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INVARIANT DIFFERENTIAL PAIRINGS

J. KROESKE

Abstract. In this paper the notion of an M -th order invariant bilinear differential pairing is

introduced and a formal definition is given. If the manifold has an AHS structure, then various
first order pairings are constructed. This yields a classification of all first order invariant bilinear
differential pairings on homogeneous spaces with an AHS structure except for certain totally
degenerate cases. Moreover higher order invariant bilinear differential pairings are constructed
on these homogeneous spaces which leads to a classification on complex projective space for
the non degenerate cases. A degenerate case corresponds to the existence of an invariant linear
differential operator.

1. Introduction

It is generally known (see [23, p. 202]), that on an arbitrary manifold M one can write down
the Lie derivative LXωb of a one-form ωb ∈ Ω1(M) with respect to a vector field Xa ∈ TM
in terms of an arbitrary torsion-free connection ∇a as

LXωb = Xa∇aωb + ωa∇bX
a,

where the indices used are abstract in the sense of [23]. This pairing is obviously linear in Xa

and in ωb, i.e. bilinear, first order and invariant in the sense that it does not depend upon a
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specific choice of connection. One can specify an equivalence class of connections and ask for
invariance under change of connection within this equivalence class. In conformal geometry,
for example, one deals with an equivalence class of connections that consists of the Levi-
Civita connections that correspond to metrics in the conformal class. This paper will mainly
deal with projective geometry and the projective equivalence class of connections consists of
those torsion-free connections which induce the same (unparameterised) geodesics. This is
equivalent (see [13], Proposition 1) to saying that ∇a and ∇̂a are in the same equivalence
class if and only if there is a one form Υa, such that

∇̂aωb = ∇aωb − 2Υ(aωb),

where round brackets around indices denoted symmetrisation, i.e. Υ(aωb) = 1
2 (Υaωb+Υbωa).

As a consequence, the difference between the two connections when acting on sections of
any weighted tensor bundle can be deduced (see [13]) and the invariance of any expression
can be checked by hand. For vector fields, for example, we have

∇̂bX
a = ∇bX

a + ΥbX
a + ΥcX

cδb
a,

so the invariance of the Lie derivative can be checked directly. It is also clear that

Xa∇[aωb]

is a first order bilinear invariant differential pairing, where square brackets around indices
denote skewing, i.e. ∇[aωb] = 1

2 (∇aωb −∇bωa). Therefore there are at least two first order
bilinear invariant pairings

TM× Ω1(M) → Ω1(M).
To obtain a more interesting example of a first order bilinear invariant differential pairing

in projective geometry, consider pairings

�2TM× Ω1(M) → O,
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where �2 denotes the second symmetric product and O is the sheaf of holomorphic (or
smooth) functions. The transformation rule for V ab ∈ �2TM under change of connection
is given by ∇̂cV

ab = ∇cV
ab + 2ΥcV

ab + 2ΥdV
d(aδc

b). This implies

V ab∇̂(aωb) = V ab∇(aωb) − 2V abΥaωb and

ωb∇̂aV ab = ωb∇aV ab + (n + 3)ωbΥaV ab,

where n = dim(M). Therefore the pairing

(n + 3)V ab∇(aωb) + 2ωb∇aV ab

does not depend upon a choice of connection within the projective class.

It is natural to ask the question of whether these are all first order bilinear invariant
differential pairings between those bundles and whether one can classify pairings between
arbitrary bundles in general. This paper takes a first step towards a classification of those
pairings and is divided into three parts:

In the first part we construct first order bilinear invariant differential pairings on all
manifolds with an AHS structure following closely and using the strategy and techniques
developed in [9]. In the flat homogeneous (complex) case all manifolds with an AHS struc-
ture are of the form G/P , where G is a complex semisimple Lie group and P is a maximal
parabolic subgroup. In this case the construction yields a generic classification of all first or-
der bilinear invariant differential pairings between irreducible homogeneous bundles except
for certain totally degenerate cases. The first order case is made particularly easy by the
fact that all first order linear invariant differential operators between so called irreducible
associated bundles are known and can be described as in [9, p. 70, Corollary 7.2]. Moreover
there is no curvature involved for first order pairings, so the formulae for the general case
do not differ from the ones in the model case of homogeneous spaces G/P .
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In the second part we develop a strategy to construct higher order invariant differential
pairings for homogeneous spaces G/P with an AHS structure. The formal setup resembles
the procedure in [6] and the basic idea that lies behind the construction of the pairings in
the second part comes from the Jantzen-Zuckermann translation principle and involves an
argument about central character.

The third part of the paper is dedicated exclusively to the flat model case G/P = CPn

and we classify (with a minor restriction on the representation) all bilinear invariant differ-
ential pairings for non excluded weights, i.e. weights that do not induce invariant operators
emanating from the bundles in question (the notion of weight will be made precise in 3.5).

The reason for working on CPn is that all linear invariant differential operators between
irreducible homogeneous bundles are standard (i.e. they correspond to individual arrows in
the BGG resolution, see [3] and [22]) and can be described as in [9, p. 65, Corollary 5.3
and p. 68, Theorem 6.5]. In fact if P = B is a Borel subgroup, then a classification of all
linear invariant operators has been given dually in terms on Verma modules in [3]. If P is
a general parabolic, then this is still an open problem, but in certain cases, like for CPn, a
classification is given in [4] and [5].

2. Conventions

2.1. Composition series

We will write composition series with the help of + signs as explained in [1, p. 1193] and [15,
p. 434], so a short exact sequence

0 → A → B → C → 0
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of modules is equivalent to writing a composition series

B = C + A.

This notation has the advantage that one can conveniently write down the subquotients of
any filtration, so a composition series

B = A0 + A1 + . . . + AN

denotes a filtration
AN = AN ⊆ AN−1 ⊆ . . . ⊆ A0 = B,

with Ai = Ai/Ai+1. It can be noted that every composition series B = A0 + A1 + . . . + AN

has a projection B → A0 and injections Aj + . . . + AN → B, for j = 0, . . . , N .

2.2. Dynkin diagrams

To denote a representation (V, ρ) of a simple Lie algebra g or a parabolic subalgebra p ⊂ g,
we write down the coefficient B(λ, α∨j ) over the j-th node in the Dynkin diagram for g,
with λ being the highest weight of the dual representation (V∗, ρ∗), B(., .) the Killing form
and the α∨j are the co-roots of the simple roots α0, . . . , αn−1 of g. The details for this
construction and the reason for this slightly odd notation is explained in [2, p. 22, 23]. To
indicate that a representation of a parabolic subalgebra p (that corresponds to a subset Sp

of the simple roots of the Lie algebra g) is being referred to, we cross through all nodes in
the Dynkin diagram for g that lie in S\Sp.

If (V, ρ) is a finite dimensional and irreducible representation of g, then all the num-
bers above the nodes have to be non-negative integers. If (V, ρ) is a finite dimensional and
irreducible representation of p, then the numbers over all nodes have to be integers and
the numbers over the uncrossed nodes have to be non-negative (these correspond to the
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irreducible representation of the semisimple part gS
0 of p). To be more precise, for a rep-

resentation of p it would be sufficient to have non-negative integers over all the uncrossed
nodes, but we will only deal with representations of p that lift to representations of P , so
we have to demand that the coefficients over the crossed through nodes are integers as well
(see [2, p. 23, Remark 3.1.6]).

2.2.1. Example. The bundle

O(k) =
k× 0• . . .

0• 0•

denotes the k-th tensor power of the hyperplane section bundle on CPn and is induced by
the one dimensional representation of p on which h, the Cartan subalgebra of g, acts as(

a 0
0 ∗

)
· z = −kaz.

The Dynkin diagram for an irreducible finite dimensional representation E of p will also
be used to denote the corresponding generalized Verma module

Mp(E) = U(g)⊗U(p) E∗,

where U(a) is the universal enveloping algebra for a Lie algebra a. More information about
generalized Verma modules can be found in [22, p. 500] and its correlation to irreducible
homogeneous vector bundles on G/P is explained in [2, p. 164]. If E is just finite dimensional,
then Mp(E) is called induced module.
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3. AHS structures

3.1. |1|-graded Lie algebras

The basic ingredient of our construction is a complex semisimple Lie group G with a |1|-
graded Lie algebra

g = g−1 ⊕ g0 ⊕ g1,

where [gi, gj ] ⊂ gi+j . We will write p = g0 ⊕ g1 and note that g±1 are commutative and
dual with respect to the Killing form. Moreover g0 is reductive and has a semisimple part
gS
0 = [g0, g0] and a one dimensional centre, that is spanned by a grading element E, such

that the decomposition of g corresponds to a decomposition into eigenspaces for the adjoint
action of E, i.e. [E,X] = jX if and only if X ∈ gj . More information and proofs about
graded Lie algebras are to be found in [11].

For consistency reasons we will state all results in the holomorphic category but the
construction carries over into the smooth category with minor modifications, see [9, p. 66]).

