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ANALYSIS OF A FRICTIONAL CONTACT PROBLEM
WITH ADHESION

Z. LERGUET, M. SOFONEA and S. DRABLA

Abstract. We consider a mathematical model which describes the contact between a de-
formable body and an obstacle, the so-called foundation. The contact is frictional and is
modelled with a version of normal compliance condition and the associated Coulomb’s law of
dry friction in which the adhesion of contact surfaces is taken into account. The evolution
of the bonding field is described by a first order differential equation and the the material’s
behavior is modelled with a nonlinear elastic constitutive law. We derive a variational formula-
tion of the problem then, under a smallness assumption on the coefficient of friction, we prove
the existence of a unique weak solution for the model. The proof is based on arguments of
time-dependent variational inequalities, differential equations and Banach fixed point theorem.
Finally, we extend our results in the case when the piezoelectric effect is taken into account, i.e.
in the case when the material’s behavior is modelled with a nonlinear electro-elastic constitutive
law.

1. Introduction

Processes of adhesion are important in many industrial settings where parts, usually non-
metallic, are glued together. For this reason, adhesive contact between bodies, when a glue
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is added to prevent the surfaces from relative motion, has recently received increased atten-
tion in the literature. Basic modelling can be found in [7, 8, 9, 12]. Analysis of models for
adhesive contact can be found in [3, 4, 6] and in the monographs [15, 17]. An application
of the theory of adhesive contact in the medical field of prosthetic limbs was considered in
[13, 14]; there, the importance of the bonding between the bone-implant and the tissue was
outlined, since debonding may lead to decrease in the persons ability to use the artificial
limb or joint.

The novelty in all the above papers is the introduction of a surface internal variable, the
bonding field, denoted in this paper by β; it describes the pointwise fractional density of
active bonds on the contact surface, and sometimes referred to as the intensity of adhesion.
Following [7, 8], the bonding field satisfies the restrictions 0 ≤ β ≤ 1; when β = 1 at a point
of the contact surface, the adhesion is complete and all the bonds are active; when β = 0
all the bonds are inactive, severed, and there is no adhesion; when 0 < β < 1 the adhesion
is partial and only a fraction β of the bonds is active. We refer the reader to the extensive
bibliography on the subject in [9, 12, 15, 17].

The aim of this paper is to continue the study of adhesive problems begun in [3, 4, 17].
There, models for dynamic or quasistatic process of frictionless adhesive contact between
a deformable body and a foundation have been analyzed and simulated; the contact was
described with normal compliance or was assumed to be bilateral, and the behavior of
the material was modelled with a nonlinear Kelvin–Voigt viscoelastic constitutive law; the
existence of a unique weak solution to the models has been obtained by using arguments of
nonlinear evolutionary equations in Banach spaces and a fixed point theorem. With respect
to [3, 4], the novelty of the present paper is three folds: 1) we model the material’s behavior
with a nonlinear elastic constitutive law; 2) the contact is frictional; 3) we extend our study
to problems in which the piezoelectric effect is taken into account.
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The piezoelectric effect is characterized by the coupling between the mechanical and
electrical properties of the materials. A deformable material which presents such a behavior
is called a piezoelectric material. Piezoelectric materials are used extensively as switches and
actuary in many engineering systems, in radioelectronics, electroacoustics and measuring
equipments. General models for elastic materials with piezoelectirec effect, called electro-
elastic materials, can be found in [1, 10]. A static frictional contact problem for electric-
elastic materials was considered in [2, 11] and a slip-dependent frictional contact problem for
electro-elastic materials was studied in [16]. In this last reference the variational formulation
of the corresponding problem was derived and its unique solvability was proved.

The paper is structured as follows. In Section 2 we present the model of the elastic
contact problem with adhesion, normal compliance and friction. In Section 3 we derive
a variational formulation of the model; it consists in a system coupling a time-dependent
variational inequality for the displacement field with an ordinary differential equations for
the bonding field. In Section 4 we state and prove our main existence and uniqueness result,
Theorem 4.1. It states that if the coefficient of friction is small enough, then the problem has
a unique weak solution. We extend our results in Section 5 to the case when the material’s
behavior is modelled with a nonlinear electro-elastic constitutive law and we provide our
second existence and uniqueness result, Theorem 5.1.

2. Problem statement

We consider an elastic body, which occupies a bounded domain Ω ⊂ Rd (d = 2, 3), with
a smooth boundary ∂Ω = Γ divided into three disjoint measurable parts Γ1,Γ2 and Γ3

such that meas(Γ1) > 0. Let [0, T ] be the time interval of interest, where T > 0. The body
is clamped on Γ1 × (0, T ) and therefore the displacement field vanishes there; it is also
submitted to the action of volume forces of density f0 in Ω× (0, T ) and surface tractions of
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density f2 on Γ2×(0, T ). On Γ3×(0, T ), the body is in contact with an obstacle, the so-called
foundation. The contact is modelled with a version of normal compliance condition and the
associated Coulomb’s law of dry friction in which the adhesion of contact surfaces is taken
into account. We denote by ν the outward normal unit vector on Γ and the subscripts ν and
τ will represent the normal and tangential components of vectors and tensors, respectively.
We also denote by Sd the space of second order symmetric tensors on Rd and use “ · ” and
‖ · ‖ for the inner product and the Euclidean norm on Sd and Rd, respectively. Then, the
classical model for the frictional contact process is as follows.

