SOME FAMILIES OF p-VALENT FUNCTIONS WITH NEGATIVE COEFFICIENTS

M. K. AOUF

Abstract. We introduce two subclasses $T^{*}(p, \alpha, j)$ and $C(p, \alpha, j) \quad(0 \leq \alpha$ $<p-j+1, \quad 1 \leq j \leq p, \quad p \in N=\{1,2, \ldots\})$ of p-valent starlike and p-valent convex functions with negative coefficents. In this paper we obtain coefficient inequalities, distortion theorems, extreme points and integral operators for functions belonging to the classes $T^{*}(p, \alpha, j)$ and $C(p, \alpha, j)$. We also determine the radii of close-to-convexity and convexity for the functions belonging to the class $T^{*}(p, \alpha, j)$. Also we obtain several results for the modified Hadamard products of functions belonging to the classes $T^{*}(p, \alpha, j)$ and $C(p, \alpha, j)$.

1. Introduction

Let $A(p)$ denote the class of functions of the form:

$$
\begin{equation*}
f(z)=z^{p}+\sum_{k=p+1}^{\infty} a_{k} z^{k} \quad(p \in N=\{1,2, \ldots\}) \tag{1.1}
\end{equation*}
$$

which are analytic and p-valent in the unit disc $U=\{z:|z|<1\}$. A function $f(z) \in A(p)$ is called p-valent starlike of order $\alpha(0 \leq \alpha<p)$ if $f(z)$ satisfies the conditions

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>\alpha \quad(z \in U) \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{0}^{2 \Pi} \operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\} \mathrm{d} \theta=2 p \pi \quad(z \in U) \tag{1.3}
\end{equation*}
$$

We denote by $S(p, \alpha)$ the class of p-valent starlike functions of α. Also a function $f(z) \in A(p)$ is called p-valent convex of order $\alpha(0 \leq \alpha<p)$ if $f(z)$ satisfies the following conditions

$$
\begin{equation*}
\operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>\alpha \quad(z \in U) \tag{1.4}
\end{equation*}
$$

[^0]2000 Mathematics Subject Classification. Primary 30C45.
Key words and phrases. p-valent; extreme points; modified Hadamard product.
and

$$
\begin{equation*}
\int_{0}^{2 \Pi} \operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\} \mathrm{d} \theta=2 p \pi \quad(z \in U) \tag{1.5}
\end{equation*}
$$

We denote by $K(p, \alpha)$ the class of p-valent convex functions of order α. We note that
(1.6) $f(z) \in K(p, \alpha) \quad$ if and only if $\quad \frac{z f^{\prime}(z)}{p} \in S(p, \alpha) \quad(0 \leq \alpha<p)$.

The class $S(p, \alpha)$ was introduced by Patil and Thakare [3] and the class $K(p, \alpha)$ was introduced by Owa [1].

For $0 \leq \alpha<p-j+1,1 \leq j \leq p$ and $p \in N$, we say $f(z) \in A(p)$ is in the class $S(p, \alpha, j)$ if it satisfies the following inequality:

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z f^{(j)}(z)}{f^{(j-1)}(z)}\right\}>\alpha \quad(z \in U) \tag{1.7}
\end{equation*}
$$

Also for $0 \leq \alpha<p-j+1,1 \leq j \leq p$ and $p \in N$, we say $f(z) \in A(p)$ is in the class $K(p, \alpha, j)$ if it satisfies the following inequality:

$$
\begin{equation*}
\operatorname{Re}\left\{1+\frac{z f^{(j+1)}(z)}{f^{(j)}(z)}\right\}>\alpha \quad(z \in U) \tag{1.8}
\end{equation*}
$$

It follows from (1.7) and (1.8) that:
(1.9) $f(z) \in K(p, \alpha, j) \quad$ if and only if $\quad \frac{z f^{(j)}(z)}{p-j+1} \in S(p, \alpha, j)$.

The classes $S(p, \alpha, j)$ and $K(p, \alpha, j)$ were studied by Srivastava et al. [6] (see also Nunokawa [2]). We note that $S(p, \alpha, 1)=S(p, \alpha)$ and $K(p, \alpha, 1)=K(p, \alpha)$.

Let $T(p)$ denote the subclass of $A(p)$ consisting of functions of the form:

$$
\begin{equation*}
f(z)=z^{p}-\sum_{k=p+1}^{\infty} a_{k} z^{k} \quad\left(a_{k} \geq 0 ; p \in N\right) \tag{1.10}
\end{equation*}
$$

We denote by $T^{*}(p, \alpha, j)$ and $C(p, \alpha, j)$ the classes obtained by taking intersections, respectively, of the classes $S(p, \alpha, j)$ and $K(p, \alpha, j)$ with $T(p)$, that is

$$
T^{*}(p, \alpha, j)=S(p, \alpha, j) \cap T(p)
$$

and

$$
C(p, \alpha, j)=K(p, \alpha, j) \cap T(p) .
$$

We note that:
(i) $T^{*}(p, \alpha, 1)=T^{*}(p, \alpha) \quad$ and $\quad C(p, \alpha, 1)=C(p, \alpha) \quad($ Owa $[\mathbf{1}])$;
(ii) $T^{*}(1, \alpha, 1)=T^{*}(\alpha) \quad$ and $\quad C(1, \alpha, 1)=C(\alpha) \quad$ (Silverman [5]).