3.1.1. Example. Complex projective n-space CPn can be realized as G/P , with G = SLn+1C and
Lie algebra g = sln+1C with a |1|-grading

g−1 =
(

0 0
∗ 0

)
, g0 =

(
∗ 0
0 ∗

)
, g1 =

(
0 ∗
0 0

)
and gS

0 =
(

0 0
0 ∗

)
,

where the sizes of the blocks are 1× 1, 1×n, n× 1 and n×n from top left to bottom right.
The grading element E is given by

E =
( n

n+1 0
0 − 1

n+1In

)
,

where In denotes the n× n standard matrix.
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3.2. Cartan connection

The second ingredient of our construction is a Cartan Geometry (G, η, P, (g, p)) on M con-
sisting of

1. a manifold M,
2. a principal right P bundle G over M and
3. a g-valued 1-form η on G satisfying the following conditions:

(a) the map ηg : TgG −→ g is a linear isomorphism for every g ∈ G,
(b) R∗pη = Ad(p−1) ◦ η for all p ∈ P , where Rp denotes the natural right action of

an element p ∈ P in the structure group, and
(c) η(ζX) = X for all X ∈ p, where ζX is the (vertical) fundamental vector field on

G associated to X ∈ p.

Examples of Cartan Geometries are given by the flat models M = G/P with the Maurer
Cartan form ηg = (Lg−1)∗, where Lg denotes left multiplication. We will deal with a very
specific example of such a flat model in the third part of the paper.

3.3. Associated bundles

For every finite dimensional representation ρ : P → Aut(V), we can define a corresponding
associated vector bundle

V = (V, ρ) = G ×P V = (G × V)/ ∼,

where
(gp, v) ∼ (g, ρ(p)v) ∀ g ∈ G, p ∈ P and v ∈ V.

These bundles are exactly the homogeneous bundles in the flat case G/P (in general this
procedure is functorial and defines a natural vector bundle in the sense of [21]). Sections of
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this bundle can be identified with maps

s : G → V s.t. s(gp) = ρ(p−1)s(g),

for all g ∈ G and p ∈ P . We can differentiate this requirement to obtain

(ζXs)(g) = −ρ(X)s(g) ∀ X ∈ p, g ∈ G.

We will write Γ(V ) = O(G, V)P for the space of sections of V . The tangent bundle TM
and cotangent bundle Ω1(M), for example, arise via the adjoint representation of P on
g/p ∼= g−1 and its dual g∗−1

∼= g1. We will denote the bundles and sections of these bundles
by the Dynkin diagram notation for the representation that induces them. In the case of
M = CPn, for example, we write

1× 0• 0• . . .
0• 1• = TM and

−2× 1• 0• . . .
0• 0• = Ω1(M).

3.4. The invariant differential

The Cartan connection does not yield a connection on associated bundles, but we can still
define the invariant differential

∇η : O(G, V) → O(G, g∗−1 ⊗ V)

with

∇ηs(g)(X) = ∇η
Xs(g) = [η−1(X)s](g), ∀ X ∈ g−1, g ∈ G and s ∈ O(G, V).

It has to be noted that it does not take P -equivariant sections to P -equivariant sections.
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3.5. Representations of p

Since g1 is nilpotent, it acts trivially on any irreducible representation of p and so we
can denote any irreducible representation of p by the highest weight of the corresponding
representation of gS

0 and by specifying how E acts. Since E lies in the centre of g0, it will
always act by multiplication of a constant which we call, following [7], geometric weight
(or sometimes for brevity just weight). The tangent and co-tangent space g−1 and g1 have
geometric weight −1 and 1 respectively.

If h, the Cartan subalgebra of g, is chosen in such a way that all positive roots spaces
lie in g0 ∪ g1 and so that E ∈ h, then the Cartan subalgebra of gS

0 is given by hS = h ∩ gS
0

and we can denote representations of g0 by their highest weight in h∗. The representation
is finite dimensional and irreducible if the restriction of this weight to (hS)∗ is dominant
integral.

3.6. Jet bundles and invariant pairings

For every complex (or smooth) manifold M and holomorphic vector bundle V over M, we
denote by JkV the vector bundle over M of k-jets of V . The fibre of JkV over each point
x ∈M is the quotient of the space of germs of sections of V at x by the subspace of germs of
sections which vanish to order k+1 at x. Linear differential operators D : V → W of order k
between two vector bundles are in one-to-one correspondence with bundle homomorphisms
d : JkV → W (see [25, p. 183]). This motivates one to define a bilinear differential pairing
between sections of bundles V and W to sections of a bundle U by a homomorphism

d : JkV ⊗ J lW → U.

This pairing is of order M if and only if
1. k = l = M ,
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2. there is a subbundle B of JMV ⊗ JMW , so that there is a commutative diagram

JMV ⊗ JMW
↓ ↘ d

(JMV ⊗ JMW )/B
φ→ U

and
3. the map φ induces a formula that consist of terms in which derivatives of sections of

V are combined with derivatives of sections of W in such a way that the total order
is M (i.e. a term may consist of a k-th derivative of a section of V combined with a
(M − k)-th derivative of a section of W , for k = 0, . . . ,M).

Note that there is always a canonical choice of B as detailed in the Appendix. We will
therefore write JM (V,W ) = (JMV ⊗JMW )/B for the canonical choice of B. This is not to
be confused with the set of all M -jets of V into W as defined in [21, p. 117, Definition 12.2].

If M = G/P is a homogeneous space, then a pairing is called invariant (some authors
use the term equivariant) if it commutes with the action of G on sections of the involved
homogeneous vector bundles, which is given by (g.s)(h) = s(g−1h) for all g, h ∈ G and
s ∈ Γ(F ) (see also Lemma 1).

In general, there is no commonly accepted notion of invariance for manifolds with an
AHS (or more generally parabolic) structure (see [24, p. 193, Section 2]). We will deal
with this issue by taking a pragmatic point of view: First of all, every manifold with an
AHS structure is equipped with a distinguished class of connections (Weyl connections), as
detailed in [8, p. 42] and [9, p. 54]. A pairing is then called invariant, if φ induces a formula
that consists of terms involving an arbitrary connection from the distinguished equivalence
class, but that as a whole does not depend on its choice. This slightly delicate point will
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not play any role in this paper since we will only be constructing first order pairings on a
general manifold with AHS structure, see Lemma 1.

This is the general situation that we will be working in and we will treat the data described
above as a given AHS structure on our manifold M.

4. The first order case

In the following, we will fix two finite dimensional irreducible representations λ̃ : p → gl(V)
and ν̃ : p → gl(W) that are induced from irreducible representations of gS

0 with highest
weights λ and ν respectively and where the grading element E acts as ω1 and ω2 respectively.

In the homogeneous case G/P , the first jet bundle J1V associated to any homogeneous
vector bundle is also homogeneous: The fibre J1V of J1V at the origin P ∈ G/P consists
of germs of sections of V modulo those that vanish at P of order at least 2. This vector
space carries a representation of P that makes J1V ∼= G ×P J1V a homogeneous bundle.
In general, we can use this representation of P on the vector space J1V = V ⊕ (g1 ⊗ V) to
define an associated bundle that is exactly the first jet bundle J1V of V as defined above,
see [8, p. 56]. This construction ensures that the map

O(G, V)P 3 s 7→ (s,∇ηs) ∈ O(G, J1V)P

is well defined, i.e. maps P equivariant sections to P equivariant sections, as shown in [8,
p. 56].

There are two exact sequences associated to the first jet bundles of V and W :

0 → Ω1 ⊗ V → J1V → V → 0
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and

0 → Ω1 ⊗W → J1W → W → 0,

which are the jet exact sequences as described in [25, p. 182]. All these are associated
bundles, so on the level of p representations we have two filtered p-modules

J1V = V + g1 ⊗ V

and

J1W = W + g1 ⊗W.

Hence the tensor product has a filtration

J1V⊗ J1W = V⊗W +
V⊗ g1 ⊗W

⊕
g1 ⊗ V⊗W

+ g1 ⊗ V⊗ g1 ⊗W.

The module

J1(V, W) = J1V⊗ J1W/(g1 ⊗ V⊗ g1 ⊗W)

can, as a vector space, be written as

J1(V, W) = (V⊗W)⊕ (V⊗ g1 ⊗W)⊕ (g1 ⊗ V⊗W).

The p-module structure of J1(V,W) is, however, induced by the p-module structures of J1V
and J1W that induce the associated bundles J1V and J1W . It is defined in such a way
that the mapping

O(G, V)P ⊗O(G, W)P 3 (s, t) 7→ (s⊗ t, s⊗∇ηt,∇ηs⊗ t) ∈ O(G, J1(V, W))P
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is well defined. More precisely, it can be checked directly, following the strategy in [8, p. 56],
that the action is given by

j1(λ̃, ν̃)(Z)[(v, ϕ)⊗ (w, φ)]

=

 λ̃(Z)v ⊗ w + v ⊗ ν̃(Z)w
λ̃(Z)v ⊗ φ + v ⊗ (ν̃(Z) ◦ φ− φ ◦ adg−1(Z) + ν̃(adp(Z)(...))w)
ϕ⊗ ν̃(Z)w + (λ̃(Z) ◦ ϕ− ϕ ◦ adg−1(Z) + λ̃(adp(Z)(...))v)⊗ w

 ,

where (v, ϕ) ∈ J1V, (w, φ) ∈ J1W, the square brackets denote projection onto J1(V, W)
and the expressions ada for a subalgebra a of g stand for the usual adjoint representation
followed by the projection onto a. Indeed we must have (see 3.3)

η−1(Z).(s⊗ t, s⊗∇η
Xt,∇η

Y s⊗ t) = −j1(λ̃, ν̃)(Z).(s⊗ t, s⊗∇η
Xt,∇η

Y s⊗ t),

for all Z ∈ p and X, Y ∈ g−1. Since we can compute the left hand side, the right hand side
and therefore the representation j1(λ̃, ν̃) is uniquely defined. The reason for this setup is
given in the following lemma.