Problem P. Find a displacement field u : Ω× [0, T ] → Rd, a stress field σ : Ω× [0, T ] → Sd

and a bonding field β : Ω× [0, T ] → R such that

σ = F(ε(u)) in Ω× (0, T ),(1)

Divσ + f0 = 0 in Ω× (0, T ),(2)

u = 0 on Γ1 × (0, T ),(3)

σν = f2 on Γ2 × (0, T ),(4)

− σν = pν(uν)− γνβ
2Rν(uν) on Γ3 × (0, T ),(5) 

‖στ + γτβ
2Rτ (uτ )‖ ≤ µpν(uν),

‖στ + γτβ
2Rτ (uτ )‖ < µpν(uν) ⇒ uτ = 0,

‖στ + γτβ
2Rτ (uτ )‖ = µpν(uν) ⇒ ∃λ ≥ 0

such that στ + γτβ
2Rτ (uτ ) = −λuτ

on Γ3 × (0, T ),(6)
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β̇ = −(β(γνRν(uν)2 + γτ‖Rτ (uτ )‖2)− εa)+ on Γ3 × (0, T ),(7)

β(0) = β0 on Γ3.(8)

We now provide some comments on equations and conditions (1)–(8) and send to [15,
17, 18] for more details on the conditions (5)–(7) which describe the frictional contact with
adhesion.

First, equation (1) represents the elastic constitutive law in which ε(u) denotes the
linearized strain tensor and F is the elasticity operator, assumed to be nonlinear. Next,
equation (2) is the equilibrium equation in which “Div” denotes the divergence operator; we
use it here since we assume that the inertial term in the equation of motion can be neglected.
Conditions (3) and (4) are the displacement and traction boundary conditions, respectively,
and condition (8) represents an initial condition, in which β0 is the initial bonding field.

Condition (5) represents the normal compliance condition with adhesion and condition
(6) is the associated Coulomb’s law of dry friction on the contact surface Γ3, in its static
version. Here pν is a given function, µ is the coefficient of friction and γν , γτ are material
parameters; also, Rν and Rτ are truncation operators defined by

Rν(s) =


L if s < −L,
−s if − L ≤ s ≤ 0,
0 if s > 0,

Rτ (v) =


v if ‖v‖ ≤ L,

L
v

‖v‖
if ‖v‖ > L,

with L > 0 being a characteristic length of the bond, beyond which it stretches without
offering any additional resistance, see [12] for details. It follows from (5) that the contri-
bution of the adhesive to the normal traction is represented by the term γνβ

2Rν(uν); the
adhesive traction is tensile, and is proportional to the square of the adhesion and to the
normal displacement, but as long as it does not exceed the bond length L. Also, it follows
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from (6) that the contribution of the adhesive to the tangential shear on the contact surface
is represented by the term γτβ

2Rτ (uτ ); the adhesive shear is proportional to the square of
the adhesion and to the tangential displacement, but again, only up to the bond length L.

Equation (7) describes the evolution of the bonding field in which εa is a given mate-
rial parameter and r+ = max {r, 0}. Here and below, for simplicity, we use the notation
Rν(uν)2 = (Rν(uν))2. We note that the adhesive process is irreversible and, indeed, once
debonding occurs bonding cannot be reestablished, since β̇ ≤ 0. Also, it is easy to see that
if 0 ≤ β0 ≤ 1 a.e. on Γ3, then 0 ≤ β ≤ 1 a.e. on Γ3 during the process.

Because of the friction condition (6), which is non-smooth, we do not expect the problem
to have, in general, any classical solution. For this reason, we derive in the next section a
variational formulation of the problem and investigate its solvability.

3. Variational formulation

We recall that the inner products and the corresponding norms on Rd and Sd are given by

u · v = uivi , ‖v‖ = (v · v)
1
2 ∀u,v ∈ Rd,

σ · τ = σijτij , ‖τ‖ = (τ · τ )
1
2 ∀σ, τ ∈ Sd.

Here and everywhere in this paper, i, j, k, l run from 1 to d, summation over repeated indices
is applied and the index that follows a comma represents the partial derivative with respect
to the corresponding component of the spatial variable, e.g. ui,j = ∂ui

∂xj
.

Everywhere below we use the classical notation for Lp and Sobolev spaces associated to Ω
and Γ. Moreover, we use the notation L2(Ω)d, H1(Ω)d, H and H1 for the following spaces:

L2(Ω)d = { v = (vi) | vi ∈ L2(Ω) }, H1(Ω)d = { v = (vi) | vi ∈ H1(Ω) },
H = { τ = (τij) | τij = τji ∈ L2(Ω) }, H1 = { τ ∈ H | τij,j ∈ L2(Ω) }.
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The spaces L2(Ω)d, H1(Ω)d, H and H1 are real Hilbert spaces endowed with the canonical
inner products given by

(u,v)L2(Ω)d =
∫

Ω

u · v dx, (u,v)H1(Ω)d =
∫

Ω

u · v dx+
∫

Ω

ε(u) · ε(v) dx,

(σ, τ )H =
∫

Ω

σ · τ dx, (σ, τ )H1 =
∫

Ω

σ · τ dx+
∫

Ω

Divσ ·Div τ dx,

and the associated norms ‖ · ‖L2(Ω)d , ‖ · ‖H1(Ω)d , ‖ · ‖H and ‖ · ‖H1 , respectively. Here and
below we use the notation

ε(v) = (εij(v)), εij(v)
1
2

(vi,j + vj,i), Div τ = (τij,j)

for all v ∈ H1(Ω)d and τ ∈ H1. For every element v ∈ H1(Ω)d we also write v for the
trace of v on Γ and we denote by vν and vτ the normal and tangential components of v
on Γ given by vν = v · ν, vτ = v − vνν. Similarly, σν and στ denote the normal and the
tangential traces of a function σ ∈ H1. When σ is a regular function, then σν = (σν) · ν,
στ = σν − σνν, and the following Green’s type formula holds:

(9) (σ, ε(v))Q + (Div σ,v)L2(Ω)d =
∫

Γ

σν · v da ∀v ∈ H1(Ω)d.

