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SOME FAMILIES OF p-VALENT FUNCTIONS
WITH NEGATIVE COEFFICIENTS

M. K. AOUF

Abstract. We introduce two subclasses T ∗(p, α, j) and C(p, α, j) (0 ≤ α < p − j + 1, 1 ≤ j ≤ p,
p ∈ N = {1, 2, . . .}) of p-valent starlike and p-valent convex functions with negative coefficents. In
this paper we obtain coefficient inequalities, distortion theorems, extreme points and integral opera-
tors for functions belonging to the classes T ∗(p, α, j) and C(p, α, j). We also determine the radii of
close-to-convexity and convexity for the functions belonging to the class T ∗(p, α, j). Also we obtain
several results for the modified Hadamard products of functions belonging to the classes T ∗(p, α, j)
and C(p, α, j).

1. Introduction

Let A(p) denote the class of functions of the form:

f(z) = zp +
∞∑

k=p+1

akzk (p ∈ N = {1, 2, . . .})(1.1)
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which are analytic and p-valent in the unit disc U = {z : |z| < 1}. A function f(z) ∈ A(p) is called
p-valent starlike of order α (0 ≤ α < p) if f(z) satisfies the conditions

Re

{
zf

′
(z)

f(z)

}
> α (z ∈ U)(1.2)

and
2Π∫
0

Re

{
zf

′
(z)

f(z)

}
dθ = 2pπ (z ∈ U).(1.3)

We denote by S(p, α) the class of p-valent starlike functions of α. Also a function f(z) ∈ A(p) is
called p-valent convex of order α (0 ≤ α < p) if f(z) satisfies the following conditions

Re

{
1 +

zf
′′
(z)

f ′(z)

}
> α (z ∈ U)(1.4)

and
2Π∫
0

Re

{
1 +

zf
′′
(z)

f ′(z)

}
dθ = 2pπ (z ∈ U).(1.5)

We denote by K(p, α) the class of p-valent convex functions of order α. We note that

f(z) ∈ K(p, α) if and only if
zf ′(z)

p
∈ S(p, α) (0 ≤ α < p).(1.6)

The class S(p, α) was introduced by Patil and Thakare [3] and the class K(p, α) was introduced
by Owa [1].
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For 0 ≤ α < p − j + 1, 1 ≤ j ≤ p and p ∈ N , we say f(z) ∈ A(p) is in the class S(p, α, j) if it
satisfies the following inequality:

Re
{

zf (j)(z)
f (j−1)(z)

}
> α (z ∈ U).(1.7)

Also for 0 ≤ α < p− j + 1, 1 ≤ j ≤ p and p ∈ N, we say f(z) ∈ A(p) is in the class K(p, α, j) if it
satisfies the following inequality:

Re
{

1 +
zf (j+1)(z)

f (j)(z)

}
> α (z ∈ U).(1.8)

It follows from (1.7) and (1.8) that:

f(z) ∈ K(p, α, j) if and only if
zf (j)(z)
p− j + 1

∈ S(p, α, j).(1.9)

The classes S(p, α, j) and K(p, α, j) were studied by Srivastava et al. [6] (see also Nunokawa [2]).
We note that S(p, α, 1) = S(p, α) and K(p, α, 1) = K(p, α).

Let T (p) denote the subclass of A(p) consisting of functions of the form:

f(z) = zp −
∞∑

k=p+1

akzk (ak ≥ 0; p ∈ N).(1.10)

We denote by T ∗(p, α, j) and C(p, α, j) the classes obtained by taking intersections, respectively,
of the classes S(p, α, j) and K(p, α, j) with T (p), that is

T ∗(p, α, j) = S(p, α, j) ∩ T (p)

and
C(p, α, j) = K(p, α, j) ∩ T (p).



JJ J I II

Go back

Full Screen

Close

Quit

We note that:

(i) T ∗(p, α, 1) = T ∗(p, α) and C(p, α, 1) = C(p, α) (Owa [1]);
(ii) T ∗(1, α, 1) = T ∗(α) and C(1, α, 1) = C(α) (Silverman [5]).

In this paper we obtain coefficient inequalities, distortion theorems, extreme points and integral
operators for functions belonging to the classes T ∗(p, α, j) and C(p, α, j). We also determine the
radii of close-to-convexity and convexity for the functions belonging to the class T ∗(p, α, j). Also
we obtain several results for the modified Hadamard products of functions belonging to the classes
T ∗(p, α, j) and C(p, α, j).