Lemma 1. First order bilinear invariant differential pairings

Γ(V )× Γ(W ) → Γ(E)

in the flat homogeneous case G/P are in one-to-one correspondence with p-module homo-
morphisms

J1(V, W) → E.

In the general AHS case, these homomorphisms yield first order bilinear differential pairings,
which are invariant in the sense that they produce formulae which do not depend on a
particular choice of connection within the distinguished class.
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Proof. A first order linear differential operator φ : Γ(V ) → Γ(F ) corresponds to a homo-
morphism J1V → F (by definition of the jet bundles). In the flat homogeneous case G/P ,
an operator is called invariant if it commutes with the action of G, hence those operators
are uniquely determined by their action at the identity coset P , where they induce p-module
homomorphisms

J1V → F.

Conversely, every such p-module homomorphism induces a first order invariant linear dif-
ferential operator. Analogous reasoning shows that first order invariant bilinear differen-
tial pairings as defined in 3.6 are in one-to-one correspondence with p-module homomor-
phisms J1V ⊗ J1W → E that factor through an appropriate subbundle. This subbundle
is g1 ⊗ V ⊗ g1 ⊗ W, because expressions derived from this subbundle correspond to terms
with two derivatives and they have an incorrect geometric weight. To be more precise, the
irreducible components of g1 ⊗V⊗ g1 ⊗W have geometric weight ω1 + ω2 + 2, whereas the
irreducible components of g1 ⊗ V ⊗W have geometric weight ω1 + ω2 + 1, due to the fact
that g1 has geometric weight 1. This implies that in formulae we will only be allowed to
use terms that have derivatives in either sections of V or sections of W but not in both.
Algebraically this means that we can factor out g1 ⊗ V⊗ g1 ⊗W of J1V⊗ J1W.

In the general AHS case, as mentioned above, the p-modules structure of J1(V, W) ensures
that the mapping

O(G, V)P ⊗O(G, W)P 3 (s, t) 7→ (s⊗ t, s⊗∇ηt,∇ηs⊗ t) ∈ O(G, J1(V, W))P

is well defined. Following [9, p. 54], we note that the Cartan connection is uniquely defined
by the AHS structure, so the differential pairings that we obtain from p-module homomor-
phisms J1(V, W) → E combined with this map do not depend upon a specific choice of
connection within the distinguished class (see [24, p. 194, 197]). Pairings that arise via this
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construction are strongly invariant in the sense of [10, p. 102]. More information about
canonical Cartan connections associated to AHS structures can be found in [8]. �

Looking at the exact sequence of p-modules

0 →
g1 ⊗ V⊗W

⊕
V⊗ g1 ⊗W

→ J1(V, W) → V⊗W → 0,

it is clear that a p-module homomorphism J1(V, W) → E onto an irreducible p-module E
induces a gS

0 -homomorphism

g1 ⊗ V⊗W
⊕

V⊗ g1 ⊗W

π→ E

and so the only candidates for E are the irreducible components of g1 ⊗ V ⊗W viewed as
gS
0 -modules. However, not every projection π is a p-module homomorphism. In order to

determine which π are allowed, it can be noted that the action of g0 on J1(V, W) is just
the tensorial one, so J1(V, W) can be split as a g0-module. But g1 does not act trivially
as on any irreducible p-module, so in order to check that a specific projection is indeed a
p-module homomorphism and not just a gS

0 -module homomorphism the image of the action
of g1, when acting in J1(V, W), has to vanish under π. On the other hand this is obviously
sufficient for π to be a p-module homomorphism. We therefore compute for Z ∈ g1:

j1(λ̃, ν̃)(Z)[(v, ϕ)⊗ (w, φ)] = (0, v ⊗ ν̃(adp(Z)(...))w, λ̃(adp(Z)(...))v ⊗ w)

and call this term obstruction term.
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In order to obtain an explicit formula for the obstruction term we will rewrite this ex-
pression: The action of an element Z ∈ g1 in J1(V, W) can be interpreted as a map

Z : V⊗W →
V⊗ g1 ⊗W

⊕
g1 ⊗ V⊗W

∼=
Hom(g−1, V⊗W)

⊕
Hom(g−1, V⊗W)

,

with

Z(v ⊗ w)
(

X
Y

)
=
(

v ⊗ ν̃([Z,X])w
λ̃([Z, Y ])v ⊗ w

)
.

For the following it is convenient to normalize the Killing form B(., .) to a form (., .) with
(E,E) = 1, where E is the grading element. Having done this, we introduce dual basis {ηα}
and {ξα} of g1 and g−1 respectively with respect to this form. This yields

X =
∑
α

ηα(X)ξα

for every X ∈ g−1. Writing down the obstruction term as a mapping

Φ : g1 ⊗ V⊗W →
V⊗ g1 ⊗W

⊕
g1 ⊗ V⊗W

, Z ⊗ v ⊗ w 7→ Z(v ⊗ w),

with

Φ(Z ⊗ v ⊗ w) =
(

v ⊗
∑

α ηα ⊗ ν̃([Z, ξα])w∑
α ηα ⊗ λ̃([Z, ξα])v ⊗ w

)
,

allows one to use the Casimir operator to turn this into an easier expression given by the
following lemma.
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Lemma 2. A projection

π :
V⊗ g1 ⊗W

⊕
g1 ⊗ V⊗W

→ E

onto an irreducible component E of the gS
0 tensor product V⊗ g1 ⊗W is a p-module homo-

morphism if and only if π ◦ Φ = 0. The mapping Φ can be written as

Φ(Z ⊗ v ⊗ w) =
(

v ⊗
∑

σ(ω2 − cνσ)πνσ(Z ⊗ w)∑
τ (ω1 − cλτ )πλτ (Z ⊗ v)⊗ w

)
,

where τ and σ range over the highest weights of the irreducible components of g1 ⊗ V and
g1 ⊗ W respectively and πλτ , πνσ denote the corresponding projections. The constants cγδ

are defined by

cγδ = −1
2
[(δ, δ + 2ρ)− (γ, γ + 2ρ)− (α, α + 2ρ)],

where α is the highest weight of g1 and

ρ = ρgS
0

=
1
2

∑
β∈∆+(gS

0 )

β,

with ∆+(gS
0 ) denoting the set of positive roots of gS

0 .

Proof. The first calculation in this direction in the conformal case was done in [16] and
the general case is proved in [9, p. 63, Lemma 4.3]. �

The decompositions g1 ⊗ V and g1 ⊗W do not have multiplicities (see [9, p. 58, 59]), so
let us write

g1 ⊗ V = V(τ1)⊕ . . .⊕ V(τr)
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and

g1 ⊗W = V(σ1)⊕ . . .⊕W(σs),

where the greek letter in the brackets denotes the highest weight of the module. These
weights all correspond to the action of gS

0 , the geometric weight of V(τi) is ω1 + 1 for every
i, since it lies in the tensor product g1⊗V and g1 has geometric weight 1. Analogously, the
geometric weight of all W(σj) is ω2 + 1.

If E is one of the irreducible components of g1 ⊗ V ⊗ W of highest weight µ, then we
denote by πi

τµ the projection V(τ)⊗W → E(i) into the i-th copy of E in the decomposition.
πj

σµ is defined analogously as the projection into the j-th copy of E in V ⊗ W(σ). Every
projection

π :
V⊗ g1 ⊗W

⊕
g1 ⊗ V⊗W

→ E

can be written as

π

(
v1 ⊗ Z1 ⊗ w1

Z2 ⊗ v2 ⊗ w2

)
=

∑
τ

∑
i

aτ,iπ
i
τµ (πλτ (Z1 ⊗ v1)⊗ w2)

+
∑

σ

∑
j

bσ,jπ
j
σµ (v2 ⊗ πνσ(Z2 ⊗ w2)) ,

for some constants aτ,i and bσ,j . In order for a projection π to be a p-homomorphism,
π ◦ Φ(Z ⊗ v ⊗ w)) = 0 has to hold for all Z ∈ g1, v ∈ V and w ∈ W. This reads
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π ◦ Φ(Z ⊗ v ⊗ w) =
∑

τ

∑
i

aτ,i(ω1 − cλτ )πi
τµ(πλτ (Z ⊗ v)⊗ w)

+
∑

σ

∑
j

bσ,j(ω2 − cνσ)πj
σµ(v ⊗ πνσ(Z ⊗ w))

= 0.