Consider the closed subspace of H1(Ω)d defined by

V = { v ∈ H1(Ω)d | v = 0 on Γ1 }.

Since meas(Γ1) > 0, the following Korn’s inequality holds:

(10) ‖ε(v)‖H ≥ cK ‖v‖H1(Ω)d ∀v ∈ V,
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where cK > 0 is a constant which depends only on Ω and Γ1. Over the space V we consider
the inner product given by

(11) (u,v)V = (ε(u), ε(v))H

and let ‖ · ‖V be the associated norm. It follows from Korn’s inequality (10) that ‖ · ‖V

and ‖ · ‖H1(Ω)d are equivalent norms on V and, therefore, (V, ‖ · ‖V ) is a real Hilbert space.
Moreover, by the Sobolev trace theorem combined with (10) and (11), there exists a constant
c0 depending only on the domains Ω, Γ1 and Γ3 such that

(12) ‖v‖L2(Γ3)d ≤ c0‖v‖V ∀v ∈ V.

For every real Hilbert space X we use the classical notation for the spaces Lp(0, T ;X)
and W k,p(0, T ;X), 1 ≤ p ≤ ∞, k = 1, 2, . . .; we also use the space of continuous functions
on [0, T ] with values on X, denoted C([0, T ];X), equipped with the norm

‖x‖C([0,T ];X) = max
t∈[0,T ]

‖x(t)‖X ,

and we introduce the set

Q = { θ : [0, T ] → L2(Γ3)) | 0 ≤ θ(t) ≤ 1 ∀ t ∈ [0, T ], a.e. on Γ3 }.

In the study of the problem P, we assume that the elasticity operator F and the normal
compliance function pν satisfy:
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

(a) F : Ω× Sd → Sd.

(b) There exists LF > 0 such that
‖F(x, ε1)−F(x, ε2)‖ ≤ LF‖ε1 − ε2‖
∀ε1, ε2 ∈ Sd, a.e. x ∈ Ω.

(c) There exists mF > 0 such that
(F(x, ε1)−F(x, ε2), ε1 − ε2) ≥ mF‖ε1 − ε2‖2
∀ε1, ε2 ∈ Sd, a.e. x ∈ Ω.

(d) The mapping x 7→ F(x, ε) is Lebesgue measurable in Ω,
for all ε ∈ Sd.

(e) The mapping x 7→ F(x,0) belongs to H.

(13)



(a) pν : Γ3 × R → R+.

(b) There exists Lν > 0 such that
|pν(x, r1)− pν(x, r2)| ≤ Lν |r1 − r2| ∀ r1, r2 ∈ R, a.e. x ∈ Γ3.

(c) (pν(x, r1)− pν(x, r2)(r1 − r2) ≥ 0 ∀ r1, r2 ∈ R, a.e. x ∈ Γ3.

(d) The mapping x 7→ pν(x, r) is measurable on Γ3, for all r ∈ R.

(e) pν(x, r) = 0 for all r ≤ 0, a.e. x ∈ Γ3.

(14)

Examples of nonlinear operators which satisfy conditions (13) can be find in [17]. Also,
a simple example of a normal compliance function pν which satisfies conditions (14) is
pν(r) = cνr+ where cν ∈ L∞(Γ3) is a positive function.
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We also suppose that the body forces and surface tractions have the regularity

(15) f0 ∈W 1,∞(0, T ;L2(Ω)d), f2 ∈W 1,∞(0, T ;L2(Γ2)d),

and the adhesion coefficients satisfy the conditions

(16) γν , γτ ∈ L∞(Γ3), εa ∈ L2(Γ3), γν , γτ , εa ≥ 0 a.e. on Γ3.

Finally, the friction coefficient and the initial bonding field are such that

µ ∈ L∞(Γ3), µ(x) ≥ 0 a.e. on Γ3,(17)
β0 ∈ L2(Γ3), 0 ≤ β0 ≤ 1 a.e. on Γ3.(18)

We define the function f : [0, T ] → V by

(19) (f(t),v)V =
∫

Ω

f0(t) · v dx+
∫

Γ2

f2(t) · v da,

for all u,v ∈ V and t ∈ [0, T ], and we note that the condition (15) implies that

(20) f ∈W 1,∞(0, T ;V ).

Also, we define the adhesion functional jad : L∞(Γ3)×V ×V → R, the normal compliance
functional jnc : V × V → R and the friction functional jfr : V × V → R by equalities

jad(β,u,v) =
∫

Γ3

(
− γνβ

2Rν(uν)vν + γτβ
2Rτ (uτ ) · vτ

)
da,(21)

jnc(u,v) =
∫

Γ3

pν(uν)vν da,(22)

jfr(u,v) =
∫

Γ3

µpν(uν)‖vτ‖da.(23)
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By a standard procedure based on Green’s formula (9) we derive the following variational
formulation of problem P, in terms of displacement and bonding fields.

Problem PV . Find a displacement field u : [0, T ] → V and a bonding field β : [0, T ] →
L∞(Γ3) such that

(Fε(u(t)), ε(v)− ε(u(t)))H + jad(β(t),u(t),v − u(t))(24)

+ jnc(u(t),v − u(t)) + jfr(u(t),v)− jfr(u(t),u(t))

≥ (f(t),v − u(t))V ∀v ∈ V, t ∈ [0, T ],

β̇(t) = −
(
β(t)

(
γνRν(uν(t))2 + γτ‖Rτ (uτ (t))‖2

)
− εa

)
+

a.e. t ∈ (0, T ),(25)

β(0) = β0.(26)

In the rest of this section, we derive some inequalities involving the functionals jad, jnc and

jfr which will be used in the following sections. Below in this section β, β1, β2 denote
elements of L2(Γ3) such that 0 ≤ β, β1, β2 ≤ 1 a.e. on Γ3, u1, u2,v1,v2, u and v represent
elements of V ; and c is a generic positive constant which may depend on Ω, Γ1, Γ3, pν , γν ,
γτ and L, whose value may change from place to place. For the sake of simplicity, in the
following text we suppress the explicit dependence on various functions on x ∈ Ω ∪ Γ3.

