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SOME COVERING SPACES AND TYPES OF COMPACTNESS

ALI JARADAT and ADNAN AL-BSOUL

Abstract. In this paper we shall study covering spaces such as fully normal spaces, absolutely count-
ably compact, minimal Hausdorff, ℵ-space, realcompact, locally paracompact, w−compact, maximal

compact. Moreover, we give refinements of some theorems rasied in [1], also we shall give partial
solutions of some open problems raised in [2], and [3].

In 1996 M. L. Puertas suggested the following question: If every proper subspace (A, τA) of the
space (X, τ) has a property P , should the original space (X, τ) have the property P? Nowadays,
such kind of topological properties are known as properly hereditary properties. More precisely,
a topological property is called a properly hereditary property if every proper subspace has the
property, then the whole space has the property. Moreover, if every proper closed (open, Fσ, Gδ,
etc.) subspace has the property, then the whole space has the property, we call such a property
properly closed (open, Fσ, Gδ, etc.) hereditary.

F. Arenas in [3] studied Puertas’s problem and proved that topological properties like separation
axioms (T0, T1, T2, T3), separability, countability axioms, and metrizability are properly hereditary
properties. At the end of his paper Arenas [3] suggested some open problems. Some of these
problems were solved by Al-Bsoul in [1] and [2]. Also, in [1] and [2], Al-Bsoul proved that many
topological properties are properly hereditary properties. Moreover, Al-Bsoul suggested new open
problems concerning this concept.
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In this paper some open problems raised in [2] and [3] will be solved. Moreover, we proved
that the following topological properties are properly hereditary properties: fully normality, abso-
lutely countably compactness, locally paracompactness, minimal Hausdorff, realcompactness, max-
imal compactness, ℵ-space and ω-space. Also, we managed to improve some results in [1].

1. Some Types of Compactness

Arenas [3] proved that compactness, local compactness are properly hereditary properties. In this
section we shall study more types of compactness according to this property. For the next result
we need the following definition.

Definition 1 ([8]). A space X is called absolutely countably compact if for every open cover U
of X and every dense subspace D of X, there exists a finite subset F ⊆ D such that St(F,U) = X.

Theorem 1. Being an absolutely countably compact is a properly hereditary property.

Proof. Suppose that every proper subspace of a space (X, τ) is absolutely countably compact.
Let A = {As : s ∈ S} be an open cover of X and D be a dense subset of X. Evidently, if D = X
or D is degenerate, then X is absolutely countably compact. Thus, we may assume that D 6= X
and D is non-degenerate. Thus, we have two cases:

(i) X = D ∪ {x1} for some x1 ∈ X\D, then D is a dense subset of Z = X \ {x1} and hence
D has a finite subset K1 such that St (K1,U) = Z where U = {As \ {x1} : s ∈ S}. Now, if
x1 ∈ St (K1,A) then it is done, but if x1 /∈ St (K1,A), choose x2 ∈ D such that {x1, x2}
is not open in X. Now, D \ {x2} is dense in the subspace X \ {x2}. So, D \ {x2} has
a finite subset K2 such that St (K2,W) = X \ {x2} where W = {As \ {x2} : s ∈ S}. Take
K = K1 ∪K2, then St (K,A) = X.

(ii) X 6= D ∪ {x} for any x ∈ X. Let x3 and x4 be two distinct points in X \D, then D is a
dense subset to both subspaces X \ {x3} and X \ {x4}, so, D has a finite subset K3 such
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that St (K3, C) = X \ {x3} where C = {As \ {x3} : s ∈ S}, and a finite subset K4 such that
St (K4,L) = X \{x4} where L = {As \ {x4} : s ∈ S}. Take E =K3∪K4, then St (E,A)=X.

�

A subset A of a topological space X is called a zero-set if A = f−1(0) for a continuous function
f : X → I, the complement of A is called a cozero-set. Let A be a subset of X, τ -closure of A,
clτ A is the set of all points x ∈ X such that any cozero-set neighborhood of x intersects A. Now,
we define w-compact as follows:

Definition 2 ([5]). A topological space (X, τ) is called w-compact if any open cover {Uα : α ∈
∆} of X contains a finite subfamily {Uα1 , Uα2 , . . . , Uαn

} such that X = clτ (Uα1 ∪Uα2 ∪ . . .∪Uαn
).

Theorem 2. w-compactness is a properly closed hereditary property.