Let k denote the number of copies of E in g1 ⊗ V⊗W, then there are 2k unknowns and k
equations. Since Z, v and w are to be arbitrary and all πi

τµ(πλτ (Z ⊗ v)⊗w) lie in different
copies of E, we can think of those elements as constituting a basis {ei} of ⊕kE. The same
is true for the different πj

σµ(v⊗ πνσ(Z ⊗w)), which constitute a different basis {fj}. Hence
there is a linear isomorphism fj =

∑
i Aijei connecting those two basis and we obtain k

equations

ai(ω1 − cλτ(i)) +
∑

j

bj(ω2 − cνσ(j))Aij = 0, i = 1, . . . , k,

where τ(i) (resp. σ(j)) denotes the representation corresponding to the index i (resp. j),
i.e. the i-th (resp. j-th) copy of E lies in V(τ(i)) ⊗W (resp. in V ⊗W(σ(j))). If ω1 does
not equal one of the excluded weights cλτ , then the constants ai are uniquely determined by
the bj ’s. This yields a k-parameter family of invariant differential pairings if the geometric
weight ω1 is not excluded. An excluded geometric weight ω1 corresponds to an invariant
differential operator

Γ(V ) → Γ(V (τ)),

where V (τ) is induced from the representation V(τ) with ω1 = cλτ . The roles of the ai and
bj can, of course, be interchanged, so that we can alternatively exclude geometric weights
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ω2, which correspond to first order invariant differential operators Γ(W ) → Γ(W (σ)). Thus
we have proved:

Theorem 1 (Main Result 1). Let V and W be two irreducible p-modules with decompo-
sitions

g1 ⊗ V = V(τ1)⊕ . . .⊕ V(τr)

and
g1 ⊗W = W(σ1)⊕ . . .⊕W(σs).

If ω1 6∈ {cλτ1 , . . . , cλτr
} or ω2 6∈ {cνσ1 , . . . , cνσs

}, then there exists a k-parameter family of
first order invariant bilinear differential pairings

Γ(V )× Γ(W ) → Γ(E),

where k is the number of copies of E in g1 ⊗ V ⊗ W. These are the only possible first
order invariant bilinear differential pairings between section of V and W onto an irreducible
bundle in the flat homogeneous case G/P .

4.0.1. Remark. In fact only those weights cλτ (resp. cνσ) have to be excluded for which E ⊂
V(τ)⊗W (resp. E ⊂ V⊗W(σ)).

Corollary 1. The situation is considerably simplified if there is only one copy of E
in g1⊗V⊗W. Then we can choose a = (ω2− cνσ) and b = −(ω1− cλτ ) if we normalize the
projections correctly. Every multiple of this pairing is obviously invariant as well. It also
shows what happens if weights are excluded:

1. If ω1 = cλτ , then we must take b = 0 and a is arbitrary. This corresponds to an
invariant first order linear differential operator Γ(V ) → Γ(V (τ)) combined with a
projection Γ(V (τ))× Γ(W ) → Γ(E).
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2. If ω2 = cνσ, then there is a first order linear invariant differential operator Γ(W ) →
Γ(W (σ)) that can be combined with a projection Γ(W (σ)) × Γ(V ) → Γ(E), i.e. we
must take a = 0 and b is arbitrary.

3. If both weights are excluded, then the statement of the main theorem is not true
anymore. We obtain two independent pairings corresponding to the two invariant
differential operators and the projections mentioned above.

4.0.2. Examples. Looking at pairings on CPn involves g=sln+1C and gS
0
∼=slnC.

1. Let

V =
w× 0• 0• . . .

0• 0• = O(w) and W =
1+v× 0• 0• . . .

0• 1•,

denote weighted functions and weighted vector fields on CPn. The tensor product
decomposes as

g1 ⊗ V⊗W =
1• 0• . . .

0• 1• ⊕ 0• 0• . . .
0• 0•

and the weights are given by ω1 = −w n
n+1 , ω2 = −nv+n+1

n+1 . Taking µ = 0 yields
cλτ = 0 and cνµ = n − 1. This corresponds to the invariant pairing (where we have
multiplied everything by −n+1

n ):

(n + v + 1)Xa∇af − w(∇aXa)f.

2. Quite similarly we obtain an invariant paring

Ω1(v)×O(w) 3 (σb, f) 7→ (v − 2)σ(a∇b)f − w(∇(aσb))f

from the fact that in this case ω2 − cνσ = − n
n+1 (v − 2).
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3. A more sophisticated example can be obtained when we take

V =
1+v× 0• 0• . . .

0• 1•, W =
w−(k+1)
× 0• 0• . . .

0• 1• 0• . . .
0• 0•︸ ︷︷ ︸

1 is in the (k+1)-th position

and

E =
v+w−(k+1)

× 0• 0• . . .
0• 1• 0• . . .

0• 0•︸ ︷︷ ︸
1 is in the (k+1)-th position

,

i.e. we pair weighted vector fields with weighted k-forms to obtain weighted k-forms
again. This time the multiplicity is two and indeed, for non-excluded weights, there
is a two parameter family given by

Xa∇aωbc...d +
n + v − w − vw + vk + 1

(n + v + 1)(v + 1)
(∇aXa)ωbc...d −

k + 1
v + 1

(∇[aXa)ωbc...d]

and

Xa∇[aωbc...d] +
(n− k)w

(n + v + 1)(v + 1)(k + 1)
(∇aXa)ωbc...d −

w

v + 1
(∇[aXa)ωbc...d].

The denominators can only be zero, if the weights are excluded, because ω1− cλτ1 =
− n

n+1 (n + v + 1) and ω1 − cλτ2 = − n
n+1 (v + 1). If one of these is zero, then the

corresponding operator Xa 7→ ∇aXa or Xa 7→ ∇bX
a − 1

n∇cX
cδb

a is projectively
invariant. If we take k = 1 and v = w = 0, then we obtain the example from the
introduction.
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5. The Problem with higher order operators

When dealing with higher order operators, the reasoning in the last section quickly gets out
of hand. In the second order case, for example, we have the following problem: As explained
in the Appendix, the symbol of a second order differential pairings is a mapping from

�2g1 ⊗ V⊗W
⊕

g1 ⊗ V⊗ g1 ⊗W
⊕

V⊗�2g1 ⊗W

,

because all the term in here will have geometric weight ω1 + ω2 + 2. Therefore there are

2× |{E ⊂ �2g1 ⊗ V⊗W}|+ |{E ⊂ g1 ⊗ V⊗ g1 ⊗W}|

unknowns corresponding to the terms which are second order in V , those which are second
order in W and those which are first order in both. However, there are

2× |{E ⊂ g1 ⊗ V⊗ g1 ⊗W}|

obstruction terms, so it is not clear that we should obtain any pairings at all if there are
more obstruction terms than unknowns. On CPn, for example, one can look at all the
pairings between

V =
w× 0• 0• . . .

0• 0• = O(w) and W =
1+v× 0• 0• . . .

0• 1•

that land in
v+w−2× 1• 0• . . .

0• 0•.
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The terms at our disposal are

f∇a∇bX
b, (∇af)(∇bX

b), (∇bf)(∇aXb − 1
n
∇cX

cδa
b), Xb∇b∇af

and there are four obstruction terms

fΥa∇bX
b, fΥb∇aXb, (∇af)ΥbX

b, (∇bf)ΥaXb.

So one might expect that only the zero paring would be invariant. But, somehow miracu-
lously from this point of view, this is not the case and we obtain a one parameter family of
invariant pairings spanned by

Xb∇b∇af − (w − 1)(n + 1)
(v + n + 1)n

∇af∇bX
b

− w − 1
v + 1

∇bf(∇aXb − 1
n
∇cX

cδa
b) +

w(w − 1)
(v + 1)(v + n + 1)

f∇a∇bX
b.

6. Higher order pairings

This section deals with M -th order bilinear invariant differential pairings. The strategy
employed is to define a linear invariant differential mapping that includes an arbitrary
irreducible homogeneous bundle in some other homogeneous bundle, called M -bundle (which
is in fact a tractor bundle, see [19, p. 7]), that encodes all the possible differential operators
up to order M emanating from this bundle. We will then tensor two of those M -bundles
together and project onto irreducible components. First of all, we have to define the M -
bundles:
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6.1. The M-module

Let {αi}i=0,...,n−1 be the simple roots of g with corresponding fundamental weights
{ωi}i=0,...,n−1, i.e. B(ωi, α

∨
j ) = δi,j . One can order the simple roots in such a way that

α0 is the distinguished simple root in g that makes a root space gα lie in gi if and only if i is
the coefficient of α0 in the expression of α in simple roots. We will define a representation
VM (E) of g that is induced from a finite dimensional irreducible representation E of gS

0 in the
following way: (hS)∗ can be considered as a subspace of h∗ in such a way that {αi}i=1,...,n−1

are the simple roots of gS
0 with corresponding fundamental weights {ωi}i=1,...,n−1. The

highest weight λ of E∗ can then be written as λ =
∑n−1

i=1 aiωi with ai ≥ 0. VM (E) is defined
to be the finite dimensional irreducible representation of g which is dual to the representa-
tion with highest weight Λ = Mω0 + λ ∈ h. In the Dynkin diagram notation this is easily
described. There is one node in the Dynkin diagram for g which denotes the simple root α0.
If we erase that node and adjacent edges, we obtain the Dynkin diagram for gS

0 . A finite
dimensional irreducible representation E of gS

0 is denoted by writing non-negative integers
associated to the highest weight of E∗ over the nodes of this new diagram. VM (E) is then
denoted by writing those numbers over their corresponding nodes in the Dynkin diagram
for g and in addition writing M over the node that corresponds to α0.