First, we remark that the jad and jnc are linear with respect to the last argument and
therefore

(27) jad(β,u,−v) = −jad(β,u,v), jnc(u,−v) = −jnc(u,v).
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Next, using (21) and inequalities |Rν(u1ν)| ≤ L, ‖Rτ (uτ )‖ ≤ L, |β1| ≤ 1, |β2| ≤ 1, we
deduce that

jad(β1,u1,u2 − u1) + jad(β2,u2,u1 − u2) ≤ c

∫
Γ3

|β1 − β2| ‖u1 − u2‖ da,

and, combining this inequality with (12), we obtain

(28) jad(β1,u1,u2 − u1) + jad(β2,u2,u1 − u2) ≤ c ‖β1 − β2‖L2(Γ3)‖u1 − u2‖V .

Next, we choose β1 = β2 = β in (28) to find

(29) jad(β,u1,u2 − u1) + jad(β,u2,u1 − u2) ≤ 0.

Similar computations, based on the Lipschitz continuity of operators Rν , Rτ , show that

(30) |jad(β,u1,v)− jad(β,u2,v)| ≤ c ‖u1 − u2‖V ‖v‖V .

Now, we use (22) to see that

|jnc(u1,v)− jnc(u2,v)| ≤
∫

Γ3

|pν(u1ν)− pν(u2ν)| |vν |da,

and therefore (14)(b) and (12) imply

(31) |jnc(u1,v)− jnc(u2,v)| ≤ c ‖u1 − u2‖V ‖v‖V .

We use again (22) to obtain

jnc(u1,u2 − u1) + jnc(u2,u1 − u2) =
∫

Γ3

(pν(u1ν)− pν(u2ν))(u2ν − u1ν) da,

and then, (14)(c) implies

(32) jnc(u1,u2 − u1) + jnc(u2,u1 − u2) ≤ 0.
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Finally, we use (23) to find that

jfr(u1,v1)− jfr(u1,v2) + jfr(u2,v2)− jfr(u2,v1)

≤
∫

Γ3

µ |pν(u1ν)− pν(u2ν)| ‖v1τ − v2τ‖da.

Therefore, using (14)(b) and (12) we obtain

jfr(u1,v2)− jfr(u1,v1) + jfr(u2,v1)− jfr(u2,v2)(33)

≤ c20Lν ‖µ‖L∞(Γ3)‖u1 − u2‖V ‖v1 − v2‖V .

Inequalities (28)–(33) combined with equalities (27) will be used in various places in the
rest of the paper.

4. An existence and uniqueness result

Our main result which states the unique solvability of Problem PV , is the following.

Theorem 4.1. Assume that (13)–(18) hold. Then, there exists µ0 > 0 which depends on
Ω, Γ1, Γ3, F and pν such that Problem PV has a unique solution (u, β), if ‖µ‖L∞(Γ3) < µ0.
Moreover, the solution satisfies

u ∈W 1,∞(0, T ;V ),(34)
β ∈W 1,∞(0, T ;L2(Γ3)) ∩Q.(35)

Let (u, β) be the solution of Problem PV obtained in Theorem 4.1 and denote by σ the
function given by (1). It is easy to check that

(36) σ ∈W 1,∞(0, T ;H1).
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A triple of functions (u,σ, β) which satisfies (1), (24)–(26) is called a weak solution of
the frictional adhesive contact problem P. We conclude by Theorem 4.1 that, under the
assumptions (13)–(18), if ‖µ‖L∞(Γ3) < µ0 there exists a unique weak solution of Problem P
which verifies (34)–(36).

We turn now to the proof of the Theorem 4.1 which will be carried out in several steps.
To this end, we assume in the following that (13)–(18) hold; below, c is a generic positive
constant which may depend on Ω, Γ1, Γ3, pν , γν , γτ , L, and whose value may change from
place to place; and Z denotes the closed set of the space C([0, T ];L2(Γ3)) defined by

(37) Z =
{
β ∈ C([0, T ];L2(Γ3)) ∩Q | β(0) = β0

}
.

Let β ∈ Z be given. In the first step we consider the following variational problem.

Problem P1
β. Find a displacement field uβ : [0, T ] → V such that, for all t ∈ [0, T ],

(Fε(uβ(t)), ε(v)− ε(uβ(t)))H + jad(β(t),uβ(t),v − uβ(t))(38)

+ jnc(uβ(t),v − uβ(t)) + jfr(uβ(t),v)− jfr(uβ(t),uβ(t))

≥ (f(t),v − uβ(t))V ∀v ∈ V.

We have the following result.

Lemma 4.2. There exists µ0 > 0 which depends on Ω,Γ1,Γ3,F and pν such that Problem
P1

β has a unique solution uβ ∈ C([0, T ];V ), if ‖µ‖L∞(Γ3) < µ0.

