = ∞, limn→∞ βn = 0 and
∑∞

n=0 γn < ∞. Then
limn→∞ αn = 0.

3. Main Results

Theorem 3.1. Suppose that X is an arbitrary real Banach space and T : X →
X is a Lipschitz φ-strongly accretive operator. Assume that {un}∞n=0, {vn}∞n=0,
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{wn}∞n=0 are sequences in X and {an}∞n=0, {bn}∞n=0 and {cn}∞n=0 are sequences in
[0, 1] such that {‖wn‖}∞n=0 is bounded and

∞∑
n=0

a2
n < ∞,

∞∑
n=0

anbn < ∞,
∞∑

n=0

‖un‖ < ∞,
∞∑

n=0

‖vn‖ < ∞,(3.1)

∞∑
n=0

an = ∞.(3.2)

For any given f ∈ X, define S : X → X by Sx = f + x− Tx for all x ∈ X. Then
the three-step iteration sequence with errors {xn}∞n=0 defined for arbitrary x0 ∈ X
by

zn = (1− cn)xn + cnSxn + wn,

yn = (1− bn)xn + bnSzn + vn,

xn+1 = (1− an)xn + anSyn + un, n ≥ 0
(3.3)

converges strongly to the unique solution q of the equation Tx = f . Moreover

‖xn+1 − q‖ ≤ [1 + (3 + 3L3 + L4)a2
n + L(1 + L2)anbn]‖xn − q‖

−A(xn+1, q)an‖xn − q‖+ anbnL2(3 + L)‖wn‖
+ anL(3 + L)‖vn‖+ (3 + L)‖un‖

(3.4)

for n ≥ 0, where A(x, y) = φ(‖x−y‖)
1+‖x−y‖+φ(‖x−y‖) ∈ [0, 1) for x, y ∈ X.

Proof. It follows from Lemma 2.2 that the equation Tx = f has a unique
solution q ∈ X. Let L′ denote the Lipschitz constant of T . From the definition
of S we know that q is a fixed point of S and S is also Lipschitz with constant
L = 1 + L′. Thus for any x, y ∈ X, there exists j(x− y) ∈ J(x− y) such that

〈(I − S)x− (I − S)y, j(x− y)〉 ≥ A(x, y)‖x− y‖2.

This implies that

〈(I − S −A(x, y))x− (I − S −A(x, y))y, j(x− y)〉 ≥ 0

and it follows from Lemma 1.1 of Kato [8] that

‖x− y‖ ≤ ‖x− y + r[(I − S −A(x, y))x− (I − S −A(x, y))y]‖(3.5)

for x, y ∈ X and r > 0. From (3.3) we conclude that for each n ≥ 0

xn = xn+1 + anxn − anSyn − un

= (1 + an)xn+1 + an(I − S −A(xn+1, q))xn+1 − (I −A(xn+1, q))anxn

+ an(Sxn+1 − Syn) + (2−A(xn+1, q))a2
n(xn − Syn)

− [1 + (2−A(xn+1, q))an]un

(3.6)

and

q = (1 + an)q + an(I − S −A(xn+1, q))q − (I −A(xn+1, q))anq.(3.7)
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It follows from (3.5)–(3.7) that

‖xn − q‖
= ‖(1 + an)xn+1 + an(I − S −A(xn+1, q))xn+1 − (I −A(xn+1, q))anxn

+ an(Sxn+1 − Syn) + (2−A(xn+1, q))a2
n(xn − Syn)

− [1 + (2−A(xn+1, q))an]un − (1 + an)q − an(I − S −A(xn+1, q))q

+ (I −A(xn+1, q))anq‖

≥ (1 + an)
∥∥∥∥xn+1 − q +

an

1 + an
[(I − S −A(xn+1, q))xn+1

− (I − S −A(xn+1, q))q
∥∥∥∥− an(1−A(xn+1, q))‖xn − q‖

− (2−A(xn+1, q))a2
n‖xn − Syn‖ − an‖Sxn+1 − Syn‖

− [1 + (2−A(xn+1, q))an]‖un‖
≥ (1 + an)‖xn+1 − q‖ − an(1−A(xn+1, q))‖xn − q‖
− (2−A(xn+1, q))a2