6.1.1. Example. The |1|-grading on g = sln+1C as in Example 3.1.1. implies gS
0
∼= slnC, so for

every representation
E =

a1• a2• . . .
an−2•

an−1•

of gS
0 and every constant M ≥ 1, we define

VM (E) =
M• a1• a2• . . .

an−2•
an−1• ,

a representation of g.
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Lemma 3. As a p module VM (E) has a composition series

VM (E) = V0 + V1 + . . . + VN ,

so that giVj ⊆ Vi+j and V0
∼= E as a gS

0 -module. Alternatively, one can look at this
composition series as a splitting of g0 modules into eigenspaces for the action of the grading
Element E. Thus E acquires the structure of a g0-module.

Proof. If Λ is the highest weight of VM (E)∗, then V∗j consists of those weight spaces,
whose weight is of the form Λ − jα0 −

∑n−1
i=1 kiαi, with ki ≥ 0. Therefore the action of

gi maps V∗i+j to V∗j . Dually we obtain a mapping gi : Vj → Vi+j . Note that E ∼= V0 =
VM (E)/(V1 + . . . + VN ) even acquires the structure of an irreducible p-module that we can
denote by a Dynkin diagram for p: The integers over the uncrossed nodes correspond to the
highest weight of E∗ as a gS

0 -module and M is written over the crossed through node. �

Lemma 4. There are g0 homomorphisms φi : Vi →
⊗i

g1 ⊗ E that are injective for all
i, have values in �ig1 ⊗ E and define isomorphisms

Vi
∼= �ig1 ⊗ E

for 0 ≤ i ≤ M .

Proof. The homomorphisms φi are constructed in [6, p. 655], with the help of Lie algebra
cohomology and Kostant’s version of the Bott-Borel-Weil theorem. The statement then
follows from [6, p. 655, Lemma 3]. �

The next step is to look at a tensor product VM (E)⊗WM (F) and decompose it into irre-
ducible g-modules that themselves have composition series as p-modules. The composition
factors of all the irreducible components will then make up the composition factors of the
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tensor product. To be more precise, the composition series VM (E) = V0 + . . . + VN1 and
WM (F) = W0 + . . . + WN2 induce a filtration on the tensor product:

0− th slot 1− st slot (N1 + N2)− th slot

VM (E)⊗WM (F) = V0 ⊗W0 +
V0 ⊗W1

⊕
V1 ⊗W0

+ . . . + VN1 ⊗WN2

.

The g0 tensor product Vi⊗Wj can be decomposed into irreducible components by computing
the irreducible components of the gS

0 tensor product Vi ⊗Wj . The geometric weight of all
those components will be ω1 +ω2 + i+ j, where ω1, ω2 are the geometric weights of E and F
respectively. Each of the irreducible components can be denoted by a Dynkin diagram for
p: The numbers over uncrossed nodes correspond to the highest weight of the irreducible
component of the gS

0 tensor product (Vi ⊗Wj)∗ that is to be denoted and the number over
the crossed through node will make the geometric weight equal ω1 + ω2 + i + j. The next
remark gives an estimate on those numbers which is of importance in the next proposition.

6.1.2. Remark. Let Λ and λ be defined as above and define WM (F) analogously with highest
weights Σ and σ of WM (F)∗ and F∗ respectively. All irreducible components in the j-th
slot of VM (E) ⊗ WM (F) are dual to representations of highest weights of the form µ =
Λ + Σ− jα0 −

∑n−1
i=1 kiαi, so the number over the crossed through node will be

(µ, α∨0 ) = 2M − 2j −
n−1∑
i=1

ki(αi, α
∨
0 ) ≥ 2(M − j),

since (αi, α
∨
0 ) ≤ 0 for all i = 1, . . . , n− 1.
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Proposition 1. Let E and F be two finite dimensional irreducible representations of gS
0 .

If l ≤ M , then for every irreducible component H of the gS
0 tensor product �lg1 ⊗ E ⊗ F,

there is a p-module projection

VM (E)⊗WM (F) → H,

where H has acquired the structure of an irreducible p-module with geometric weight ω1 +
ω2 + l.

Proof. As p-modules, the M -modules associated to E and F have composition series

VM (E) = E + g1 ⊗ E +�2g1 ⊗ E + . . . +�Mg1 ⊗ E + VM+1 + . . . + VN1

and

WM (F) = F + g1 ⊗ F +�2g1 ⊗ F + . . . +�Mg1 ⊗ F + WM+1 + . . . + WN2 .

Therefore the tensor product VM (E)⊗WM (F) has a composition series

VM (E)⊗WM (F) = E⊗ F +
E⊗ g1 ⊗ F

⊕
g1 ⊗ E⊗ F

+

E⊗�2g1 ⊗ F
⊕

g1 ⊗ E⊗ g1 ⊗ F
⊕

�2g1 ⊗ E⊗ F

+ . . . .

Every irreducible component G of E ⊗ F (as gS
0 -modules) corresponds to an irreducible

component U in VM (E)⊗WM (F) (as g-modules) that has a composition series that starts
with G and then continues with g1⊗G +�2g1⊗G + . . . . We will say that the composition
series is predictable up to the x-th slot, if Uj

∼= �jg1⊗G for all j ≤ x, as g0-modules. Using
Lemma 4, we know that the composition series of U is predictable up to the x-th slot if the
number over the crossed through node in G is x.
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Removing all those composition series corresponding to irreducible components of E⊗ F
from the composition series of VM (E) ⊗ WM (F) leaves nothing in the zeroth slot, exactly
one copy of E⊗ g1⊗F in the first slot, one copy of each g1⊗E⊗ g1⊗F and E⊗�2g1⊗F in
the second slot and so forth. Therefore the next irreducible components of VM (E)⊗WM (F)
all have a composition series that starts with an irreducible component of E ⊗ g1 ⊗ F.
Removing those again leaves nothing in the first two slots, exactly one copy of E⊗�2g1⊗F
in the second slot and so forth. Hence the next irreducible components of VM (E)⊗WM (F)
correspond to irreducible components of E⊗�2g1 ⊗ F. This argument is correct as long as
all the compositions series are predictable. This is the case exactly up to the M -th slot:

In the l ≤ M -th slot of VM (E)⊗WM (F) the lowest number over a cross is bigger or equal
to 2(M−l) (Remark 6.1.2). Some of the factors in here correspond to irreducible components
of VM (E) ⊗WM (F) as g-representations that themselves have a composition series that is
predictable up the the 2(M−l)-th slot, which corresponds in the big composition series to the
(2M−l)-th slot. So the argument above is correct for l ≤ M . There could be (and in general
this happens) more irreducible components of VM (E) ⊗ WM (F), but those correspond to
higher order pairings. The mapping is defined by first projecting onto the correct irreducible
component of VM (E)⊗WM (F) and then projecting onto the first composition factor in the
composition series, which will, as a gS

0 -module, be isomorphic to H. The p-module structure
is derived as in Lemma 3. �

6.1.3. Remark. For every k ∈ Z, let O(k −M) be the one dimensional p-module which is dual
to the representation of highest weight (k − M)ω0. In the Dynkin diagram notation this
corresponds to having k −M over the crossed through node and zeros elsewhere. We will
write V(k−M) for the tensor product V⊗O(k−M) for every p-module V and remark that
this procedure only changes the geometric weight of V. Hence if V has a composition series,
then the composition series of V(k−M) is obtained by tensoring each factor with O(k−M).
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Furthermore V0(k −M) is dual to a representation of highest weight kω0 +
∑n−1

i=1 aiωi and
by choosing E and k correctly, we can write every finite dimensional irreducible p-module
as V0(k −M) of some module VM (E)(k −M).

The idea is now to define invariant linear differential mappings

V0(k −M) → VM (E)(k −M) and W0(l −M) → WM (F)(l −M).

We can then tensor

VM (E)(k −M)⊗WM (E)(l −M) = (VM (E)⊗WM (F))(k + l − 2M)

together and project onto the first composition factor of every irreducible component of
(VM (E) ⊗WM (F))(k + l − 2M) just as in Proposition 1, with the only difference that the
geometric weight of H will be different. This is clearly a bilinear invariant differential pairing
between sections of V0(k−M) and W0(l−M). In order to do this in the flat homogeneous
case G/P we can use the following three theorems:

Theorem 2. Invariant linear differential operators between sections of homogeneous
bundles over a flag manifold G/P are in one-to-one correspondence with g-module homo-
morphisms of induced modules.