Proof. Let U = {Uα : α ∈ ∆} be an open cover of the topological space (X, τ) and Y = X \Uα0

for some α0 ∈ ∆, so {Uα ∩ Y : α ∈ ∆} is an open cover of Y and hence it has a finite subfamily
{Uα1 ∩ Y, Uα2 ∩ Y, . . . , Uαn ∩ Y } such that

Y = clτ ′((Uα1 ∩ Y ) ∪ (Uα2 ∩ Y ) ∪ . . . ∪ (Uαn
∩ Y ))

where τ ′ is the topology on Y .
Hence, {Uα0 , Uα1 , Uα2 , . . . , Uαn

} is the required subfamily of U . �

Recall that a compact space X is maximal compact iff every compact subset is closed. The
maximal compactness is not a properly open (closed) hereditary property. To see this, consider
the following examples:

Example 1. Let X = R and topologize X as τ = {R, φ, {0}}. Then, every proper open
subspace of X is maximal compact, but X is not maximal compact.
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Example 2. Every proper closed subspace of the topological space (R, τcof.) is maximal com-
pact, but (R, τcof.) is not maximal compact.

In the next result, we shall show that maximal compactness is a properly hereditary property
for Card(X) > 3. The condition Card(X) > 3 is necessary as we shall see in the next example.

Example 3. Let X = {1, 2} and τ = {X, φ, {1}}. Then every proper subspace of X is maximal
compact, but X itself is not maximal compact.

Theorem 3. If every proper subspace of a topological space X is maximal compact with
Card(X) > 3, then X is finite and has the discrete topology.

Proof. Suppose that every proper subspace of a topological space X is maximal compact. Let
x1 ∈ X, and let x2 ∈ X \{x1}. So, the subspace X \{x1, x2} is a compact subset of X \{x2}, hence
it is closed in X \{x2}, let x3 ∈ X \{x1, x2}, then the subspace X \{x1, x3} is a compact subset of

X \{x3}, thus it is closed in X \{x3} and hence (X \X \ {x1, x2}
X

)∩ (X \X \ {x1, x3}
X

) = {x1}.
Therefore, {x1} is open. �

2. Covering Spaces

Let us study some types of covering properties that are properly hereditary properties. Recall that
a topological space (X, τ) is called a T 1

2
-space iff every singleton in X is either open or closed.

Definition 3 ([4]). A topological space (X, τ) is called fully normal iff every open cover of X
has an open star refinement.

Lemma 1 ([8]). A barycentric refinement of a barycentric refinement of a cover U is a star
refinement of U .



JJ J I II

Go back

Full Screen

Close

Quit

Theorem 4. If every proper subspace of (X, τ) is fully normal T 1
2
-space, then (X, τ) is fully

normal.

Proof. If X has the discrete topology, then it is fully normal. Assume that τ is not the discrete
topology. Let A = {As : s ∈ S} be any open cover of X and let x1 ∈ X be such that {x1} is closed
in X.

Let Y = X \{x1}, so {As \ {x1} : s ∈ S} is an open cover of Y , hence it has an open barycentric
refinement, say, B = {Bt : t ∈ T}. Let x2 ∈ X be such that {x2} is closed in X, if there is no such
x2, we are done.

Let Z = X \{x2}, so {As \ {x2} : s ∈ S} is an open cover of Z, hence it has an open barycentric
refinement D = {Dα : α ∈ 4}. Now, for all x ∈ X \ {x1, x2}, there exist Btx

∈ B and Dαx
∈ D

such that x belongs to both Btx and Dαx . Also, there exist Btx2
∈ B, and Dαx1

∈ D that contain
x2, x1, respectively. Let F = Btx2

∪Dαx1
, so F =

{
Btx2

, Dαx1

}
is an open cover of F , hence it

has an open barycentric refinement, say G, and St (x1,G) ∩ St (x2,G) = φ.
It is easy to see that the family

C = {Btx ∩Dαx : x ∈ X \ {x1, x2}} ∪ {St (x1,G), St (x2,G)}

is an open barycentric refinement of A.
Now, since C is an open cover of X, so it has an open barycentric refinement W. Therefore, W

is an open star refinement of A. �

Now, [2, Theorem 3.1] becomes an easy consequence.

Corollary 1. If every proper subspace of (X, τ) is paracompact, then (X, τ) is paracompact.

Definition 4 ([5]). A cover A of a space X is called a k-network for X, if for any open set U in
X and any compact subset K of U , there exists a finite subfamily B of A such that K ⊆ ∪B ⊆ U .
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Definition 5 ([5]). A regular space X is called ℵ-space if it has a σ-locally finite k-network.

Theorem 5. ℵ-space is a properly hereditary property.