2. Coefficient Estimates

Theorem 1. Let the function f(z) be defined by (1.10). Then f(z) ∈ T ∗(p, α, j) if and only if

∞∑
k=p+1

δ(k, j − 1)
δ(p, j − 1)

(k − j + 1− α)ak ≤ (p− j + 1− α),(2.1)

where

δ(p, j) =
p!

(p− j)!
=

{
p(p− 1) . . . . . . (p− j + 1) (j 6= 0),
1 (j = 0).(2.2)
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Proof. Assume that the inequality (2.1) holds true. Then we obtain

∣∣∣∣ zf (j)(z)
f (j−1)(z)

− (p− j + 1)
∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
∞∑

k=p+1

k!(k − p)
(k − j + 1)!

akzk−p

p!
(p− j + 1)!

−
∞∑

k=p+1

k!
(k − j + 1)!

akzk−p

∣∣∣∣∣∣∣∣∣
≤

∞∑
k=p+1

k!(k − p)
(k − j + 1)!

ak

p!
(p− j + 1)!

−
∞∑

k=p+1

k!
(k − j + 1)!

ak

≤ p− j + 1− α.

(2.3)

This shows that the values of zf(j)(z)
f(j−1)(z)

lie in a circle which is centered at w = (p− j +1) and whose
radius is p− j + 1− α. Hence f(z) satisfies the condition (1.7).

Conversely, assume that the function f(z) defined by (1.10) is in the class T ∗(p, α, j). Then we
have

Re
{

zf (j)(z)
f (j−1)(z)

}
Re


p!

(p− j)!
−

∞∑
k=p+1

k!
(k − j)!

akzk−p

p!
(p− j + 1)!

−
∞∑

k=p+1

k!
(k − j + 1)!

akzk−p

 > α(2.4)

for 0 ≤ α < p − j + 1, 1 ≤ j ≤ p, p ∈ N and z ∈ U . Choose values of z on the real axis so that
zf(j)(z)

f(j−1)(z)
is real. Upon clearing the denominator in (2.4) and letting z → 1− through real values,
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we can see that

p!
(p− j)!

−
∞∑

k=p+1

k!
(k − j)!

ak ≥ α

 p!
(p− j + 1)!

−
∞∑

k=p+1

k!
(k − j + 1)!

ak

 .(2.5)

Thus we have the required inequality (2.1). �

Corollary 1. Let the function f(z) defined by (1.10) be in the class T ∗(p, α, j). Then we have

ak ≤
δ(p, j − 1)(p− j + 1− α)
δ(k, j − 1)(k − j + 1− α)

(k ≥ p + 1; p ∈ N).(2.6)

The result is sharp for the function f(z) given by

f(z) = zp − δ(p, j − 1)(p− j + 1− α)
δ(k, j − 1)(k − j + 1− α)

zk (k ≥ p + 1 ; p ∈ N).(2.7)

Theorem 2. Let the function f(z) be defined by (1.10). Then f(z) ∈ C(p, α, j) if and only if
∞∑

k=p+1

δ(k, j)
δ(p, j)

(k − j + 1− α)ak ≤ (p− j + 1− α).(2.8)

Proof. Since f(z) ∈ C(p, α, j) if and only if zf(j)(z)
p−j+1 ∈ T ∗ (p, α, j), we have the theorem by

replacing ak with
(

k−j+1
p−j+1

)
ak (k ≥ p + 1) in Theorem 1. �

Corollary 2. .Let the function f(z) defined by (1.10) be in the class C(p, α, j). Then we have

ak ≤
δ(p, j)(p− j + 1− α)
δ(k, j)(k − j + 1− α)

(k ≥ p + 1; p ∈ N).(2.9)
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The result is sharp for the function f(z) given by

f(z) = zp − δ(p, j)(p− j + 1− α)
δ(k, j)(k − j + 1− α)

zk (k ≥ p + 1; p ∈ N).(2.10)

3. Extreme points

From Theorem 1 and Theorem 2, we see that both T ∗(p, α, j) and C(p, α, j) are closed under
convex linear combinations, which enables us to determine the extreme points for these classes.

Theorem 3. Let

fp(z) = zp(3.1)

and

fk(z) = zp − δ(p, j − 1)(p− j + 1− α)
δ(k, j − 1)(k − j + 1− α)

zk (k ≥ p + 1; p ∈ N).(3.2)

Then f(z) ∈ T ∗(p, α, j) if and only if it can be expressed in the form

f(z) =
∞∑

k=p

λkfk(z),(3.3)

where λk ≥ 0 (k ≥ p) and
∞∑

k=p

λk = 1.