In this paper we obtain coefficient inequalities, distortion theorems, extreme points and integral operators for functions belonging to the classes $T^{*}(p, \alpha, j)$ and $C(p, \alpha, j)$. We also determine the radii of close-to-convexity and convexity for the functions belonging to the class $T^{*}(p, \alpha, j)$. Also we obtain several results for the
modified Hadamard products of functions belonging to the classes $T^{*}(p, \alpha, j)$ and $C(p, \alpha, j)$.

2. Coefficient Estimates

Theorem 1. Let the function $f(z)$ be defined by (1.10). Then $f(z) \in T^{*}(p, \alpha, j)$ if and only if

$$
\begin{equation*}
\sum_{k=p+1}^{\infty} \frac{\delta(k, j-1)}{\delta(p, j-1)}(k-j+1-\alpha) a_{k} \leq(p-j+1-\alpha) \tag{2.1}
\end{equation*}
$$

where

$$
\delta(p, j)=\frac{p!}{(p-j)!}= \begin{cases}p(p-1) \ldots \ldots(p-j+1) & (j \neq 0) \tag{2.2}\\ 1 & (j=0)\end{cases}
$$

Proof. Assume that the inequality (2.1) holds true. Then we obtain

$$
\begin{align*}
\left|\frac{z f^{(j)}(z)}{f^{(j-1)}(z)}-(p-j+1)\right| & =\left|\frac{\sum_{k=p+1}^{\infty} \frac{k!(k-p)}{(k-j+1)!} a_{k} z^{k-p}}{\frac{p!}{(p-j+1)!}-\sum_{k=p+1}^{\infty} \frac{k!}{(k-j+1)!} a_{k} z^{k-p}}\right| \\
& \leq \frac{\sum_{k=p+1}^{\infty} \frac{k!(k-p)}{(k-j+1)!} a_{k}}{\frac{p!}{(p-j+1)!}-\sum_{k=p+1}^{\infty} \frac{k!}{(k-j+1)!} a_{k}} \tag{2.3}\\
& \leq p-j+1-\alpha .
\end{align*}
$$

This shows that the values of $\frac{z f^{(j)}(z)}{f^{(j-1)}(z)}$ lie in a circle which is centered at $w=$ $(p-j+1)$ and whose radius is $p-j+1-\alpha$. Hence $f(z)$ satisfies the condition (1.7).

Conversely, assume that the function $f(z)$ defined by (1.10) is in the class $T^{*}(p, \alpha, j)$. Then we have

$$
\begin{align*}
& \operatorname{Re}\left\{\frac{z f^{(j)}(z)}{f^{(j-1)}(z)}\right\} \\
& =\operatorname{Re}\left\{\frac{\frac{p!}{(p-j)!}-\sum_{k=p+1}^{\infty} \frac{k!}{(k-j)!} a_{k} z^{k-p}}{\frac{p!}{(p-j+1)!}-\sum_{k=p+1}^{\infty} \frac{k!}{(k-j+1)!} a_{k} z^{k-p}}\right\}>\alpha \tag{2.4}
\end{align*}
$$

for $0 \leq \alpha<p-j+1,1 \leq j \leq p, p \in N$ and $z \in U$. Choose values of z on the real axis so that $\frac{z f^{(j)}(z)}{f^{(j-1)}(z)}$ is real. Upon clearing the denominator in (2.4) and letting
$z \rightarrow 1^{-}$through real values, we can see that

$$
\begin{equation*}
\frac{p!}{(p-j)!}-\sum_{k=p+1}^{\infty} \frac{k!}{(k-j)!} a_{k} \geq \alpha\left(\frac{p!}{(p-j+1)!}-\sum_{k=p+1}^{\infty} \frac{k!}{(k-j+1)!} a_{k}\right) \tag{2.5}
\end{equation*}
$$

Thus we have the required inequality (2.1).
Corollary 1. Let the function $f(z)$ defined by (1.10) be in the class $T^{*}(p, \alpha, j)$. Then we have

$$
\begin{equation*}
a_{k} \leq \frac{\delta(p, j-1)(p-j+1-\alpha)}{\delta(k, j-1)(k-j+1-\alpha)} \quad(k \geq p+1 ; p \in N) \tag{2.6}
\end{equation*}
$$

The result is sharp for the function $f(z)$ given by

$$
\begin{equation*}
f(z)=z^{p}-\frac{\delta(p, j-1)(p-j+1-\alpha)}{\delta(k, j-1)(k-j+1-\alpha)} z^{k} \quad(k \geq p+1 ; p \in N) \tag{2.7}
\end{equation*}
$$

Theorem 2. Let the function $f(z)$ be defined by (1.10). Then $f(z) \in C(p, \alpha, j)$ if and only if

$$
\begin{equation*}
\sum_{k=p+1}^{\infty} \frac{\delta(k, j)}{\delta(p, j)}(k-j+1-\alpha) a_{k} \leq(p-j+1-\alpha) \tag{2.8}
\end{equation*}
$$

Proof. Since $f(z) \in C(p, \alpha, j)$ if and only if $\frac{z f^{(j)}(z)}{p-j+1} \in T^{*}(p, \alpha, j)$, we have the theorem by replacing a_{k} with $\left(\frac{k-j+1}{p-j+1}\right) a_{k} \quad(k \geq p+1)$ in Theorem 1.