n‖xn − Syn‖ − an‖Sxn+1 − Syn‖
− [1 + (2−A(xn+1, q))an]‖un‖,

which implies that
‖xn+1 − q‖

≤ 1 + (1−A(xn+1, q))an

1 + an
‖xn − q‖+ (2−A(xn+1, q))a2

n‖xn − Syn‖

+ an‖Sxn+1 − Syn‖+ [1 + (2−A(xn+1, q))an]‖un‖
≤ (1−A(xn+1, q)an + a2

n)‖xn − q‖+ 2a2
n‖xn − Syn‖

+ an‖Sxn+1 − Syn‖+ (1 + 2an)‖un‖

(3.8)

for n ≥ 0. By (3.3) we get that

‖zn − q‖ ≤ (1− cn)‖xn − q‖+ cn‖Sxn − q‖+ ‖wn‖
≤ (1− cn)‖xn − q‖+ Lcn‖xn − q‖+ ‖wn‖
≤ L‖xn − q‖+ ‖wn‖,

(3.9)

‖yn − q‖ ≤ (1− bn)‖xn − q‖+ bn‖Szn − q‖+ ‖vn‖
≤ (1− bn)‖xn − q‖+ Lbn‖zn − q‖+ ‖vn‖,

(3.10)

‖xn − Szn‖ ≤ ‖xn − q‖+ ‖Szn − q‖ ≤ ‖xn − q‖+ L‖zn − q‖,(3.11)

‖xn − yn‖ ≤ bn‖xn − Szn‖+ ‖vn‖(3.12)

and

‖Syn − yn‖ ≤ ‖Syn − q‖+ ‖yn − q‖ ≤ (1 + L)‖yn − q‖(3.13)

for n ≥ 0. From (3.9)–(3.13) we obtain that

‖xn − Syn‖ ≤ (1 + L3)‖xn − q‖+ L2bn‖wn‖+ L‖vn‖(3.14)
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and

‖Sxn+1 − Syn‖ ≤ (Lbn + L3bn − Lanbn − L3anbn + L3an + L4an)‖xn − q‖
+ (L2bn + L3anbn)‖wn‖+ (L + L2an)‖vn‖+ L‖un‖(3.15)

for n ≥ 0. It follows from (3.8), (3.14) and (3.15) that

‖xn+1 − q‖ ≤ [1 + (3 + 3L3 + L4)a2
n + L(1 + L2)anbn]‖xn − q‖

−A(xn+1, q)an‖xn − q‖+ anbnL2(3 + L)‖wn‖
+ (3 + L)an‖vn‖+ (3 + L)‖un‖

(3.16)

for n ≥ 0. Set

rn = ‖xn − q‖, kn = (3 + 3L3 + L4)a2
n + L(1 + L2)anbn, sn = an,

tn = anbnL2(3 + L)‖wn‖+ anL(3 + L)‖vn‖+ (3 + L)‖un‖ for n ≥ 0.

Then (3.16) yields that

rn+1 ≤ (1 + kn)rn − snrn
φ(rn+1)

1 + rn+1 + φ(rn+1)
+ tn for n ≥ 0.(3.17)

It follows from (3.1), (3.2), (3.17) and Lemma 2.1 that rn → 0 as n →∞. That is
xn → q as n →∞. This completes the proof. �

Remark 3.2. Theorem 3.1 extends Theorem 5.2 of [3], Theorem 1 of [4],
Theorem 2 of [5], Theorem 1 of [6], Theorem 3.1 of [10], Theorem 1 of [12],
Theorem 1 of [13] and Theorem 4.1 of [15].

Theorem 3.3. Let X, {un}∞n=0, {vn}∞n=0, {wn}∞n=0, {an}∞n=0, {bn}∞n=0 and
{cn}∞n=0 be as in Theorem 3.1 and T : D(T ) ⊂ X → X be a Lipschitz φ-strongly
accretive operator. Suppose that the equation Tx = f has a solution q ∈ D(T )
for some f ∈ X. Assume that the sequences {xn}∞n=0, {yn}∞n=0 and {zn}∞n=0

generated from an arbitrary x0 ∈ D(T ) by (3.3) are contained in D(T ). Then
{xn}∞n=0, {yn}∞n=0 and {zn}∞n=0 converge strongly to q and satisfied (3.4).

The proof of Theorem 3.3 uses the same idea as that of Theorem 3.1. So we
omit it.

Remark 3.4. Theorem 3.1 in [7] and Theorem 3.2 in [10] are special cases of
our Theorem 3.3.