Proof. This theorem is proved in a straightforward manner in [14, p. 212]. It may be
noted that the theorem is usually stated in terms of generalized Verma modules (see [2,
p. 164]), the statement, however, remains true for induced modules with identical proof. �

Theorem 3. If Mp(V0(k−M)) has distinct central character from the generalized Verma
modules associated to all the other composition factors of VM (E)(k − M), then it can be
canonically split off as a direct summand of Mp(VM (E)(k −M)).
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Proof. The composition series VM (E)(k −M) = V0(k −M) + . . . + VN (k −M) induces
a composition series

(VM (E)(k −M))∗ = (VN (k −M))∗ + . . . + (V0(k −M))∗

of the dual representation. Since the functor that associates to every p-module V∗ the
corresponding induced module U(g) ⊗U(p) V∗ is exact (see [26, p. 303, Lemma 6.1.6]), we
have a filtration

Mp(VM (E)(k −M)) = Mp(VN (k −M)) + . . . + Mp(V0(k −M))

that induces an injection Mp(V0(k − M)) ↪→ Mp(VM (E)(k − M)). The weight spaces
of Mp(VM (E)(k − M)) can be grouped in terms of central character, so the projection
Mp(VM (E)(k − M)) → Mp(V0(k − M)) may be defined by projecting onto the joint
eigenspace of the central character of Mp(V0(k −M)). Since central character is preserved
under the action of g, this projection is indeed a g-module homomorphism and provides a
g-module splitting of Mp(VM (E)(k −M)). �

Theorem 4 (Harish-Chandra). Two generalized Verma modules have the same central
character if and only if their highest weights are related by the affine action of the Weyl
group of g.

Proof. A proof of this theorem can, for example, be found in [20, p. 130, Theorem 23.3].
�

These three theorems combined are the backbone of the Jantzen-Zuckermann translation
functor as used in [15] and [14]. In principle they can be used to define invariant bilinear dif-
ferential pairings for every homogeneous space G/P with an AHS structure. One only has to
exclude weights, i.e. values of k, for which the central character of Mp(V0(k−M)) is the same
as the central character of a generalized Verma module associated to another composition



JJ J I II

Go back

Full Screen

Close

Quit

factor of
VM (E)(k −M). A trivial case is k = M , because all the weight spaces of VM (E) apart
from the highest weight space, which lies in V0, have weights µ so that

‖Λ + ρg‖2 > ‖µ + ρg‖2,

with ρg = 1
2

∑
α∈∆+(g) α (see [20, p. 114, Proposition 21.4 and p. 71, Lemma 13.4]). Since

the Weyl group acts by isometries, this implies that Mp(V0) has distinct central charac-
ter from the generalized Verma modules associated to all the other composition factors of
VM (E). The pairings that we obtain via our construction are then the flat analogues of the
parings tη as defined in [7, p. 13, Theorem 3.6].

7. Higher order pairings for CPn

In this section we will work exclusively on complex projective space CPn with g = sln+1C
and the conventions described above. A Dynkin diagram therefore stands for four things: An
irreducible representation of p, the corresponding irreducible homogeneous vector bundle,
its sections and the generalized Verma module associated to the representation. In every
case it should be clear which meaning we refer to and sometimes it is convenient that two
meanings are denoted at the same time.

Definition 1. For every representation

E =
a1• a2• . . .

an−2•
an−1•

of gS
0 = slnC and every constant M ≥ 1 we define

VM (E) =
M• a1• a2• . . .

an−2•
an−1• ,
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a representation of g, which we also denote by

VM (E)=(0, b0, b1, b2, . . . ., bn−1)=

(
0,M, a1 + M,a1 + a2 + M, . . . ,

n−1∑
i=1

ai + M

)
.

When referring to a representation of p, we will use the notation (a|b, c, . . . , d, e, f) for
b−a× c−b• . . .

e−d•
f−e
• . This is important whenever we want to describe the action of the

Weyl group W on the weight, because W ∼= Sn+1 and it acts by permutation.

The g-module VM (E) has, as a p-module, a composition series

VM (E) = V0 + V1 + V2 + . . . + VN ,

where each Vi decomposes into a direct sum of irreducible p-modules and

V0 =
M× a1• a2• a3• . . .

an−2•
an−1• .

We may tensor this composition series by O(k −M) to obtain

V0(k −M) =
k× a1• a2• a3• . . .

an−2•
an−1• .

This is the p-module that we are interested in and we want to define a mapping

V0(k −M) → VM (E)(k −M)

using the theorems from the last section. Hence we have to make sure that the generalized
Verma modules associated to all the irreducible composition factors of VM (E)(k−M) have
a central character which is different from the central character of Mp(V0(k −M)).
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7.0.4. Remark. In the case of CPn, Lemma 4 can be proved directly using Pierie’s formula, as
in [17, p. 225], for the tensor product �lg1 ⊗ E and the branching rules for restrictions of
representations of sln+1C to slnC as in [18, p. 350]. The upshot of this procedure is that
Vl(k−M) consists of terms (M−k+ l|b̃0, b̃1, . . . , b̃n−1) that interlace (M−k|b0, b1, . . . ., bn−1),
i.e.

0 ≤ b̃0 ≤ b0 ≤ b̃1 ≤ b1 ≤ b̃2 ≤ b2 ≤ . . . ≤ b̃n−1 ≤ bn−1

and
∑n−1

i=0 bi −
∑n−1

i=0 b̃i = l. We can also see that N =
∑n−1

i=1 ai + M , because for l > N it
is not possible for any (M − k + l|b̃0, b̃1, . . . , b̃n−1) to interlace (M − k|b0, b1, . . . , bn−1).

Proposition 2. The only irreducible components of Vl(k−M) that can induce generalized
Verma modules with the same central character as Mp(V0(k−M)) are the ones that are of
the form

(M − k + l|b0, b1, . . . , bj−1, bj − l, bj+1, . . . , bn−1),
for j = 0, 1, . . . , n − 1. If j ∈ {1, . . . , n − 1}, then this is only allowed for aj ≥ l and if
j = 0, then this is only allowed for l ≤ M . In that case the generalized Verma module has
the same central character as Mp(V0(k −M)) if and only if

k = −

(
j∑

i=1

ai + j − l + 1

)
.

For j = 0, this condition reads k = l − 1.

Proof. Using Remark 7.0.4, we know that an arbitrary irreducible component Vl,v(k−M)
of Vl(k−M) has to be of the form (M −k + l|b̃0, . . . , b̃n−1), so that (M −k + l|b̃0, . . . , b̃n−1)
interlaces (M − k|b0, . . . , bn−1). Let us assume that there are at least two integers 0 ≤ i <

j ≤ n− 1, such that b̃i < bi and b̃j < bj . We can assume that i is the smallest integer with
this property and that j is the biggest integer with this property.
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Theorem 4 implies that the central characters of Mp(V0(k−M)) and Mp(Vl,v(k−M)) are
identical if and only if there is an element in the Weyl group, i.e. a permutation, that maps
(M − k + l|b̃0, . . . , b̃n−1) + ρg to (M − k|b0, . . . , bn−1) + ρg. Using ρg = (1, 2, . . . , n, n + 1),
we obtain the condition that the two sets

{M − k + 1, b0 + 2, b1 + 3, . . . , bi + i + 2, . . . , bj + j + 2, . . . , bn−1 + n + 1}

and

{M − k + l + 1, b̃0 + 2, b̃1 + 3, . . . , b̃i + i + 2, . . . , b̃j + j + 2, . . . , b̃n−1 + n + 1}

have to be equal. This is equivalent to

{M − k + 1, bi + i + 2, . . . , bj + j + 2} = {M − k + l + 1, b̃i + i + 2, . . . , b̃j + j + 2},

where the sets contain all those bm+m+2, resp. b̃m+m+2, for which b̃m 6= bm. Furthermore,
leaving out M − k + 1, all numbers in the first set are increasing from left to right. Since
b̃i < bi, b̃i + i + 2 is smaller than the second entry in the first set and therefore smaller than
everything but the first entry, i.e. we must have b̃i + i + 2 = M − k + 1. Moreover b̃j < bj

implies that there has to be an integer m < j, so that

b̃j + j + 2 = bm + m + 2 ⇒ b̃j + j = bm + m.

This is not possible, because b̃j ≥ bm and j > m. That proves the first claim.
Let us now assume that

Vl,v(k −M) = (k −M + l|b0, b1, . . . , bj−1, bj − l, bj+1, . . . , bn−1).

In this case Mp(Vl,v(k−M)) has the same central character as Mp(V0(k−M)) if and only
if

{M − k + l + 1, bj − l + j + 2} = {M − k + 1, bj + j + 2},
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which is equivalent to k = −bj + M − j + l − 1 = −
(∑j

i=1 ai + j − l + 1
)
. �

Definition 2. Let hS denote the Cartan subalgebra of gS
0 . Then we have

(hS)∗ = C〈L1, . . . , Ln〉/(L1 + . . . + Ln = 0),

where Li(Hj) = δi,j and Hj denotes the matrix which has a one in the j-th diagonal entry
and zeros elsewhere as an element in slnC.