Corollary 2. .Let the function $f(z)$ defined by (1.10) be in the class $C(p, \alpha, j)$. Then we have

$$
\begin{equation*}
a_{k} \leq \frac{\delta(p, j)(p-j+1-\alpha)}{\delta(k, j)(k-j+1-\alpha)} \quad(k \geq p+1 ; p \in N) \tag{2.9}
\end{equation*}
$$

The result is sharp for the function $f(z)$ given by

$$
\begin{equation*}
f(z)=z^{p}-\frac{\delta(p, j)(p-j+1-\alpha)}{\delta(k, j)(k-j+1-\alpha)} z^{k} \quad(k \geq p+1 ; p \in N) \tag{2.10}
\end{equation*}
$$

3. Extreme points

From Theorem 1 and Theorem 2, we see that both $T^{*}(p, \alpha, j)$ and $C(p, \alpha, j)$ are closed under convex linear combinations, which enables us to determine the extreme points for these classes.

Theorem 3. Let

$$
\begin{equation*}
f_{p}(z)=z^{p} \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{k}(z)=z^{p}-\frac{\delta(p, j-1)(p-j+1-\alpha)}{\delta(k, j-1)(k-j+1-\alpha)} z^{k} \quad(k \geq p+1 ; p \in N) \tag{3.2}
\end{equation*}
$$

Then $f(z) \in T^{*}(p, \alpha, j)$ if and only if it can be expressed in the form

$$
\begin{equation*}
f(z)=\sum_{k=p}^{\infty} \lambda_{k} f_{k}(z) \tag{3.3}
\end{equation*}
$$

where $\lambda_{k} \geq 0(k \geq p)$ and $\sum_{k=p}^{\infty} \lambda_{k}=1$.
Proof. Suppose that

$$
\begin{equation*}
f(z)=\sum_{k=p}^{\infty} \lambda_{k} f_{k}(z)=z^{p}-\sum_{k=p+1}^{\infty} \frac{\delta(p, j-1)(p-j+1-\alpha)}{\delta(k, j-1)(k-j+1-\alpha)} \lambda_{k} z^{k} . \tag{3.4}
\end{equation*}
$$

Then it follows that

$$
\begin{align*}
& \sum_{k=p+1}^{\infty} \frac{\delta(k, j-1)(k-j+1-\alpha)}{\delta(p, j-1)(p-j+1-\alpha)} \cdot \frac{\delta(p, j-1)(p-j+1-\alpha)}{\delta(k, j-1)(k-j+1-\alpha)} \lambda_{k} \tag{3.5}\\
& =\sum_{k=p+1}^{\infty} \lambda_{k}=1-\lambda_{p} \leq 1 .
\end{align*}
$$

Therefore, by Theorem $1, f(z) \in T^{*}(p, \alpha, j)$.
Conversely, assume that the function $f(z)$ defined by (1.10) belongs to the class $T^{*}(p, \alpha, j)$. Then

$$
\begin{equation*}
a_{k} \leq \frac{\delta(p, j-1)(p-j+1-\alpha)}{\delta(k, j-1)(k-j+1-\alpha)} \quad(k \geq p+1 ; \quad \in N) \tag{3.6}
\end{equation*}
$$

Setting

$$
\begin{equation*}
\lambda_{k}=\frac{\delta(k, j-1)(k-j+1-\alpha)}{\delta(p, j-1)(p-j+1-\alpha)} a_{k} \quad(k \geq p+1 ; \quad p \in N) \tag{3.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda_{p}=1-\sum_{k=p+1}^{\infty} \lambda_{k} \tag{3.8}
\end{equation*}
$$

we see that $f(z)$ can be expressed in the form (3.3). This completes the proof of Theorem 3.

Corollary 3. The extreme points of the class $T^{*}(p, \alpha, j)$ are the functions $f_{p}(z)=z^{p}$ and

$$
f_{k}(z)=z^{p}-\frac{\delta(p, j-1)(p-j+1-\alpha)}{\delta(k, j-1)(k-j+1-\alpha)} z^{k} \quad(k \geq p+1 ; p \in N)
$$

Similarly, we have
Theorem 4. Let

$$
\begin{equation*}
f_{p}(z)=z^{p} \tag{3.9}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{k}(z)=z^{p}-\frac{\delta(p, j)(p-j+1-\alpha)}{\delta(k, j)(k-j+1-\alpha)} z^{k} \quad(k \geq p+1 ; p \in N) . \tag{3.10}
\end{equation*}
$$

Then $f(z) \in C(p, \alpha, j)$ if and only if it can be expressed in the form

$$
\begin{equation*}
f(z)=\sum_{k=p}^{\infty} \lambda_{k} f_{k}(z), \tag{3.11}
\end{equation*}
$$

where $\lambda_{k} \geq 0(k \geq p)$ and $\sum_{k=p}^{\infty} \lambda_{k}=1$.
Corollary 4. The extreme points of the class $C(p, \alpha, j)$ are the functions $f_{p}(z)=z^{p}$ and

$$
f_{k}(z)=z^{p}-\frac{\delta(p, j)(p-j+1-\alpha)}{\delta(k, j)(k-j+1-\alpha)} z^{k} \quad(k \geq p+1 ; \quad p \in N) .
$$