Theorem 3.5. Suppose that X is an arbitrary real Banach space and T : X→X
is a uniformly continuous φ-strongly accretive operator, and the range of either
(I − T ) or T is bounded. For any f ∈ X, define S : X → X by Sx = f + x− Tx
for all x ∈ X and the three-step iteration sequence with errors {xn}∞n=0 by

x0, u0, v0, w0 ∈ X,

zn = a′′nxn + b′′nSxn + c′′nwn,

yn = a′nxn + b′nSzn + c′nvn,

xn+1 = anxn + bnSyn + cnun, n ≥ 0,

(3.18)
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where {un}∞n=0, {vn}∞n=0 and {wn}∞n=0 are arbitrary bounded sequences in X and
{an}∞n=0, {bn}∞n=0, {cn}∞n=0, {a′n}∞n=0, {b′n}∞n=0, {c′n}∞n=0, {a′′n}∞n=0, {b′′n}∞n=0 and
{c′′n}∞n=0 are real sequences in [0, 1] satisfying the following conditions

an + bn + cn = 1, a′n + b′n + c′n = 1,

a′′n + b′′n + c′′n = 1, bn + cn ∈ (0, 1), n ≥ 0,
(3.19)

∞∑
n=0

bn = +∞, lim
n→∞

bn = lim
n→∞

b′n = lim
n→∞

c′n = lim
n→∞

cn

bn + cn
= 0.(3.20)

Then the sequence {xn}∞n=0 converges strongly to the unique solution of the equa-
tion Tx = f .

Proof. It follows from Lemma 2.2 that the equation Tx = f has a unique
solution q ∈ X. By (1.2) we have

〈Tx− Ty, j(x− y)〉 = 〈(I − S)x− (I − S)y, j(x− y)〉 ≥ A(x, y)‖x− y‖2,

where A(x, y) = φ(‖x−y‖)
1+‖x−y‖+φ(‖x−y‖) ∈ [0, 1) for x, y ∈ X. This implies that

〈(I − S −A(x, y))x− (I − S −A(x, y))y, j(x− y)〉 ≥ 0

for x, y ∈ X. It follows from Lemma 1.1 of Kato [8] that

‖x− y‖ ≤ ‖x− y + r[(I − S −A(x, y))x− (I − S −A(x, y))y]‖(3.21)

for x, y ∈ X and r > 0. Now we show that R(S) is bounded. If R(I − T ) is
bounded, then

‖Sx− Sy‖ = ‖(I − T )x− (I − T )y‖ ≤ δ(R(I − T ))

for x, y ∈ X. If R(T ) is bounded, we get that

‖Sx− Sy‖ = ‖(x− y)− (Tx− Ty)‖
≤ φ−1(‖Tx− Ty‖) + ‖Tx− Ty‖
≤ φ−1(δ(R(T ))) + δ(R(T ))

for x, y ∈ X. Hence R(S) is bounded. Put

dn = bn + cn, d′n = b′n + c′n, d′′n = b′′n + c′′n for n ≥ 0

and
D = max{‖x0 − q‖,

sup{‖x− q‖ : x ∈ {un, vn, wn, Sxn, Syn, Szn : n ≥ 0}}}.
(3.22)

By (3.18) and (3.22) we conclude that

max{‖xn − q‖, ‖yn − q‖, ‖zn − q‖} ≤ D for n ≥ 0.(3.23)

Using (3.18) we obtain that

(1− dn)xn = xn+1 − dnSyn − cn(un − Syn)

= [1− (1−A(xn+1, q))dn]xn+1 + dn(I − S −A(xn+1, q))xn+1

+ dn(Sxn+1 − Syn)− cn(un − Syn).
(3.24)
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Note that

(1− dn)q = [1− (1−A(xn+1, q))dn]q + dn(I − S −A(xn+1, q))q.(3.25)

It follows from (3.21) and (3.23)–(3.25) that

(1− dn)‖xn − q‖
≥ [1− (1−A(xn+1, q))dn]‖xn+1 − q

+
dn

1− (1−A(xn+1, q))dn
[(I − S −A(xn+1, q))xn+1

− (I − S −A(xn+1, q))q]‖ − dn‖Sxn+1 − Syn‖ − cn‖un − Syn‖
≥ [1− (1−A(xn+1, q))dn]‖xn+1 − q‖ − dn‖Sxn+1 − Syn‖ − 2Dcn.