Proposition 3. If

k = −

(
j∑

i=1

ai + j − l + 1

)
,

then there is a l-th order invariant linear differential operator

k× a1• a2• a3• . . .
an−2•

an−1• → k−l× a1• a2• . . .
aj−l
•

aj+1+l
• . . .

an−2•
an−1• .

Proof. As proved in [9, p. 65, Corollary 5.3], the condition for this operator to be invariant
is

ω = (α + Ln−j , ρ)− 1
2
(l − 1)(|α|2 + 1)− (−Ln−j , λ̃),

where ω = − 1
n+1

(
nk +

∑n−1
i=1 (n− i)ai

)
is the geometric weight of

k× a1• . . .
an−2•

an−1• , (., .) is
the normalized Killing form as in the previous sections and α = −Ln is the highest weight
of g1. Moreover ρ = ρslnC =

∑n−1
i=1 (n − i)Li, |α|2 = (α, α) and λ̃ =

∑n−1
i=1 λiLi (we can
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always assume that λn = 0, which implies λn−j =
∑j

i=1 aj) is the highest weight of E. Using

(α + Ln−j , ρ) =
nj

n + 1
,

|α|2 =
n− 1
n + 1

,

(Ln−j , λ̃) =
nλn−j −

∑n
i=1 λi

n + 1
and the formula for ω from above, we see that

ω = (α + Ln−j , ρ)− 1
2
(l − 1)(|α|2 + 1)− (−Ln−j , λ̃) ⇔ k = −

(
j∑

i=1

ai + j − l + 1

)
.

Note that these calculations for j ∈ {1, . . . , n− 1} make only sense if aj ≥ l. If j = 0, then
l may be arbitrary. �

The problem is, when we look at M -th order pairings, we do not really want to exclude
weights that correspond to operators that have a higher order. The following lemma excludes
such a situation at the cost of a restriction on the integers ai.

Lemma 5. Let M ≥ maxi{ai}, then no weights have to be excluded for l > M :

Proof. As discussed earlier, an irreducible component in Vl(k −M) that induces a gen-
eralized Verma module with the same central character as Mp(V0(k −M)) can only arise
by taking

(M − k|b0, b1, . . . , bn−1)
and subtracting l from one of the bi to obtain

(M − k + l|b̃0, b̃1, . . . , b̃n−1),
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so that (M − k + l|b̃0, . . . , b̃n−1) interlaces (M − k|b0, . . . , bn−1). But bi − bi−1 = ai ≤ M <

l ∀ i = 1, . . . , n − 1, so subtracting l from any bi, i ≥ 1, leads to b̃i = bi − l < bi−1, which
is not allowed. Subtracting l from b0 leaves b̃0 = M − l < 0, which is also not allowed.
Therefore all terms in Vl(k −M), for l > M , induce a generalized Verma module that has
a central character which is different from the one of Mp(V0(k −M)). �

7.0.5. Examples.

1. Let us look at symmetric two tensors of projective weight v, i.e. sections of �2TM ⊗
O(v) for M = 2:

2• 0• . . .
0• 2•(v) =

2+v× 0• . . .
0• 2• +

1+v× 0• . . .
0• 1•

⊕
v× 1• 0• . . .

0• 2•
+

v× 0• . . .
0• 0•

⊕
v−1× 1• 0• . . .

0• 1•
⊕

v−2× 2• 0• . . .
0• 2•

+

v−2× 1• 0• . . .
0• 0•

⊕
v−3× 2• 0• . . .

0• 1•
+

v−4× 2• 0• . . .
0• 0• .

The weights to exclude are
(a) v = −2,−(n + 3) which correspond to invariant first order operators ∇aV bc −

2
n+1δa

(b∇dV
c)d and ∇aV ab respectively;

(b) v = −1,−(n+2) which correspond to invariant second order operators∇a∇bV
cd−

trace and ∇a∇bV
ab respectively.
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2. Another example for vector fields of projective weight v, i.e. sections of TM ⊗O(v),
with M = 1:

1• 0• . . .
0• 1•(v) =

1+v× 0• . . .
0• 1• +

v× 0• . . .
0• 0•

⊕
v−1× 1• 0• . . .

0• 1•
+

v−2× 1• 0• . . .
0• 0•.

The weights to exclude are v = −1,−(n + 1) corresponding to invariant first order
operators ∇aV b − 1

nδa
b∇cV

c and ∇aV a respectively.
3. The last example deals with weighted functions and a general M :

M• 0• . . .
0• 0•(w −M) =

w× 0• . . .
0• 0•+

w−2× 1• 0• . . .
0• 0•+

w−4× 2• 0• . . .
0• 0•

+ . . . +
w−2M× M• 0• . . .

0• 0• .

The weights to exclude are w = 0, 1, . . . M − 1 corresponding to invariant operators
∇a . . .∇c︸ ︷︷ ︸

w+1

f respectively.

To state the main theorem, we have to define precisely what we mean by excluded weights.

Definition 3. Let
k× a1• a2• . . .

an−2•
an−1• be a representation of p. Then the excluded

weights up to order M consist of all k such that there is a 1 ≤ l ≤ M and a 0 ≤ j ≤ n− 1
with

k = −

(
j∑

i=1

ai + j − l + 1

)
and aj ≥ l.

For j = 0, the excluded weights are k = l − 1 for 1 ≤ l ≤ M .
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Theorem 5 (Main Result 2). Let
k× a1• a2• . . .

an−2•
an−1• and

m× b1• b2• . . .
bn−2•

bn−1• be irreducible homogeneous bundles on CPn. If M ≥ maxi{ai, bi} and k and m

are not equal to one of the excluded weights up to order M , then there is an r parameter
family of M -th order bilinear invariant differential pairings

k× a1• a2• . . .
an−2•

an−1• × m× b1• b2• . . .
bn−2•

bn−1• → s× c1• c2• . . .
cn−2•

cn−1• ,

where r is the multiplicity of
c1• c2• . . .

cn−2•
cn−1• in

�Mg1 ⊗
a1• a2• . . .

an−2•
an−1• ⊗ b1• b2• . . .

bn−2•
bn−1• .

Excluded weights correspond to invariant linear differential operators of order ≤ M ema-
nating from the bundles in question.

Proof. If M ≥ maxi{ai, bi} and k and m are not equal to one of the excluded weights
up to order M , we can use Lemma 5, Proposition 2, Theorem 3 and Theorem 2 to define

invariant differential operators that take
k× a1• a2• . . .

an−2•
an−1• and

m× b1• b2• . . .
bn−2•

bn−1•
into their M -bundles. Then we decompose the tensor product of the M -bundles as described
in Proposition 1 and project onto the first composition factor of each of the irreducible
components. That also yields all the invariant pairings of order smaller than M , but we
may have to exclude more weights than necessary. Moreover there cannot be more invariant
pairings, because then one would be able to find a linear combination of all those pairings
that does not involve the highest order terms (M derivatives) in sections of one of the
bundles. But obstruction terms involving M − 1 derivatives in the sections of that bundle
and one Υ-term would therefore only occur in �M−1g1 ⊗E⊗ g1 ⊗ F (if E and F denote the
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corresponding gS
0 -modules as before) and one would not be able to eliminate them, because

no operator in the formula is invariant. The last statement follows from Proposition 3. �

7.0.6. Example. Let us carry out the described construction for first order pairings between
weighted 2-forms and weighted vector fields on CP4. The corresponding M bundles have
composition series

1• 0• 1• 0• =
1× 0• 1• 0• +

0× 0• 0• 1•
⊕

−1× 1• 1• 0•
+

−2× 1• 0• 1•

and

1• 0• 0• 1• =
1× 0• 0• 1• +

0× 0• 0• 0•
⊕

−1× 1• 0• 1•
+

−2× 1• 0• 0• .

If we tensor these together, we obtain a composition series

1• 0• 1• 0• ⊗ 1• 0• 0• 1• =


2× 0• 1• 1•

⊕
2× 1• 0• 0•

+

 4× 1× 0• 1• 0• ⊕ 2× 0× 1• 1• 1•
⊕

2× 0× 2• 0• 0• ⊕ 2× 1× 0• 0• 2•


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+


3× −1× 1• 0• 2• ⊕ 6× −1× 1• 1• 0•

⊕
5× 0× 0• 0• 1• ⊕ −2× 2• 1• 1•

⊕
−1× 0• 2• 1• ⊕ −2× 3• 0• 0•

+


5× −2× 1• 0• 1• ⊕ 2× −1× 0• 0• 0•

⊕
2× −3× 2• 1• 0• ⊕ 2× −2× 0• 2• 0•

⊕
−3× 2• 0• 2• ⊕ −2× 0• 1• 2•



+



−4× 2• 0• 1•
⊕

−3× 0• 1• 1•
⊕

0× 1• 0• 0•

 .