4. Distortion theorems

Theorem 5. Let the function $f(z)$ defined by (1.10) be in the class $T^{*}(p, \alpha, j)$. Then, for $|z|=r<1$,

$$
r^{p}-\frac{(p-j+1-\alpha)(p-j+2)}{(p-j+2-\alpha)(p+1)} r^{p+1} \leq|f(z)|
$$

$$
\begin{equation*}
\leq r^{p}+\frac{(p-j+1-\alpha)(p-j+2)}{(p-j+2-\alpha)(p+1)} r^{p+1} \tag{4.1}
\end{equation*}
$$

and

$$
\begin{align*}
p r^{p-1}-\frac{(p-j+1-\alpha)(p-j+2)}{(p-j+2-\alpha)} r^{p} & \leq\left|f^{\prime}(z)\right| \\
& \leq p r^{p-1}+\frac{(p-j+1-\alpha)(p-j+2)}{(p-j+2-\alpha)} r^{p} . \tag{4.2}
\end{align*}
$$

The equalities in (4.1) and (4.2) are attained for the function $f(z)$ given by

$$
\begin{equation*}
f(z)=z^{p}-\frac{(p-j+1-\alpha)(p-j+2)}{(p-j+2-\alpha)(p+1)} z^{p+1} \quad(z= \pm r) \tag{4.3}
\end{equation*}
$$

Proof. Since $f(z) \in T^{*}(p, \alpha, j)$, in view of Theorem 1, are have

$$
\begin{aligned}
\frac{\delta(p+1, j-1)(p-j+2-\alpha)}{\delta(p, j-1)} \sum_{k=p+1}^{\infty} a_{k} & \leq \sum_{k=p+1}^{\infty} \frac{\delta(k, j-1)}{\delta(p, j-1)}(k-j+1-\alpha) a_{k} \\
& \leq(p-j+1-\alpha),
\end{aligned}
$$

which evidently yields

$$
\begin{equation*}
\sum_{k=p+1}^{\infty} a_{k} \leq \frac{(p-j+1-\alpha)(p-j+2)}{(p-j+2-\alpha)(p+1)} . \tag{4.4}
\end{equation*}
$$

Consequently, for $|z|=r<1$, we obtain

$$
|f(z)| \leq r^{p}+r^{p+1} \sum_{k=p+1}^{\infty} a_{k} \leq r^{p}+\frac{(p-j+1-\alpha)(p-j+2)}{(p-j+2-\alpha)(p+1)} r^{p+1}
$$

and

$$
|f(z)| \geq r^{p}-r^{p+1} \sum_{k=p+1}^{\infty} a_{k} \geq r^{p}-\frac{(p-j+1-\alpha)(p-j+2)}{(p-j+2-\alpha)(p+1)} r^{p+1}
$$

which prove the assertion (4.1) of Theorem 5.
Also from Theorem 1, it follows that

$$
\begin{equation*}
\sum_{k=p+1}^{\infty} k a_{k} \leq \frac{(p-j+1-\alpha)(p-j+2)}{(p-j+2-\alpha)} \tag{4.5}
\end{equation*}
$$

Consequently, for $|z|=r<1$, we have

$$
\begin{aligned}
\left|f^{\prime}(z)\right| & \leq p r^{p-1}+\sum_{k=p+1}^{\infty} k a_{k} r^{k-1} \leq p r^{p-1}+r^{p} \sum_{k=p+1}^{\infty} k a_{k} \\
& \leq p r^{p-1}+\frac{(p-j+1-\alpha)(p-j+2)}{(p-j+2-\alpha)} r^{p}
\end{aligned}
$$

and

$$
\begin{aligned}
\left|f^{\prime}(z)\right| & \geq p r^{p-1}-\sum_{k=p+1}^{\infty} k a_{k} r^{k-1} \geq p r^{p-1}-r^{p} \sum_{k=p+1}^{\infty} k a_{k} \\
& \geq p r^{p-1}-\frac{(p-j+1-\alpha)(p-j+2)}{(p-j+2-\alpha)} r^{p}
\end{aligned}
$$

which prove the assertion (4.2) of Theorem 5.
Finally, it is easy to see that the bounds in (4.1) and (4.2) are attained for the function $f(z)$ given already by (4.3).

Corollary 5. Let the function $f(z)$ defined by (1.10) be in the class $T^{*}(p, \alpha, j)$. Then the unit disc U is mapped onto a domain that contains the disc

$$
\begin{equation*}
|w|<\frac{(p-j+2-\alpha)(p+1)-(p-j+1-\alpha)(p-j+2)}{(p-j+2-\alpha)(p+1)} \tag{4.6}
\end{equation*}
$$

The result is sharp, with the extremal function $f(z)$ given by (4.3).
Theorem 6. Let the function $f(z)$ defined by (1.10) be in the class $C(p, \alpha, j)$. Then, for $|z|=r<1$,

$$
r^{p}-\frac{(p-j+1-\alpha)(p-j+1)}{(p-j+2-\alpha)(p+1)} r^{p+1} \leq|f(z)|
$$

$$
\begin{equation*}
\leq r^{p}+\frac{(p-j+1-\alpha)(p-j+1)}{(p-j+2-\alpha)(p+1)} r^{p+1} \tag{4.7}
\end{equation*}
$$

and

$$
\begin{align*}
p r^{p-1}-\frac{(p-j+1-\alpha)(p-j+1)}{(p-j+2-\alpha)} r^{p} & \leq\left|f^{\prime}(z)\right| \\
& \leq p r^{p-1}+\frac{(p-j+1-\alpha)(p-j+1)}{(p-j+2-\alpha)} r^{p} \tag{4.8}
\end{align*}
$$

The results are sharp.
Proof. The proof of Theorem 6 is obtained by using the same technique as in the proof of Theorem 5 with the aid of Theorem 2. Further we can show that the bounds of Theorem 6 are sharp for the function $f(z)$ defined by

$$
\begin{equation*}
f(z)=z^{p}-\frac{(p-j+1-\alpha)(p-j+1)}{(p-j+2-\alpha)(p+1)} z^{p+1} . \tag{4.9}
\end{equation*}
$$

Corollary 6. Let the function $f(z)$ defined by (1.10) be in the class $C(p, \alpha, j)$. Then the unit disc U is mapped onto a domain that contains the disc

$$
\begin{equation*}
|w|<\frac{(p-j+2-\alpha)(p+1)-(p-j+1-\alpha)(p-j+1)}{(p-j+2-\alpha)(p+1)} \tag{4.10}
\end{equation*}
$$

The result is sharp, with the extremal function $f(z)$ given by (4.9).