That is
‖xn+1 − q‖

≤ 1− dn

1− (1−A(xn+1, q))dn
‖xn − q‖

+
dn

1− (1−A(xn+1, q))dn
‖Sxn+1 − Syn‖+

2Dcn

1− (1−A(xn+1, q))dn

≤ [1− (1−A(xn+1, q))dn]‖xn − q‖+ Mdn‖Sxn+1 − Syn‖+ Mcn

(3.26)

for n ≥ 0, where M is some constant. In view of (3.18)–(3.20) we infer that

‖xn+1 − yn‖ ≤ ‖xn+1 − xn‖+ ‖yn − xn‖
≤ bn‖Syn − xn‖+ cn‖un − xn‖+ b′n‖Szn − xn‖+ c′n‖vn − xn‖
≤ bn‖Syn − xn‖+ cn‖un − xn‖+ b′n‖Szn − zn‖+ c′n‖vn − xn‖

+ b′n(b′′n‖Sxn − xn‖+ c′′n‖wn − xn‖)
≤ 2D(dn + d′n + b′nd′′n) → 0

as n →∞. Since S is uniformly continuous, we have

‖Sxn+1 − Syn‖ → 0 as n →∞.(3.27)

Set inf{A(xn+1, q) : n ≥ 0} = r. We claim that r = 0. If not, then r > 0. It is
easy to check that

‖xn+1 − q‖ ≤ (1− rdn)‖xn − q‖+ Mdn‖Sxn+1 − Syn‖+ Mcn for n ≥ 0.

Put
cn = tndn, αn = ‖xn − q‖, ωn = rdn,

βn = Mr−1(‖Sxn+1 − Syn‖+ tn), γn = 0 for n ≥ 0.

(3.2) ensures that tn → 0 as n →∞. It follows from (3.20), (3.27) and Lemma 2.3
that ωn ∈ (0, 1] with

∑∞
n=0 ωn = ∞, limn→∞ βn = 0,

∑∞
n=0 γn < ∞. So

‖xn − q‖ → 0 as n → ∞, which means that r = 0. This is a contradiction.
Thus r = 0 and there exists a subsequence {‖xni+1 − q‖}∞i=0 of {‖xn+1 − q‖}∞n=0

satisfying

‖xni+1 − q‖ → 0 as i →∞.(3.28)
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From (3.28) and (3.29) we conclude that for given ε > 0 there exists a positive
integer m such that for n ≥ m,

‖xnm+1 − q‖ < ε(3.29)

and

M‖Sxn+1 − Syn‖+ M
cn

dn
< min

{
1
2
ε,

φ(ε)ε
1 + φ( 3

2ε) + 3
2ε

}
.(3.30)

Now we claim that

‖xnm+j − q‖ < ε for j ≥ 1.(3.31)

In fact (3.29) means that (3.31) holds for j = 1. Assume that (3.31) holds for
j = k. If ‖xnm+k+1 − q‖ > ε, we get that

‖xnm+k+1 − q‖
≤ ‖xnm+k − q‖+ Mdnm+k‖Sxnm+k+1 − Synm+k‖+ Mcnm+k

≤ ε + min
{

1
2
ε,

φ(ε)ε
1 + φ( 3

2ε) + 3
2ε

}
dnm+k

≤ 3
2
ε.

(3.32)

Note that φ(‖xnm+k+1 − q‖) > φ(ε). From (3.32) we get that

A(xnm+k+1, q) ≥
φ(ε)

1 + φ( 3
2ε) + 3

2ε
.(3.33)

By virtue of (3.26) (3.30) and (3.33) we obtain that

‖xnm+k+1 − q‖

≤
(

1− φ(ε)ε
1 + φ( 3

2ε) + 3
2ε

dnm+k

)
‖xnm+k − q‖

+ Mdnm+k‖Sxnm+k+1 − Synm+k‖+ Mcnm+k

≤
(

1− φ(ε)ε
1 + φ( 3

2ε) + 3
2ε

dnm+k

)
ε + min

{
1
2
ε,

φ(ε)ε
1 + φ( 3

2ε) + 3
2ε

}
dnm+k

≤ ε.

That is
ε < ‖xnm+k+1 − q‖ ≤ ε,

which is a contradiction. Hence ‖xnm+k+1− q‖ ≤ ε. By induction (3.29) holds for
j ≥ 1. Thus (3.31) yields that xn → q as n →∞. This completes the proof. �

Remark 3.6. Theorem 3.5 extends and improves Theorem 3.4 in [2] and The-
orem 3.1 in [16].
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