Proof. Suppose that every proper subspace of a space X is an ℵ-space. Let A be an open cover
of X. If X has the indiscrete topology, then X is an ℵ-space.

If X does not have the indiscrete topology, then there exist two nonempty disjoint open subsets
U and V of X. Let Y = X \ U , Z = X \ V , so there exist two σ-locally finite k-networks
C = ∪∞i=1C2i−1and D = ∪∞j=1D2j of Y and Z, respectively.

It is not hard to see that B = ∪∞n=1Bn is a σ-locally finite k-network of X where

Bn =

{
Cn if n is odd

Dn if n is even

�

Definition 6 ([7]). A topological space (X, τ) is called locally paracompact iff for every x ∈ X
there exists an open neighborhood Ux of x such that Ux is paracompact.

Theorem 6. If every proper subspace of a topological space X is locally paracompact, then X
is locally paracompact.

Proof. If X is finite, then X is paracompact. So, we may assume that X is infinite. Let x1 ∈ X
and let x2 be such that x1 6= x2. So, there exists an open neighborhood Vx1 of x1 in the subspace
Y = X \ {x2} such that Vx1

Y
is paracompact, we have two cases:

(I) Vx1 is open in X. If x2 /∈ Vx1

X
, then Vx1

X
is paracompact. So, we assume that x2 ∈ Vx1

X
,

hence we have two subcases to be considered:
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(1) Vx1

X 6= X, let x3 ∈ X \ Vx1

X
, so x1 has an open neighborhood Ux1 in the subspace

Z = X \ {x3} such that Ux1

Z
is paracompact, so Vx1∩ Ux1 is an open neighborhood of

x1 in X. Now, let U = {Uα : α ∈ ∆} be an open cover of the subspace Vx1 ∩ Ux1

X
, so

for all α ∈ ∆ there exists an open set Fα in Ux1

Z
such that Uα = Fα∩ Vx1 ∩ Ux1

X
. Thus,

the family {Fα : α ∈ ∆}∪
{

Ux1

Z \ Vx1 ∩ Ux1

X
}

is an open cover of the subspace Ux1

Z

and hence it has a locally finite open refinement, say {Vγ : γ ∈ Γ}. Now, the family{
Vγ ∩ (Vx1 ∩ Ux1

X
) : γ ∈ Γ

}
is a locally finite open refinement of U .

(2) Vx1

X
= X. We have two cases:

(a) If Vx1 = X \ {x2}, then X is paracompact.
(b) Vx1 6= X\{x2}. If there exists x4 ∈ X\(Vx1∪{x2}) such that x1 has a neighborhood,
say Ux1 , in X \ {x4} with Ux1

X\{x4} is paracompact and Ux1

X\{x4} 6= X \ {x4}, so
Vx1 ∩ Ux1 is open in X and Vx1 ∩ Ux1

X 6= X. Let p ∈ X\ Vx1 ∩ Ux1

X.
, then x1 has a

neighborhood, say Fx1 , in X\{p} with Fx1

X\{p}
is paracompact. So, by a similar way as

in case (I.1), (Vx1 ∩ Ux1) ∩ Fx1

X
is paracompact. Otherwise, X \ {x4} is paracompact

and since X \ {x2} is paracompact, then {x} is closed for all x ∈ X \ {x2, x4}. Let
{x5, x6} ⊆ X \ {x1, x2, x4} and let A = {As : s ∈ S} be an open cover of X, then
{As \ {x5} : s ∈ S} (respectively, {As \ {x6} : s ∈ S}) is an open cover of X \ {x5} (
respectively, X \{x6}) and hence it has a locally finite open refinement, say {Jl : l ∈ L}
( respectively, {Ik : k ∈ K}). Hence the family

{Jlx ∩ Ikx
: x ∈ X \ {x5, x6}} ∪

{
Jlx6

, Ikx5

}
is a locally finite open refinement of A.
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(II) Vx1 is not open in X. If there exists x0 ∈ X \ {x1} such that x1 has a neighborhood in
X \ {x0}, say Wx1 , such that Wx1

X\{x0} is paracompact and it is open in X, then we have
Case (I). Otherwise, for all x ∈ X \ {x1}, we have {x} is not closed and hence X \ {x} is
not paracompact. Now, let y ∈ X \ {x1}, so x1 has an open neighborhood in X \ {y}, say
Bx1 , such that Bx1

X\{y}
is paracompact, let z ∈ X \ (Bx1

X\{y} ∪ {y}), so x1 has an open
neighborhood in X \ {z}, say Dx1 , such that Dx1

X\{z}
is paracompact. Thus Dx1 ∩ (Bx1 ∪

{y}) is open in X and Dx1 ∩ (Bx1 ∪ {y})
X
6= X. Let q ∈ X \Dx1 ∩ (Bx1 ∪ {y})

X
, then x1

has a neighborhood, say Hx1 , in X \ {q} with Hx1

X\{q}
which is paracompact. So, by a

similar way as in Case (I.1), (Dx1 ∩ (Bx1 ∪ {y})) ∩Hx1

X
is paracompact.