5. Integral operators

Theorem 7. Let the function $f(z)$ defined by (1.10) be in the class $T^{*}(p, \alpha, j)$, and let c be a real number such that $c>-p$. Then the function $F(z)$ defined by

$$
\begin{equation*}
F(z)=\frac{c+p}{z^{c}} \int_{0}^{z} t^{c-1} f(t) \mathrm{d} t \tag{5.1}
\end{equation*}
$$

also belongs to the class $T^{*}(p, \alpha, j)$.
Proof. From the representation of $F(z)$, it follows that

$$
\begin{equation*}
F(z)=z^{p}-\sum_{k=p+1}^{\infty} b_{k} z^{k} \tag{5.2}
\end{equation*}
$$

where

$$
b_{k}=\left(\frac{c+p}{c+k}\right) a_{k}
$$

Therefore

$$
\begin{aligned}
\sum_{k=p+1}^{\infty} & \frac{\delta(k, j-1)(k-j+1-\alpha)}{\delta(p, j-1)} b_{k} \\
& =\sum_{k=p+1}^{\infty} \frac{\delta(k, j-1)(k-j+1-\alpha)}{\delta(p, j-1)}\left(\frac{c+p}{c+k}\right) a_{k} \\
& \leq \sum_{k=p+1}^{\infty} \frac{\delta(k, j-1)(k-j+1-\alpha)}{\delta(p, j-1)} a_{k} \leq(p-j+1-\alpha)
\end{aligned}
$$

since $f(z) \in T^{*}(p, \alpha, j)$. Hence, by Theorem $1, f(z) \in T^{*}(p, \alpha, j)$.
Corollary 7. Under the same conditions as Theorem 7, a similar proof shows that the function $F(z)$ defined by (5.1) is in the class $C(p, \alpha, j)$, whenever $f(z)$ is in the class $C(p, \alpha, j)$.

6. RadiI of CLOSE-TO-CONVEXITY AND CONVEXITY FOR THE CLASS $\mathrm{T}^{*}(p, \alpha, j)$

Theorem 8. Let the function $f(z)$ defined by (1.10) be in the class $T^{*}(p, \alpha, j)$, then $f(z)$ is p-valently close-to-convex of order $\phi(0 \leq \phi<p)$ in $|z|<r_{1}$, where
(6.1) $r_{1}=\inf _{k}\left\{\frac{\delta(k, j-1)(k-j+1-\alpha)}{\delta(p, j-1)(p-j+1-\alpha)}\left(\frac{p-\phi}{k}\right)\right\}^{\frac{1}{k-p}} \quad(k \geq p+1)$.

The result is sharp, with the extremal function $f(z)$ given by (2.7).
Proof. We must show that $\left|\frac{f^{\prime}(z)}{z^{p-1}}-p\right| \leq p-\phi$ for $|z|<r_{1}$. We have

$$
\left|\frac{f^{\prime}(z)}{z^{p-1}}-p\right| \leq \sum_{k=p+1}^{\infty} k a_{k}|z|^{k-p}
$$

Thus $\left|\frac{f^{\prime}(z)}{z^{p-1}}-p\right| \leq p-\phi$ if

$$
\begin{equation*}
\sum_{k=p+1}^{\infty}\left(\frac{k}{p-\phi}\right) a_{k}|z|^{k-p} \leq 1 \tag{6.2}
\end{equation*}
$$

Hence, by Theorem 1, (6.2) will be true if

$$
\left(\frac{k}{p-\phi}\right)|z|^{k-p} \leq \frac{\delta(k, j-1)(k-j+1-\alpha)}{\delta(p, j-1)(p-j+1-\alpha)}
$$

or if
(6.3) $|z| \leq\left\{\frac{\delta(k, j-1)(k-j+1-\alpha)}{\delta(p, j-1)(p-j+1-\alpha)}\left(\frac{p-\phi}{k}\right)\right\}^{\frac{1}{k-p}} \quad(k \geq p+1)$.

The theorem follows easily from (6.3).

Theorem 9. Let the function $f(z)$ defined by (1.10) be in the class $T^{*}(p, \alpha, j)$ then $f(z)$ is p-valently convex of order $\phi(0 \leq \phi<p)$ in $|z|<r_{2}$, where
(6.4) $r_{2}=\inf _{k}\left\{\frac{\delta(p, j-1)(k-j+1-\alpha)}{\delta(k, j-1)(p-j+1-\alpha)} \cdot\left(\frac{p(p-\phi)}{k(k-\phi)}\right)\right\}^{\frac{1}{k-p}}(k \geq p+1)$.