Proof. Let t ∈ [0, T ] and let Aβ(t) : V → V be the operator defined by

(39) (Aβ(t)u,v)V = (Fε(u), ε(v))H + jad(β(t),u,v) + jnc(u,v) ∀u, v ∈ V.
We use (13), (27) and (29)–(32) to prove that

‖Aβ(t)u1 −Aβ(t)u2‖V ≤ c ‖u1 − u2‖V ∀u1, u2 ∈ V,(40)
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(Aβ(t)u1 −Aβ(t)u2,u1 − u2)V ≥ mF‖u1 − u2‖2V ∀u1, u2 ∈ V,(41)

which shows that Aβ(t) is a strongly monotone Lipschitz continuous operator on V . Next,
using (14) we can easily check that, for a given u ∈ V , the functional jfr(u, ·) : V → R is
convex and lower semicontinuous and recall that it satisfies (33). Let

(42) µ0 =
mF
c20Lν

and note that µ0 depends on Ω,Γ1,Γ3,F and pν . Assume that ‖µ‖L∞(Γ3) < µ0. Then

(43) c20Lν‖µ‖L∞(Γ3) < mF

and therefore, using (41), (33) and a standard existence and uniqueness result on elliptic
quasivariational inequalities (see, e.g. [5]), it follows that there exists a unique element
uβ(t) ∈ V which satisfies

(Aβ(t)uβ(t),v − uβ(t))V + jfr(uβ(t),v)− jfr(uβ(t),uβ(t))

≥ (f(t),v − uβ(t))V ∀v ∈ V.
(44)

We use now (39) and (44) to see that uβ(t) is the unique element which solves (38), at any
t ∈ [0, T ].

Consider now t1, t2 ∈ [0, T ] and, for simplicity, denote uβ(ti) = ui, β(ti) = βi, f(ti) = f i

for i = 1, 2. Using (38), (13), the inequalities involving the functionals jad, jnc and jfr

presented at the end of Section 3 and (43), after some algebra we obtain

‖u1 − u2‖V ≤ c

mF − c20Lν‖µ‖L∞(Γ3)
‖β1 − β2‖L2(Γ3)(45)

+
1

mF − c20Lν‖µ‖L∞(Γ3)
‖f1 − f2‖V ,
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Inequality (45) combined with the regularities of f and β in (20) and (37) implies that the
mapping t 7→ uβ(t) : [0, T ] → V is continuous, which concludes the proof. �

We assume in following text that ‖µ‖L∞(Γ3) < µ0 and therefore (43) is valid. In the next
step, we use the displacement field uβ obtained in Lemma 4.2, and we consider the following
initial value problem.

Problem P2
β. Find a bonding field θβ : [0, T ] → L2(Γ3) such that

θ̇β(t) = −
(
θβ(t)

(
γνRν(uβν(t))2 + γτ‖Rτ (uβτ (t))‖2

)
− εa

)
+

a.e. t ∈ (0, T ),(46)

θβ(0) = β0.(47)

We obtain the following result.

Lemma 4.3. There exists a unique solution to Problem P2
β and it satisfies

θβ ∈W 1,∞(0, T, L2(Γ3)) ∩Q.

Proof. Consider the mapping Fβ : [0, T ]× L2(Γ3) → L2(Γ3) defined by

Fβ(t, θ) = −
(
θβ(t)

(
γνRν(uβν(t))2 + γτ‖Rτ (uβτ (t))‖2

)
− εa

)
+
,

for all t ∈ [0, T ] and θ ∈ L2(Γ3). It follows from the properties of the truncation operators Rν

and Rτ that Fβ is Lipschitz continuous with respect to the second argument, uniformly in
time. Moreover, for any θ ∈ L2(Γ3), the mapping t 7→ Fβ(t, θ) belongs to L∞(0, T ;L2(Γ3)).
Using now a version of Cauchy-Lipschitz theorem (see for instance [17, p. 48]), we obtain
the existence of a unique function θβ ∈W 1,∞(0, T, L2(Γ3)) which solves (46), (47). We note
that (25) and (26) guarantee that β(t) ≤ β0 and, therefore, assumption (18) shows that
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β(t) ≤ 1 for t ≥ 0, a.e. on Γ3. On the other hand, if β(t0) = 0 at t = t0, then it follows
from (25) and (26) that β̇(t) = 0 for all t ≥ t0 and therefore, β(t) = 0 for all t ≥ t0, a.e. on
Γ3. We conclude that 0 ≤ β(t) ≤ 1 for all t ∈ [0, T ], a.e. on Γ3. Therefore, according to the
definition of the set Q, we find that θβ ∈ Q, which concludes the proof of the lemma. �

It follows from Lemma 4.3 that for all β ∈ Z the solution θβ of Problem P2
β belongs to

Z, see (37). Therefore, we may consider the operator Λ : Z → Z given by

(48) Λβ = θβ .

In the last step we will prove the following result.

Lemma 4.4. There exists a unique element β∗ ∈ Z such that Λβ∗ = β∗.

Proof. Suppose that β1, β2, are two functions in Z and denote by ui, θi the functions
obtained in Lemmas 4.2 and 4.3, respectively, for β = βi, i = 1, 2. Let t ∈ [0, T ]; we use
similar arguments to those used in the proof of (45) to deduce that

(49) ‖u1(t)− u2(t)‖V ≤ c

mF − c20Lν‖µ‖L∞(Γ3)
‖β1(t)− β2(t)‖L2(Γ3).

On the other hand, it follows from (46) and (47) that

θi(t) = β0 −
∫ t

0

(
θi(s)

(
γνRν(uiν(s))2 + γτ‖Rτ (uiτ (s))‖2

)
− εa

)
+

ds

and then

‖θ1(t)− θ2(t)‖L2(Γ3) ≤ c

∫ t

0

‖θ1(s)Rν(u1ν(s))2 − θ2(s)Rν(u2ν(s))2‖L2(Γ3) ds

+
∫ t

0

∥∥θ1(s)‖Rτ (u1τ (s))‖2−θ2(s)‖Rτ (u2τ (s))‖2
∥∥

L2(Γ3)
ds.
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Using the definition of Rν and Rτ and writing θ1 = θ1 − θ2 + θ2, we get

‖θ1(t)− θ2(t)‖L2(Γ3) ≤ c

∫ t

0

‖θ1(s)− θ2(s)‖L2(Γ3) ds+ c

∫ t

0

‖u1(s)− u2(s)‖L2(Γ3) ds.