�

3. More Topological Properties

In this section, we shall study the topological properties: minimal Hausdorff, realcompact, ex-
tremely disconnected and improve a result about δ-normal spaces. Recall that a Hausdorff space
X is called minimal Hausdorff if every one-to-one continuous map of X to a Hausdorff space Y is
a homeomorphism.

Theorem 7. Being a minimal Hausdorff is a properly hereditary property.

Proof. Suppose that every proper subspace of X is minimal Hausdorff. Since every proper
subspace of X is Hausdorff, then X is a Hausdorff space. Let f be a one to one continuous
map of X to a Hausdorff space Y and let x1 ∈ X. So, g : X \ {x1} → Y \ {f(x1)} is one to
one and continuous where g = f on X \ {x1} and hence g is a homeomorphism. Now, since
f(X) = f({x1})∪ f(X \ {x1}) = f({x1})∪ g(X \ {x1}) = f({x1})∪Y \ {f(x1)} = Y , so f is onto.
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Let U be a proper open subset of X. If x1 /∈ U , then f(U) = g(U), and since g is a homeo-
morphism, we have g(U) open in Y \ {f(x1)}, so it is open in Y . If x1 ∈ U , let x2 ∈ X \ U , so
h : X \ {x2} → Y \ {f(x2)} is one-to-one and continuous where h = f on X \ {x2} and hence h is
a homeomorphism that implies f(U) = h(U) is open in Y \ h({x2}) and so in Y . �

To study the next result we need the following definition.

Definition 7 ([4]). A Tychonoff space X is called realcompact if there is no Tychonoff space
Y which satisfies the following conditions:

(1) There exists a homeomorphism embedding r : X → Y such that r(X) 6= Cl(r(X)) and
Cl(r(X)) = Y .

(2) For every continuous real valued function f : X → R, there exists a continuous function
g : Y → R such that g ◦ r = f .

Theorem 8. If every proper subspace of a disconnected space X is realcompact, then so is X.

Proof. Since X is a disconnected space, so there exist two nonempty disjoint open subsets of
X, say U and V , such that U ∪ V = X. Let F be a closed subset of X and x1 /∈ F , so x1 belongs
to U or V , say U .

If U ∩ F = φ, then the function h : X → I where

h(x) =

{
1 if x ∈ V

0 if x ∈ U

is continuous with h(x1) = 0 and h(F ) = 1.
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If U ∩ F 6= φ, then there exists a continuous function hU : U → I such that hU (x1) = 0,
hU (U ∩ F ) = 1 and hence the function h : X → I where

h(x) =

{
1 if x ∈ V

hU (x) if x ∈ U

is continuous with h(x1) = 0 and h(F ) = 1. Thus, X is Tychonoff.
Now, suppose that there exists a Tychonoff space Y satisfying conditions (1) and (2) in Def-

inition 7, so there exists a homeomorphic embedding r : X → Y such that r(X) 6= r(X)
Y

= Y

and hence r(U) 6= r(U)
Y

or r(V ) 6= r(V )
Y

, say r(U) 6= r(U)
Y

, let W = r(U)
Y

, so the function

r |U : U → W is a homeomorphic embedding such that r(U) 6= r(U)
W

= W .
Now, let h : U → R be a continuous real valued function, thus the function

f(x) =

{
h(x) if x ∈ U

0 if x ∈ V

is a continuous real valued function from X to R, so there exists a continuous function g : Y →
R such that g ◦ r = f , so g |W : W → R is continuous and (g |W ) ◦ (r |U ) = h, which is a
contradiction. �

In the next result we managed to improve [1, Theorem 3.5] by removing the condition T1. For
this we need the following definition

Definition 8 ([8]). A topological space X is called a δ-normal space if whenever A and B
are disjoint closed subsets of X, there exist two disjoint Gδ-sets H and K such that A ⊆ H and
B ⊆ K.
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Theorem 9. If every proper subspace of X is δ-normal, then X is δ-normal provided that
Card(X) 6= 3.