The result is sharp, with the extremal function $f(z)$ given by (2.7).
Proof. It is sufficient to show that

$$
\left|1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-p\right| \leq p-\phi \quad \text { for } \quad|z|<r_{2}
$$

We have

$$
\left|1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-p\right| \leq \frac{\sum_{k=p+1}^{\infty} k(k-p) a_{k}|z|^{k-p}}{p-\sum_{k=p+1}^{\infty} k a_{k}|z|^{k-p}}
$$

Thus $\left|1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-p\right| \leq p-\phi$ if

$$
\begin{equation*}
\sum_{k=p+1}^{\infty} \frac{k(k-\phi)}{p(p-\phi)} a_{k}|z|^{k-p} \leq 1 \tag{6.5}
\end{equation*}
$$

Hence, by Theorem 1, (6.5) will be true if

$$
\frac{k(k-\phi)}{p(p-\phi)}|z|^{k-p} \leq \frac{\delta(k, j-1)(k-j+1-\alpha)}{\delta(p, j-1)(p-j+1-\alpha)}
$$

or if

$$
\begin{equation*}
|z| \leq\left\{\frac{\delta(k, j-1)(k-j+1-\alpha)}{\delta(p, j-1)(p-j+1-\alpha)} \cdot\left(\frac{p(p-\phi)}{k(k-\phi)}\right)\right\}^{\frac{1}{k-p}} \quad(k \geq p+1) \tag{6.6}
\end{equation*}
$$

The theorem follows easily from (6.6).

7. Modified Hadamard products

Let the functions $f_{v}(z)(v=1,2)$ be defined by

$$
\begin{equation*}
f_{v}(z)=z^{p}-\sum_{k=p+1}^{\infty} a_{k, v} z^{k} \quad\left(a_{k, v} \geq 0 ; \quad v=1,2\right) \tag{7.1}
\end{equation*}
$$

Then the modified Hadamard product (or convolution) of $f_{1}(z)$ and $f_{2}(z)$ is defined by

$$
\begin{equation*}
\left(f_{1} * f_{2}\right)(z)=z^{p}-\sum_{k=p+1}^{\infty} a_{k, 1} a_{k, 2} z^{k} . \tag{7.2}
\end{equation*}
$$

Theorem 10. Let the functions $f_{v}(z)(v=1,2)$ defined by (7.1) be in the class $T^{*}(p, \alpha, j)$. Then $\left(f_{1} * f_{2}\right)(z) \in T^{*}(p, \gamma, j)$, where

$$
\gamma=(p-j+1)
$$

$$
\begin{equation*}
-\frac{(p-j+1-\alpha)^{2}(p-j+2)}{(p-j+2-\alpha)^{2}(p+1)-(p-j+1-\alpha)^{2}(p-j+2)} . \tag{7.3}
\end{equation*}
$$

The result is sharp.
Proof. Employing the technique used earlier by Schild and Silveman [4], we need to find the largest γ such that

$$
\begin{equation*}
\sum_{k=p+1}^{\infty} \frac{\delta(k, j-1)(k-j+1-\gamma)}{\delta(p, j-1)(p-j+1-\gamma)} a_{k, 1} a_{k, 2} \leq 1 \tag{7.4}
\end{equation*}
$$

Since

$$
\begin{equation*}
\sum_{k=p+1}^{\infty} \frac{\delta(k, j-1)(k-j+1-\alpha)}{\delta(p, j-1)(p-j+1-\alpha)} a_{k, 1} \leq 1 \tag{7.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=p+1}^{\infty} \frac{\delta(k, j-1)(k-j+1-\alpha)}{\delta(p, j-1)(p-j+1-\alpha)} a_{k, 2} \leq 1 \tag{7.6}
\end{equation*}
$$

by the Cauchy-Schwarz inequality, we have

$$
\begin{equation*}
\sum_{k=p+1}^{\infty} \frac{\delta(k, j-1)(k-j+1-\alpha)}{\delta(p, j-1)(p-j+1-\alpha)} \sqrt{a_{k, 1} a_{k, 2}} \leq 1 \tag{7.7}
\end{equation*}
$$

Thus it is sufficient to show that

$$
\begin{equation*}
\frac{(k-j+1-\gamma)}{(p-j+1-\gamma)} a_{k, 1} a_{k, 2} \leq \frac{(k-j+1-\alpha)}{(p-j+1-\alpha)} \sqrt{a_{k, 1} a_{k, 2}} \quad(k \geq p+1) \tag{7.8}
\end{equation*}
$$

that is

$$
\begin{equation*}
\sqrt{a_{k, 1} a_{k, 2}} \leq \frac{(k-j+1-\alpha)(p-j+1-\gamma)}{(k-j+1-\gamma)(p-j+1-\alpha)} \tag{7.9}
\end{equation*}
$$

Note that

$$
\begin{equation*}
\sqrt{a_{k, 1} a_{k, 2}} \leq \frac{\delta(p, j-1)(p-j+1-\alpha)}{\delta(k, j-1)(k-j+1-\alpha)} \quad(k \geq p+1) \tag{7.10}
\end{equation*}
$$