By Gronwall’s inequality, it follows that

‖θ1(t)− θ2(t)‖L2(Γ3) ≤ c

∫ t

0

‖u1(s)− u2(s)‖L2(Γ3) ds

and using (12) we obtain

(50) ‖θ1(t)− θ2(t)‖L2(Γ3) ≤ c

∫ t

0

‖u1(s)− u2(s)‖V ds.

We use (48) in the estimate (50) to find

(51) ‖Λβ1(t)− Λβ2(t)‖L2(Γ3) ≤ c

∫ t

0

‖u1(s)− u2(s)‖V ds.

We now combine (49) with (51) to deduce

‖Λβ1(t)− Λβ2(t)‖L2(Γ3) ≤
c

mF − c20Lν‖µ‖L∞(Γ3)

∫ t

0

‖β1(s)− β2(s)‖L2(Γ3) ds

and, reiterating this inequality n times, it yields

(52) ‖Λnβ1 − Λnβ2‖C([0,T ];L2(Γ3)) ≤
cnTn

(mF − c20Lν‖µ‖L∞(Γ3))nn!
‖β1 − β2‖C([0,T ];L2(Γ3)).

Recall that Z is a nonempty closed set in the Banach space C([0, T ];L2(Γ3)) and note
that inequality (52) shows that for n sufficiently large Λn : Z → Z is a contraction. We use
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the Banach fixed point theorem to obtain that Λ has a unique fixed point β∗ ∈ Z, which
concludes the proof. �

Now, we have all the ingredients to provide the proof of Theorem 4.1.

Proof of Theorem 4.1. Existence. Let β∗ ∈ Z be the fixed point of Λ and let u∗ be the
solution of Problem P1

β for β = β∗, i.e. u∗ = uβ∗ . Since θβ∗ = β∗, we conclude by (38),
(46), (47) that (u∗, β∗) is a solution of Problem PV and, moreover, β∗ satisfies (35). Also,
since β∗ = θβ∗ ∈ W 1,∞(0, T, L2(Γ3)), inequality (49) implies that the function u∗ belongs
to W 1,∞(0, T ;V ), which shows that the functions u∗ have the regularity expressed in (34).

Uniqueness. The uniqueness of the solution is a consequence of the uniqueness of the
fixed point of operator Λ defined by (48). Indeed, let (u, β) be a solution of Problem PV

which satisfies (34)–(35). It follows from (38) that u is a solution to Problem P1
β and, since

by Lemma 4.2 this problem has a unique solution denoted uβ , we obtain

(53) u = uβ .

Then, we replace u = uβ in (25) and use the initial condition (26) to see that β is a solution
to Problem P2

β . Since by Lemma 4.3, this last problem has a unique solution, denoted θβ ,
we find

(54) β = θβ .

We use now (48) and (54) to obtain that Λβ = β, i.e. β is a fixed point of the operator Λ.
It follows now from Lemma 4.4 that

(55) β = β∗.

The uniqueness part of the theorem is now a consequence of (53) and (55). �



JJ J I II

Go back

Full Screen

Close

Quit

5. A piezoelectric frictional contact problem with adhesion

In this section we extend our results to the case when the piezoelectric effect of the material
is taken into account. To this end we consider the physical setting described in Section 2
and we assume that, besides the action of the forces and tractions, the body is submitted to
the action of volume charges of density q0 and to electric constraints on the boundary. To
describe them we consider a second partition of Γ into two measurable parts Γa and Γb such
that meas(Γa) > 0 and Γ3 ⊆ Γb. We assume that the electric potential vanishes on Γa and
surface electric charge of density q2 is prescribed on Γb. Also, we assume that the foundation
is insulator and we model the material’s behavior with an electro-elastic constitutive law.
With these assumptions, the classical model of the process is as follows.

Problem P̃. Find a displacement field u : Ω× [0, T ] → Rd, a stress field σ : Ω× [0, T ] →
Sd, an electric potential ϕ : Ω×[0, T ] → R, an electric displacement field D : Ω×[0, T ] → Rd

and a bonding field β : Ω× [0, T ] → R such that

σ = Fε(u)− E∗E(ϕ) in Ω× (0, T ),(56)

D = BE(ϕ) + Eε(u) in Ω× (0, T ),(57)

Div σ + f0 = 0 in Ω× (0, T ),(58)

div D − q0 = 0 in Ω× (0, T ),(59)

u = 0 on Γ1 × (0, T ),(60)

σν = f2 on Γ2 × (0, T ),(61)
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− σν = pν(uν)− γνβ
2Rν(uν) on Γ3 × (0, T ),(62) 

‖στ + γτβ
2Rτ (uτ )‖ ≤ µpν(uν),

‖στ + γτβ
2Rτ (uτ )‖ < µpν(uν) ⇒ uτ = 0,

‖στ + γτβ
2Rτ (uτ )‖ = µpν(uν) ⇒ ∃λ ≥ 0

such that στ + γτβ
2Rτ (uτ ) = −λuτ

on Γ3 × (0, T ),(63)

β̇ = −(β (γνRν(uν)2 + γτ‖Rτ (uτ )‖2)− εa)+ on Γ3 × (0, T ),(64)

ϕ = 0 on Γa × (0, T ),(65)

D · ν = q2 on Γb × (0, T ),(66)