Proof. It is clear that X is δ-normal whenever Card(X) ≤ 2. For Card(X) ≥ 4, let A and B be
two disjoint nonempty closed subsets of X. If X = A ∪B, the proof is completed. So, we assume
that X 6= A ∪ B. Let x1 ∈ X \ (A ∪ B), so there exist two disjoint Gδ-sets H1 = ∩∞i=1H

1
i and

K1 = ∩∞i=1K
1
i in Y = X \{x1} such that A ⊆ H1 and B ⊆ K1, where H1

i and K1
i are open in Y for

all i ∈ N. Hence, there exist open sets U1
i and V 1

i in X such that H1
i = U1

i ∩ Y and K1
i = V 1

i ∩ Y
for all i ∈ N. Thus, U1 = ∩∞i=1U

1
i and V 1 = ∩∞i=1V

1
i are Gδ-sets in X. Now, if U1 ∩ V 1 = φ, the

proof is completed. If U1 ∩ V 1 6= φ, then U1 ∩ V 1 = {x1}, we have two cases:
(a) There exists x2 ∈ X \ (A ∪ B ∪ {x1}). So, there exist two disjoint Gδ−sets H2 = ∩∞i=1H

2
i

and K2 = ∩∞i=1K
2
i in Z = X \ {x2} such that A ⊆ H2 and B ⊆ K2, where H2

i and K2
i

are open in Z for all i ∈ N. Hence, there exist open sets U2
i and V 2

i in X such that H2
i =

U2
i ∩ Z and K2

i = V 2
i ∩ Z for all i ∈ N. Thus, U2 = ∩∞i=1U

2
i and V 2 = ∩∞i=1V

2
i are Gδ-sets

in X. Then U = ∩∞i=1Ui and V = ∩∞i=1Vi are two disjoint Gδ-sets in X such that A ⊆ U
and B ⊆ V , where Ui = U1

i ∩ U2
i and Vi = V 1

i ∩ V 2
i .

(b) X = A ∪ B ∪ {x1}. So Card(A) or Card(B) is not equal to 1, say Card(A) 6= 1. If x ∈ A
there exist two disjoint Gδ-subsets Hx = ∩∞i=1H

x
i and Kx = ∩∞i=1K

x
i in Wx = X \ {x} such

that A \ {x} ⊆ Hx and B ⊆ Kx, where Hx
i and Kx

i are open in Wx for all i ∈ N. Hence,
there exist open sets Ux

i and V x
i in X such that Hx

i = Ux
i ∩Wx and Kx

i = V x
i ∩Wx for all

i ∈ N. Thus, Ux = ∩∞i=1U
x
i and V x = ∩∞i=1V

x
i are Gδ-sets in X. If there exists x3 ∈ A such

that x1 ∈ Ux3 , then ∩∞i=1(V
x3
i ∩V 1

i ) and U1 are two disjoint Gδ-sets of X such that A ⊆ U1

and B ⊆ ∩∞i=1(V
x3
i ∩ V 1

i ). Otherwise, there exist Ux4
i0

and Ux5
i1

such that x1 /∈
{
Ux4

i0
∪ Ux5

i1

}
for some {x4, x5} ⊆ A and {i0, i1} ⊆ N and hence V 1 and ∩∞i=1(U

1
i ∩

{
Ux4

i0
∪ Ux5

i1

}
) are two

disjoint Gδ−sets of X such that A ⊆ ∩∞i=1(U
1
i ∩

{
Ux4

i0
∪ Ux5

i1

}
) and B ⊆ V 1.

�



JJ J I II

Go back

Full Screen

Close

Quit

The following example shows that Theorem 9 is not true if the cardinality of X is 3.

Example 4. Let X = {x, y, z} be topologized as follows:

τ = {φ, {x} , {x, y} , {x, z} , X} ,

so every proper subspace of X is δ-normal, but X is not δ-normal.

We improve [1, Theorem 3.8] for any space with cardinality greater than 3 as follows.

Theorem 10. If every proper subspace of a topological space X is an extremely disconnected
space, then X is extremely disconnected provided that Card(X) > 4.

Proof. Let U be a nonempty proper open set in X, we have two cases:

(I) If Card(X \ U) = 1, then U
X

is either U or X.
(II) If Card(X \ U) 6= 1, so let x1, x2 be two distinct points in X \ U and let Y = X \ {x1},

Z = X \ {x2}. So, U
Y

= V1 ( respectively, U
Z

= V2) is open in Y (respectively, Z), then
U

X
= V1∪V2. Now, it is easy to prove that V1∪V2 is open in X. Therefore, X is extremely

disconnected.
�
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