This composition series can be split up according to

1• 0• 1• 0• ⊗ 1• 0• 0• 1• =
2• 0• 1• 1• ⊕ 0• 1• 1• 1• ⊕ 2• 1• 0• 0•

⊕ 1• 0• 0• 2• ⊕ 0• 2• 0• 0•

⊕2× 1• 0• 1• 0• ⊕ 0• 0• 0• 1•,
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which compose as

2• 0• 1• 1• =
2× 0• 1• 1• +

1× 0• 0• 2•
⊕

0× 1• 1• 1•
⊕

1× 0• 1• 0•

+

−1× 1• 0• 2•
⊕

−2× 2• 1• 1•
⊕

0× 0• 0• 1•
⊕

−1× 1• 1• 0•

+

−2× 1• 0• 1•
⊕

−3× 2• 1• 0•
⊕

−3× 2• 0• 2•

+
−4× 2• 0• 1• ,

0• 1• 1• 1• =
0× 1• 1• 1• +

−1× 0• 2• 1•
⊕

−1× 1• 0• 2•
⊕

−1× 1• 1• 0•

+

−2× 0• 1• 2•
⊕

−2× 1• 0• 1•
⊕

−2× 0• 2• 0•

+
−3× 0• 1• 1• ,

2• 1• 0• 0• =
2× 1• 0• 0• +

1× 0• 1• 0•
⊕

0× 2• 0• 0•
+

−1× 1• 1• 0•
⊕

−2× 3• 0• 0•
+

−3× 2• 1• 0• ,

1• 0• 0• 2• =
1× 0• 0• 2• +

0× 0• 0• 1•
⊕

−1× 1• 0• 2•
+

−1× 0• 0• 0•
⊕

−2× 1• 0• 1•
+

0× 1• 0• 0• ,
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1• 0• 1• 0• =
1× 0• 1• 0• +

0× 0• 0• 1•
⊕

−1× 1• 1• 0•
+

−2× 1• 0• 1•

and
0• 2• 0• 0• =

0× 2• 0• 0• +
−1× 1• 1• 0• +

−2× 0• 2• 0• ,

0• 0• 0• 1• =
0× 0• 0• 1• +

−1× 0• 0• 0• .

There are 5 first order bilinear invariant differential pairings according to the projections
onto (including the weights k = 1+v for vector fields of projective weight v and m = w−3 for
2-forms of projective weight w, i.e. we have to tensor byO(k−M)⊗O(m−M) = O(v+w−4)):

v+w−4× 2• 0• 0• ,
v+w−3× 0• 0• 2• ,

v+w−4× 1• 1• 1•

and the two projections onto

v+w−3× 0• 1• 0• = Ω2(v + w) ,

corresponding to

0• 0• 1• ⊗ g1 ⊗
0• 1• 0• = 2× 0• 1• 0• ⊕ 1• 1• 1• ⊕ 2• 0• 0• ⊕ 0• 0• 2• .

The concrete formulae for the two projections onto Ω2(v + w) were given at the end of
Section 4.



JJ J I II

Go back

Full Screen

Close

Quit

7.1. Weighted functions of excluded geometric weight

Returning to Example (3) in 7.0.5, let us assume that the central character of Mp(V0(w−M))
equals the central character of Mp(Vl(w−M)), i.e. 0 ≤ w = l−1 ≤ M−1. This corresponds
to an l-th order invariant differential operator

D :
w× 0• 0• 0• . . .

0• 0• → w−2l× l• 0• . . .
0• 0• . . .

0• 0•.

Hence one can invariantly write D(f), for f ∈ O(w). Now we look at the p-module

ṼM,l(C)(w −M) = Vl(w −M) + Vl+1(w −M) + . . . + VM (w −M).

The central character of Mp(Vl(k−M)) is different from the central character of all the other
generalized Verma modules, because each Mp(Vs(w −M)) has the same central character
as Mp(V0(w−M)) if and only if w = s−1. Therefore we can define an invariant differential
mapping

O(w) D→ Vl(w −M) → ṼM,l(C)(w −M) ↪→ VM (C)(w −M).

The invariant pairings that we obtain via this construction do not involve derivatives of f
of order smaller than l. This is confirmed by the formulae obtained earlier.

These considerations yield:

Corollary 2. If M ≥ maxi{ai} and k does not equal one of the excluded weights up

to order M for V =
k× a1• a2• . . .

an−2•
an−1• , then there is a one parameter family

of invariant bilinear differential pairings of order M between sections of V and arbitrarily
weighted functions onto every bundle that is induced by an irreducible component of �Mg1⊗
a1• a2• . . .

an−2•
an−1• .
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7.1.1. Remark. Using Pierie’s formula, it is clear that the tensor product �Mg1 ⊗
a1• a2• . . .

an−2•
an−1• does not have multiplicities.

7.1.2. Example. Let us analyze the example given in Section 5, where we considered second order
pairings TCPn(v)×O(w) → Ω1(v + w). For this purpose, we decompose

�2g1 ⊗
0• 0• . . .

0• 1• =
2• 0• . . .

0• 1• ⊕ 1• 0• . . .
0• 0•.

Therefore if v 6= −1,−(n + 1) (for the other projection we also need to exclude v = 0), then
there should be a second order invariant differential pairing. This is true and the formula
was given in Section 5. Moreover one can clearly see which terms vanish in case the weight
w is excluded.

8. Appendix

Definition 4. Let M be a (smooth) complex manifold and V,W holomorphic vector
bundles over M as in 3.6. For every holomorphic vector bundle U over M and every integer
k ∈ N there exists the associated jet bundle JkU and for every 0 ≤ l ≤ k there is a projection
πk

l : JkU → J lU (see [21, p. 117, Definition 12.2]). If Λ1 denotes the cotangent bundle on
M, then the projections can be put into an exact sequence

0 → �kΛ1 ⊗ U → JkU → Jk−1U → 0

as described in [25, p. 182]. This exact sequence induces a filtration

JkU =
k∑

l=0

�lΛ1 ⊗ U = U + Λ1 ⊗ U +�2Λ1 ⊗ U + . . . +�kΛ1 ⊗ U

on the jet bundle.
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The mapping

ϕM = ⊕k+l=MπM
k ⊗ πM

l : JMV ⊗ JMW →
⊕

k+l=M

JkV ⊗ J lW

defines a canonical subbundle B = ker ϕM in JMV ⊗ JMW , so that

JM (V,W ) = (JMV ⊗ JMW )/ker ϕM .

8.0.3. Remark. It is easy to see that the vector bundle JM (V,W ) has a filtration

JM (V,W ) =
M∑

k=0

k⊕
l=0

�lΛ1 ⊗ V ⊗�k−lΛ1 ⊗W,

which is equivalent to a series of exact sequences

0 →
k⊕

l=0

�lΛ1 ⊗ V ⊗�k−lΛ1 ⊗W
ι→ Jk(V,W ) → Jk−1(V,W ) → 0,

for 0 ≤ k ≤ M . The exact sequence

0 →
M⊕
l=0

�lΛ1 ⊗ V ⊗�M−lΛ1 ⊗W
ι→ JM (V,W ) → JM−1(V,W ) → 0

gives rise to a symbol σ = φ ◦ ι for every homomorphism φ : JM (V,W ) → E, i.e. for every
M -th order bilinear differential pairing.

In the homogeneous case JM (V,W ) is a homogeneous bundle with a p-module structure
on the fibre JM (V, W) that is induced by the p-module structures of JMV and JMW.
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8.0.4. Remark. It is possible to approach the theory of invariant differential pairings on homo-
geneous spaces from a completely algebraic point of view by considering U(g)-modules that
are dual to J∞(V, W). These modules can be constructed by appropriately generalizing the
bi-Verma modules defined in [12, p. 6]. Invariant differential pairings then correspond to so
called singular vectors in the sense of [12] and it is possible to write down explicit formulas
for infinitely many of them (given V and W ) if certain weights, that correspond to singular
vectors in Mp(V) or Mp(W) and therefore to invariant differential operators, are excluded.
In contrast to bi-Verma modules which are suitable for finding symmetric pairings between
identical (line) bundles (V = W ) and hence non-linear operators, this theory is valid for all
pairings between arbitrary vector bundles V , W and for any parabolic subalgebra p ⊂ g.

For the results proved and calculations performed in this article, however, this algebraic
viewpoint is (at the moment) simply an alternative and provides no particular advantage.

I would like to thank my supervisor Prof. Michael Eastwood for suggesting the problem
and for his continuing help and support.

1. Bailey T. N., Eastwood M. G., and Gover A. R., Thomas’s structure bundle for conformal, projective,

and related structures, Rocky Mtn. Jour. Math. 24 (1994), 1191–1217.
2. Baston R. J. and Eastwood M. G., The Penrose Transform: its Interaction with Representation

Theory, Oxford University Press 1989.

3. Bernstein I. N., Gelfand I. M., and Gelfand S. I., Differential operators on the base affine space and a
study of g-modules, Lie groups and their representations (Proc. Summer School, Bolyai Janos Math.

Soc., Budapest, 1971), Halsted, New York, (1975) 21–64.
4. Boe B. D., and Collingwood D. H., A comparison theory for the structure on induced representations

1, Jour. Alg. 94 (1985), 511–545.



JJ J I II

Go back

Full Screen

Close

Quit

5. , A comparison theory for the structure on induced representations 2, Math. Z. 190 (1985),

1–11.
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