β(0) = β0 on Γ3.(67)

Equations (56) and (57) represent the electro-elastic constitutive law in which E(ϕ) =
−∇ϕ is the electric field, F is the elasticity operator, E represents the piezoelectric operator,
E∗ is its transposed and B denotes the electric permittivity operator. Details on the electro-
elastic constitutive equations of the form (56), (57) can be find, for instance, in [1, 2]. Next,
equation (59) is the equilibrium equation for the electric-displacement field in which “div”
denote the divergence operator for vector valued functions, whereas (65) and (66) represent
the electric boundary conditions. The rest of equations and conditions are identic to the
corresponding equations and conditions in Problem P.
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To study problem P̃ we use the notation in Section 3 and, for the electric unknowns ϕ
and D, we introduce the spaces

W = { ψ ∈ H1(Ω) | ψ = 0 on Γa },
W1 = { D = (Di) | Di ∈ L2(Ω), Di,i ∈ L2(Ω) }.

Since meas (Γa) > 0, the following Friedrichs-Poincaré inequality holds:

(68) ‖∇ψ‖L2(Ω)d ≥ cF ‖ψ‖H1(Ω) ∀ψ ∈W,
where cF > 0 is a constant which depends only on Ω and Γa and ∇ψ = (ψ,i ). Over the
space W we consider the inner product given by

(ϕ,ψ)W =
∫

Ω

∇ϕ · ∇ψ dx

and let ‖ · ‖W be the associated norm. It follows from (68) that ‖ · ‖H1(Ω) and ‖ · ‖W are
equivalent norms on W and therefore (W, ‖ · ‖W ) is a real Hilbert space. Moreover, the
space W1 is real Hilbert space with the inner product

(D,E)W1 =
∫

Ω

D ·E dx+
∫

Ω

div D · div E dx,

where div D = (Di,i), and the associated norm ‖ · ‖W1 .

We assume that the piezoelectric operator E and the electric permittivity operator B
satisfy the following assumptions.

(a) E : Ω× Sd → Rd.

(b) E(x, τ ) = (eijk(x)τjk) ∀τ = (τ ij) ∈ Sd, a.e. x ∈ Ω.

(c) eijk = eikj ∈ L∞(Ω).

(69)
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

(a) B : Ω× Rd → Rd.

(b) B(x,E) = (bij(x)Ej) ∀E = (Ei) ∈ Rd, a.e. x ∈ Ω.

(c) bij = bji ∈ L∞(Ω).

(d) There exists mB > 0 such that bij(x)EiEj ≥ mB‖E‖2
∀E = (Ei) ∈ Rd, a.e. x ∈ Ω.

(70)

From the assumptions (69) and (70) we deduce that the operators E and B are linear, have
measurable bounded components denoted eijk and bij and, moreover, B is symmetric and
positive definite. Recall also that the transposed operator E∗ is given by E∗ = (e∗ijk) where
e∗ijk = ekij , and the following equality holds :

(71) Eσ · v = σ · E∗v ∀σ ∈ Sd, v ∈ Rd.

We also assume that the densities of electric charges satisfy

(72) q0 ∈W 1,∞(0, T ;L2(Ω)), q2 ∈W 1,∞(0, T ;L2(Γb)),

(73) q2(t) = 0 on Γ3 ∀ t ∈ [0, T ].

Note that assumption (73) represents a compatibility condition; indeed, the foundation
is supposed to be insulator, like the gap, which is filled with air; therefore, the normal
component of the electric displacement field vanishes both on the contact and the separation
zone, which implies that D · ν = 0 on Γ3 × (0, T ). Combining this condition with (66) and
using assumption Γ3 ⊆ Γb we obtain (73).

We define the function q : [0, T ] →W by

(q(t), ψ)W =
∫

Ω

q0(t)ψ dx−
∫

Γb

q2(t)ψ da,(74)

for all u, v ∈ V, ψ ∈W and t ∈ [0, T ], and note that conditions (72) imply that

(75) q ∈W 1,∞(0, T ;W ).
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Using arguments similar to those used to derive Problem PV , we obtain the following
variational formulation of the piezoelectric contact problem P̃.

Problem P̃V . Find a displacement field u : [0, T ] → V , an electric potential field
ϕ : [0, T ] →W and a bonding field β : [0, T ] → L∞(Γ3) such that

(Fε(u(t)), ε(v − u(t)))H + (E∗∇ϕ(t), ε(v − u(t))H + jad(β(t),u(t),v − u(t))(76)

+jnc(u(t),v − u(t)) + jfr(u(t),v)− jfr(u(t),u(t))

≥ (f(t),v − u(t))V ∀v ∈ V, t ∈ [0, T ],

(B∇ϕ(t),∇ψ)L2(Ω)d − (Eε(u(t)),∇ψ)L2(Ω)d(77)

= (q(t), ψ)W ∀ψ ∈W, t ∈ [0, T ],

β̇(t) = −
(
β(t)

(
γνRν(uν(t))2 + γτ‖Rτ (uτ (t))‖2

)
− εa

)
+

a.e. t ∈ (0, T ),(78)

β(0) = β0.(79)

In the study of Problem P̃V we have the following existence and uniqueness result.

Theorem 5.1. Assume that (13)–(18) and (69), (70), (72) and (73) hold. Then, there
exists µ̃0 > 0 which depends on Ω, Γ1, Γ3, F , B and pν such that Problem P̃V has a unique
solution (u, β), if ‖µ‖L∞(Γ3) < µ̃0. Moreover, the solution has the regularity expressed in
(34), (35) and

(80) ϕ ∈W 1,∞(0, T ;W ).
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Let (u, β, ϕ) be the solution of Problem P̃V obtained in Theorem 5.1 and denote by σ,
D the function given by (56), (57), respectively. It is easy to check that σ satisfies (36) and

(81) D ∈W 1,∞(0, T ;W1).