Consequently, we need only to prove that

$$
\begin{equation*}
\frac{\delta(p, j-1)(p-j+1-\alpha)}{\delta(k, j-1)(k-j+1-\alpha)} \leq \frac{(k-j+1-\alpha)(p-j+1-\gamma)}{(k-j+1-\gamma)(p-j+1-\alpha)} \tag{7.11}
\end{equation*}
$$

$$
(k \geq p+1)
$$

or, equivalently, that

$$
\begin{aligned}
\gamma \leq & (p-j+1) \\
& -\frac{\delta(p, j-1)(p-j+1-\alpha)^{2}(k-p)}{\delta(k, j-1)(k-j+1-\alpha)^{2}-\delta(p, j-1)(p-j+1-\alpha)^{2}}
\end{aligned}
$$

$$
\begin{equation*}
(k \geq p+1) \tag{7.12}
\end{equation*}
$$

Since

$$
\begin{align*}
D(k)= & (p-j+1) \\
& -\frac{\delta(p, j-1)(p-j+1-\alpha)^{2}(k-p)}{\delta(k, j-1)(k-j+1-\alpha)^{2}-\delta(p, j-1)(p-j+1-\alpha)^{2}} \tag{7.13}
\end{align*}
$$

is an increasing function of $k(k \geq p+1)$, letting $k=p+1$ in (7.13) we obtain

$$
\gamma \leq D(p+1)=(p-j+1)
$$

$$
\begin{equation*}
-\frac{(p-j+1-\alpha)^{2}(p-j+2)}{(p-j+2-\alpha)^{2}(p+1)-(p-j+1-\alpha)^{2}(p-j+2)}, \tag{7.14}
\end{equation*}
$$

which completes the proof Theorem 10.
Finally, by taking the functions

$$
\begin{equation*}
f_{v}(z)=z^{p}-\frac{(p-j+1-\alpha)(p-j+2)}{(p-j+2-\alpha)(p+1)} z^{p+1} \quad(v=1,2 ; \quad p \in N) \tag{7.15}
\end{equation*}
$$

we can see that the result is sharp.
Corollary 8. Let the functions $f_{v}(z)(v=1,2)$ be the same as in Theorem 10, we have

$$
\begin{equation*}
h(z)=z^{p}-\sum_{k=p+1}^{\infty} \sqrt{a_{k, 1} a_{k, 2}} z^{k} \tag{7.16}
\end{equation*}
$$

belongs to the class $T^{*}(p, \alpha, j)$.
The result follows from the inequality (7.7). It is sharp for the same functions as in Theorem 10.

Corollary 9. Let the functions $f_{\nu}(z)(\nu=1,2)$ defined by (7.1) be in the class $C(p, \alpha, j)$. Then $\left(f_{1} * f_{2}\right)(z) \in C(p, \lambda, j)$ where

$$
\begin{align*}
\lambda= & (p-j+1) \\
& -\frac{(p-j+1-\alpha)^{2}(p-j+1)}{(p-j+2-\alpha)^{2}(p+1)-(p-j+1-\alpha)^{2}(p-j+1)} . \tag{7.17}
\end{align*}
$$

The result is sharp for the functions

$$
\begin{equation*}
f_{\nu}(z)=z^{p}-\frac{(p-j+1-\alpha)(p-j+1)}{(p-j+2-\alpha)(p+1)} z^{p+1} \quad(\nu=1,2 \quad p \in N) \tag{7.18}
\end{equation*}
$$

Using arguments similar to those in the proof of Theorem 10, we obtain the following result.

Theorem 11. Let the function $f_{1}(z)$ defined by (7.1) be in the class $T^{*}(p, \alpha, j)$ and the function $f_{2}(z)$ defined by (7.1) be in the class $T^{*}(p, \tau, j)$, then $\left(f_{1} * f_{2}\right)(z) \in$ $T^{*}(p, \zeta, j)$, where

$$
\begin{align*}
& \zeta=(p-j+1) \\
& -\frac{(p-j+1-\alpha)(p-j+1-\tau)(p-j+2)}{(p-j+2-\alpha)(p-j+2-\tau)(p+1)-(p-j+1-\alpha)(p-j+1-\tau)(p-j+2)} . \tag{7.19}
\end{align*}
$$

The result is the best possible for the functions

$$
\begin{equation*}
f_{1}(z)=z^{p}-\frac{(p-j+1-\alpha)(p-j+2)}{(p-j+2-\alpha)(p+1)} z^{p+1} \quad(p \in N) \tag{7.20}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{2}(z)=z^{p}-\frac{(p-j+1-\tau)(p-j+2)}{(p-j+2-\tau)(p+1)} z^{p+1}(p \in N) \tag{7.21}
\end{equation*}
$$

Corollary 10. Let the function $f_{1}(z)$ defined by (7.1) be in the class $C(p, \alpha, j)$ and the function $f_{2}(z)$ defined by (7.1) be in the class $C(p, \tau, j)$, then $\left(f_{1} * f_{2}\right)(z) \in$ $C(p, \theta, j)$, where

$$
\begin{align*}
\theta= & (p-j+1) \\
& -\frac{(p-j+1-\alpha)(p-j+1-\tau)(p-j+1)}{(p-j+2-\alpha)(p-j+2-\tau)(p+1)-(p-j+1-\alpha)(p-j+1-\tau)(p-j+1)} . \tag{7.22}
\end{align*}
$$

The result is sharp for the functions

$$
\begin{equation*}
f_{1}(z)=z^{p}-\frac{(p-j+1-\alpha)(p-j+1)}{(p-j+2-\alpha)(p+1)} z^{p+1} \quad(p \in N) \tag{7.23}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{2}(z)=z^{p}-\frac{(p-j+1-\tau)(p-j+1)}{(p-j+2-\tau)(p+1)} z^{p+1} \quad(p \in N) \tag{7.24}
\end{equation*}
$$