Proof. Suppose that

f(z) =
∞∑

k=p

λkfk(z) = zp −
∞∑

k=p+1

δ(p, j − 1)(p− j + 1− α)
δ(k, j − 1)(k − j + 1− α)

λkzk.(3.4)
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Then it follows that
∞∑

k=p+1

δ(k, j − 1)(k − j + 1− α)
δ(p, j − 1)(p− j + 1− α)

· δ(p, j − 1)(p− j + 1− α)
δ(k, j − 1)(k − j + 1− α)

λk

=
∞∑

k=p+1

λk = 1− λp ≤ 1.

(3.5)

Therefore, by Theorem 1, f(z) ∈ T ∗(p, α, j).

Conversely, assume that the function f(z) defined by (1.10) belongs to the class T ∗(p, α, j).
Then

ak ≤
δ(p, j − 1)(p− j + 1− α)
δ(k, j − 1)(k − j + 1− α)

(k ≥ p + 1; ∈ N).(3.6)

Setting

λk =
δ(k, j − 1)(k − j + 1− α)
δ(p, j − 1)(p− j + 1− α)

ak (k ≥ p + 1; p ∈ N)(3.7)

and

λp = 1−
∞∑

k=p+1

λk,(3.8)

we see that f(z) can be expressed in the form (3.3). This completes the proof of Theorem 3. �

Corollary 3. The extreme points of the class T ∗(p, α, j) are the functions fp(z) = zp and

fk(z) = zp − δ(p, j − 1)(p− j + 1− α)
δ(k, j − 1)(k − j + 1− α)

zk (k ≥ p + 1; p ∈ N).
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Similarly, we have

Theorem 4. Let

fp(z) = zp(3.9)

and

fk(z) = zp − δ(p, j)(p− j + 1− α)
δ(k, j)(k − j + 1− α)

zk (k ≥ p + 1; p ∈ N).(3.10)

Then f(z) ∈ C(p, α, j) if and only if it can be expressed in the form

f(z) =
∞∑

k=p

λkfk(z),(3.11)

where λk ≥ 0 (k ≥ p) and
∞∑

k=p

λk = 1.

Corollary 4. The extreme points of the class C(p, α, j) are the functionsfp(z) = zp and

fk(z) = zp − δ(p, j)(p− j + 1− α)
δ(k, j)(k − j + 1− α)

zk (k ≥ p + 1; p ∈ N).

4. Distortion theorems

Theorem 5. Let the function f(z) defined by (1.10) be in the class T ∗(p, α, j). Then, for
|z| = r < 1,

rp − (p− j + 1− α)(p− j + 2)
(p− j + 2− α)(p + 1)

rp+1 ≤ |f(z)| ≤ rp +
(p− j + 1− α)(p− j + 2)

(p− j + 2− α)(p + 1)
rp+1(4.1)
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and

prp−1 − (p− j + 1− α)(p− j + 2)
(p− j + 2− α)

rp ≤
∣∣∣f ′

(z)
∣∣∣ ≤ prp−1 +

(p− j + 1− α)(p− j + 2)
(p− j + 2− α)

rp.(4.2)

The equalities in (4.1) and (4.2) are attained for the function f(z) given by

f(z) = zp − (p− j + 1− α)(p− j + 2)
(p− j + 2− α)(p + 1)

zp+1 (z = ±r).(4.3)

Proof. Since f(z) ∈ T ∗(p, α, j), in view of Theorem 1, are have

δ(p + 1, j − 1)(p− j + 2− α)
δ(p, j − 1)

∞∑
k=p+1

ak ≤
∞∑

k=p+1

δ(k, j − 1)
δ(p, j − 1)

(k − j + 1− α)ak

≤ (p− j + 1− α),

which evidently yields
∞∑

k=p+1

ak ≤
(p− j + 1− α)(p− j + 2)

(p− j + 2− α)(p + 1)
.(4.4)

Consequently, for |z| = r < 1, we obtain

|f(z)| ≤ rp + rp+1
∞∑

k=p+1

ak ≤ rp +
(p− j + 1− α)(p− j + 2)

(p− j + 2− α)(p + 1)
rp+1

and

|f(z)| ≥ rp − rp+1
∞∑

k=p+1

ak ≥ rp − (p− j + 1− α)(p− j + 2)
(p− j + 2− α)(p + 1)

rp+1,
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which prove the assertion (4.1) of Theorem 5.
Also from Theorem 1, it follows that

∞∑
k=p+1

kak ≤
(p− j + 1− α)(p− j + 2)

(p− j + 2− α)
.(4.5)