A quintuple of functions (u, σ, ϕ, D, β) which satisfy (56), (57), (76)–(79) is called a weak
solution of the contact problem P̃V . We conclude by Theorem 5.1 that, under the stated
assumptions, Problem P̃V has a unique weak solution which satisfies (34)–(36), (80) and
(81).

The proof of Theorem 5.1 is similar to the proof of Theorem 4.1 and it is carried out in
several steps. Since the modifications are straightforward, we omit the details. In the first
step we fix β ∈ Z and we consider the following variational problem.

Problem P̃1
β. Find a displacement field uβ : [0, T ] → V and an electric potential field

ϕβ : [0, T ] →W such that, for all t ∈ [0, T ],

(F(ε(uβ(t))), ε(v)− uβ(t))H + (E∗∇ϕβ(t), ε(v − uβ(t)))H(82)
+jad(β(t),uβ(t),v − uβ(t)) + jnc(uβ(t),v − uβ(t))
+jfr(uβ(t),v)− jfr(uβ(t),uβ(t))

≥ (f(t),v − uβ(t))V ∀v ∈ V,

(B∇ϕβ(t),∇ψ)L2(Ω)d − (Eε(uβ(t)),∇ψ)L2(Ω)d = (q(t), ψ)W ∀ψ ∈W.(83)

We have the following result.

Lemma 5.2. There exists µ̃0 > 0 which depends on Ω, Γ1, Γ3, F , B and pν such that
Problem P̃1

β has a unique solution (uβ , ϕβ) ∈ C([0, T ];V ×W ), if ‖µ‖L∞(Γ3) < µ̃0.
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Proof. In order to solve (82)–(83) we consider the product space X = V ×W endowed
with the inner product

(x, y)X = (u,v)V + (ϕ,ψ)W ∀x = (u, ψ), y = (v, ψ) ∈ X

and the associated norm ‖ · ‖X . We define the operator Ãβ(t) : X ×X → R, the function
j : X → R and the element f(t) ∈ X by equalities:

(Ãβ(t)x, y)X = (Aβ(t)u,v)V + (B∇ϕ,∇ψ)L2(Ω)d + (E∗∇ϕ, ε(v))H(84)

−(Eε(u),∇ψ)L2(Ω)d ∀x = (u, ϕ), y = (v, ψ) ∈ X,

j(x, y) = jfr(u,v) ∀x = (u, ϕ), y = (v, ψ) ∈ X,(85)

f(t) = (f(t),−q(t)),(86)

for all t ∈ [0, T ], where Aβ(t) is given by (39). It is easy to see that xβ = (uβ , ϕβ) is a
solution to problem (82)–(83) with regularity (uβ , ϕβ) ∈ C([0, T ];V × W ) if and only if
xβ ∈ C([0, T ];X) and

(Aβ(t)xβ(t), y − xβ(t))X + j(xβ(t), y)− j(xβ(t), xβ(t))X(87)
≥ (f(t), y − xη(t))X ∀ y ∈ X, t ∈ [0, T ].

Next, we use (40), (41), (69)–(71) to see that Aβ(t) is a Lipschitz continuous operator on
X and satisfies

(88) (Aβ(t)x1 −Aβ(t)x2, x1 − x2)X ≥ min {mF ,mB}‖x1 − x2‖2X ∀x1, x2 ∈ X.

Also, using (85) and (33), we can easily check that, for a given x ∈ X, the functional
j(x, ·) : X → R is convex and lower semicontinuous and satisfies

j(x1, y2)− j(x1, x1) + j(x2, x1)− j(x2, x2)(89)



JJ J I II

Go back

Full Screen

Close

Quit

≤ c20Lν ‖µ‖L∞(Γ3)‖x1 − x2‖X‖y1 − y2‖X ∀x1 x2, y1, y2 ∈ X.
Finally, (86) and the regularity (20) and (75) show that f ∈W 1,∞(0, T ;V ). Let

(90) µ̃0 =
min {mF ,mB}

c20Lν

and assume that ‖µ‖L∞(Γ3) < µ̃0; we proceed like in the proof of Lemma 4.2 to see that
problem (87) has a unique solution xβ ∈ C([0, T ];X) which concludes the proof. �

The rest of the steps in the proof of Theorem 5.1 are as follows.

Proof of Theorem 5.1. We assume in what follows that ‖µ‖L∞(Γ3) < µ̃0 and, for a given
β ∈ Z we denote by (uβ , ϕβ) the solution of the Problem P̃1

β obtained in Lemma 5.2. We
use Lemma 4.3 to prove that, for a given β ∈ Z there exists a unique element θβ such that

θβ ∈W 1,∞(0, T ;L2(Γ3)) ∩Q,(91)

θ̇β(t) = −
(
γνθβ(t)

(
Rν(uβν(t))2 + γτ‖Rτ (uβτ (t))‖2

)
− εa

)
+

a.e. t ∈ (0, T ),(92)

θβ(0) = β0.(93)

Also, it follows from Lemma 4.4 that the operator Λ : Z → Z given by

(94) Λβ = θβ

has unique fixed point β∗ ∈ Z. Denote u∗ = uβ∗ , ϕ∗ = ϕβ∗ , where (uβ∗ , ϕβ∗) is the couple
of functions obtained in Lemma 5.2 for β = β∗. Then, we use (82)–(83) and (91)–(94) to
see that (u∗, ϕ∗, β∗) is a solution of Problem P̃V . The uniqueness of the solution as well as
the regularity (34), (35) and (80) follows from arguments similar to those used in the proof
of Theorem 4.1. �
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