Theorem 12. Let the functions $f_{\nu}(z)(\nu=1,2)$ defined by (7.1) be in the class $T^{*}(p, \alpha, j)$. Then the function

$$
\begin{equation*}
h(z)=z^{p}-\sum_{k=p+1}^{\infty}\left(a_{k, 1}^{2}+a_{k, 2}^{2}\right) z^{k} \tag{7.25}
\end{equation*}
$$

belongs to the class $T^{*}(p, \varphi, j)$, where

$$
\begin{align*}
\varphi= & (p-j+1) \\
& -\frac{2(p-j+1-\alpha)^{2}(p-j+2)}{(p-j+2-\alpha)^{2}(p+1)-2(p-j+1-\alpha)^{2}(p-j+2)} . \tag{7.26}
\end{align*}
$$

The result is sharp for the functions $f_{\nu}(z)(\nu=1,2)$ defined by (7.15).

Proof. By virtue of Theorem 1, we obtain

$$
\begin{align*}
\sum_{k=p+1}^{\infty} & {\left[\frac{\delta(k, j-1)(k-j+1-\alpha)}{\delta(p, j-1)(p-j+1-\alpha)}\right]^{2} a_{k, \nu}^{2} } \\
& \leq\left[\sum_{k=p+1}^{\infty} \frac{\delta(k, j-1)(k-j+1-\alpha)}{\delta(p, j-1)(p-j+1-\alpha)} a_{k, \nu}\right]^{2} \leq 1 \quad(\nu=1,2) \tag{7.27}
\end{align*}
$$

It follows from (7.27) for $\nu=1$ and $\nu=2$ that

$$
\begin{equation*}
\sum_{k=p+1}^{\infty} \frac{1}{2}\left[\frac{\delta(k, j-1)(k-j+1-\alpha)}{\delta(p, j-1)(p-j+1-\alpha)}\right]^{2}\left(a_{k, 1}^{2}+a_{k, 2}^{2}\right) \leq 1 \tag{7.28}
\end{equation*}
$$

Therefore, we need to find the largest φ such that

$$
\begin{align*}
& \frac{\delta(k, j-1)(k-j+1-\varphi)}{\delta(p, j-1)(p-j+1-\varphi)} \\
& \quad \leq \frac{1}{2}\left[\frac{\delta(k, j-1)(k-j+1-\alpha)}{\delta(p, j-1)(p-j+1-\alpha)}\right]^{2} \quad(k \geq p+1) \tag{7.29}
\end{align*}
$$

that is,

$$
\begin{align*}
\varphi \leq & (p-j+1) \\
& -\frac{2 \delta(p, j-1)(k-j+1-\alpha)^{2}(k-p)}{\delta(k, j-1)(k-j+1-\alpha)^{2}-2 \delta(p, j-1)(p-j+1-\alpha)^{2}} \quad(k \geq p+1) . \tag{7.30}
\end{align*}
$$

Since

$$
\begin{aligned}
\Psi(k)= & (p-j+1) \\
& -\frac{2 \delta(p, j-1)(p-j+1-\alpha)^{2}(k-p)}{\delta(k, j-1)(k-j+1-\alpha)^{2}-2 \delta(p, j-1)(p-j+1-\alpha)^{2}}
\end{aligned}
$$

is an increasing function of $k(k \geq p+1)$, we readily have

$$
\begin{aligned}
\varphi \leq \Psi(p+1)= & (p-j+1) \\
& -\frac{2(p-j+1-\alpha)^{2}(p-j+2)}{(p-j+2-\alpha)^{2}(p+1)-2(p-j+1-\alpha)^{2}(p-j+2)},
\end{aligned}
$$

and Theorem 12 follows at once.
Corollary 11. Let the functions $f_{\nu}(z)(\nu=1,2)$ defined by (7.1) be in the class $C(p, \alpha, j)$. Then the function $h(z)$ defined by (7.25) belongs to the class $C(p, \xi, j)$, where

$$
\xi=(p-j+1)
$$

$$
\begin{equation*}
-\frac{2(p-j+1-\alpha)^{2}(p-j+1)}{(p-j+2-\alpha)^{2}(p+1)-2(p-j+1-\alpha)^{2}(p-j+1)} . \tag{7.31}
\end{equation*}
$$

The result is sharp for the functions $f_{\nu}(z)(\nu=1,2)$ defined by (7.18).
Acknowledgments. The author is thankful to the referee for his comments and suggestions.

References

1. Owa S., On certain classes of p-valent functions with negative coefficients, Simon Stevin, 59(4) (1985), 385-402.
2. Nunokawa M., On the theory of multivalent functions, Tsukuba J. Math. 11(2) (1987), 273-286.
3. Patil D. A. and Thakare N. K., On convex hulls and extreme points of p-valent starlike and convex classes with applications, Bull. Math. Soc. Sci. Math. R.S.Roumanie (N.S.) 27(75) (1983), 145-160.
4. Schild A. and Silverman H., Convolutions of univalent functions with negative coefficients, Ann. Univ. Mariae Curie-Sklodowska Sect.A 29 (1975), 99-106.
5. Silverman H., Univalent functions with negative coefficients, Proc. Amer. Math. Soc. 51 (1975), 109-116.
6. Srivastava H. M., Patel J. and Mohaptr G. P., A certain class of p-valently analytic functions, Math. Comput. Modelling 41 (2005), 321-334.
M. K. Aouf, Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt, e-mail: mkaouf127@yahoo.com

[^0]: Received January 28, 2008.