Consequently, for |z| = r < 1, we have∣∣∣f ′
(z)

∣∣∣ ≤ prp−1 +
∞∑

k=p+1

kakrk−1 ≤ prp−1 + rp
∞∑

k=p+1

kak

≤ prp−1 +
(p− j + 1− α)(p− j + 2)

(p− j + 2− α)
rp

and ∣∣∣f ′
(z)

∣∣∣ ≥ p rp−1 −
∞∑

k=p+1

kak rk−1 ≥ p rp−1 − rp
∞∑

k=p+1

kak

≥ p rp−1 − (p− j + 1− α)(p− j + 2)
(p− j + 2− α)

rp,

which prove the assertion (4.2) of Theorem 5. �

Finally, it is easy to see that the bounds in (4.1) and (4.2) are attained for the function f(z)
given already by (4.3).

Corollary 5. Let the function f(z) defined by (1.10) be in the class T ∗(p, α, j). Then the unit
disc U is mapped onto a domain that contains the disc

|w| < (p− j + 2− α)(p + 1)− (p− j + 1− α)(p− j + 2)
(p− j + 2− α)(p + 1)

.(4.6)
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The result is sharp, with the extremal function f(z) given by (4.3).

Theorem 6. Let the function f(z) defined by (1.10) be in the class C(p, α, j). Then, for
|z| = r < 1,

rp − (p− j + 1− α)(p− j + 1)
(p− j + 2− α)(p + 1)

rp+1 ≤ |f(z)| ≤ rp +
(p− j + 1− α)(p− j + 1)

(p− j + 2− α)(p + 1)
rp+1(4.7)

and

prp−1 − (p− j + 1− α)(p− j + 1)
(p− j + 2− α)

rp ≤
∣∣∣f ′

(z)
∣∣∣ ≤ prp−1 +

(p− j + 1− α)(p− j + 1)
(p− j + 2− α)

rp.(4.8)

The results are sharp.

Proof. The proof of Theorem 6 is obtained by using the same technique as in the proof of
Theorem 5 with the aid of Theorem 2. Further we can show that the bounds of Theorem 6 are
sharp for the function f(z) defined by

f(z) = zp − (p− j + 1− α)(p− j + 1)
(p− j + 2− α)(p + 1)

zp+1.(4.9)

�

Corollary 6. Let the function f(z) defined by (1.10) be in the class C(p, α, j). Then the unit
disc U is mapped onto a domain that contains the disc

|w| < (p− j + 2− α)(p + 1)− (p− j + 1− α)(p− j + 1)
(p− j + 2− α)(p + 1)

.(4.10)

The result is sharp, with the extremal function f(z) given by (4.9).
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5. Integral operators

Theorem 7. Let the function f(z) defined by (1.10) be in the class T ∗(p, α, j), and let c be a
real number such that c > −p. Then the function F (z) defined by

F (z) =
c + p

zc

z∫
0

tc−1f(t)dt(5.1)

also belongs to the class T ∗(p, α, j).

Proof. From the representation of F (z), it follows that

F (z) = zp −
∞∑

k=p+1

bk zk,(5.2)

where

bk =
(

c + p

c + k

)
ak.

Therefore
∞∑

k=p+1

δ(k, j − 1)(k − j + 1− α)
δ(p, j − 1)

bk

=
∞∑

k=p+1

δ(k, j − 1)(k − j + 1− α)
δ(p, j − 1)

(
c + p

c + k

)
ak

≤
∞∑

k=p+1

δ(k, j − 1)(k − j + 1− α)
δ(p, j − 1)

ak ≤ (p− j + 1− α),
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since f(z) ∈ T ∗(p, α, j). Hence, by Theorem 1, f(z) ∈ T ∗(p, α, j). �

Corollary 7. Under the same conditions as Theorem 7, a similar proof shows that the function
F (z) defined by (5.1) is in the class C(p, α, j), whenever f(z) is in the class C(p, α, j).

6. Radii of close-to-convexity and convexity
for the class T∗(p, α, j)

Theorem 8. Let the function f(z) defined by (1.10) be in the class T ∗(p, α, j), then f(z) is
p-valently close-to-convex of order φ (0 ≤ φ < p) in |z| < r1, where

r1 = inf
k

{
δ(k, j − 1) (k − j + 1− α)
δ (p, j − 1)(p− j + 1− α)

(
p− φ

k

)} 1
k−p

(k ≥ p + 1).(6.1)

The result is sharp, with the extremal function f(z) given by (2.7).

Proof. We must show that
∣∣∣∣ f

′
(z)

zp−1 − p

∣∣∣∣ ≤ p− φ for |z| < r1. We have∣∣∣∣∣f
′
(z)

zp−1
− p

∣∣∣∣∣ ≤
∞∑

k=p+1

k ak |z|k−p
.

Thus
∣∣∣∣ f

′
(z)

zp−1 − p

∣∣∣∣ ≤ p− φ if

∞∑
k=p+1

(
k

p− φ

)
ak |z|k−p ≤ 1.(6.2)
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Hence, by Theorem 1, (6.2) will be true if(
k

p− φ

)
|z|k−p ≤ δ(k, j − 1)(k − j + 1− α)

δ(p, j − 1)(p− j + 1− α)

or if

|z| ≤
{

δ(k, j − 1)(k − j + 1− α)
δ(p, j − 1)(p− j + 1− α)

(
p− φ

k

)} 1
k−p

(k ≥ p + 1).(6.3)

The theorem follows easily from (6.3). �

Theorem 9. Let the function f(z) defined by (1.10) be in the class T ∗(p, α, j) then f(z) is
p-valently convex of order φ (0 ≤ φ < p) in |z| < r2, where

r2 = inf
k

{
δ(p, j − 1)(k − j + 1− α)
δ(k, j − 1)(p− j + 1− α)

·
(

p(p− φ)
k(k − φ)

)} 1
k−p

(k ≥ p + 1).(6.4)

The result is sharp, with the extremal function f(z) given by (2.7).

Proof. It is sufficient to show that∣∣∣∣1 +
zf ′′(z)
f ′(z)

− p

∣∣∣∣ ≤ p− φ for |z| < r2.

We have ∣∣∣∣1 +
zf ′′(z)
f ′(z)

− p

∣∣∣∣ ≤
∞∑

k=p+1

k(k − p)ak |z|k−p

p−
∞∑

k=p+1

k ak |z|k−p
.
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Thus
∣∣∣1 + zf ′′(z)

f ′(z) − p
∣∣∣ ≤ p− φ if

∞∑
k=p+1

k(k − φ)
p(p− φ)

ak |z|k−p ≤ 1(6.5)

Hence, by Theorem 1, (6.5) will be true if

k(k − φ)
p(p− φ)

|z|k−p ≤ δ(k, j − 1)(k − j + 1− α)
δ(p, j − 1)(p− j + 1− α)

.

or if

|z| ≤
{

δ(k, j − 1)(k − j + 1− α)
δ(p, j − 1)(p− j + 1− α)

·
(

p(p− φ)
k(k − φ)

)} 1
k−p

(k ≥ p + 1).(6.6)

The theorem follows easily from (6.6). �

7. Modified Hadamard products

Let the functions fv(z) (v = 1, 2) be defined by

fv(z) = zp −
∞∑

k=p+1

ak,vzk (ak,v ≥ 0; v = 1, 2).(7.1)

Then the modified Hadamard product (or convolution) of f1(z) and f2(z) is defined by

(f1 ∗ f2)(z) = zp −
∞∑

k=p+1

ak,1ak,2z
k.(7.2)
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Theorem 10. Let the functions fv(z) (v = 1, 2) defined by (7.1) be in the class T ∗(p, α, j).
Then (f1 ∗ f2)(z) ∈ T ∗(p, γ, j), where

γ = (p− j + 1)

− (p− j + 1− α)2(p− j + 2)
(p− j + 2− α)2(p + 1)− (p− j + 1− α)2(p− j + 2)

.
(7.3)

The result is sharp.

Proof. Employing the technique used earlier by Schild and Silveman [4], we need to find the
largest γ such that

∞∑
k=p+1

δ(k, j − 1)(k − j + 1− γ)
δ(p, j − 1)(p− j + 1− γ)

ak,1ak,2 ≤ 1.(7.4)

Since
∞∑

k=p+1

δ(k, j − 1)(k − j + 1− α)
δ(p, j − 1)(p− j + 1− α)

ak,1 ≤ 1(7.5)

and
∞∑

k=p+1

δ(k, j − 1)(k − j + 1− α)
δ(p, j − 1)(p− j + 1− α)

ak,2 ≤ 1,(7.6)

by the Cauchy-Schwarz inequality, we have
∞∑

k=p+1

δ(k, j − 1)(k − j + 1− α)
δ(p, j − 1)(p− j + 1− α)

√
ak,1ak,2 ≤ 1.(7.7)
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Thus it is sufficient to show that
(k − j + 1− γ)
(p− j + 1− γ)

ak,1ak,2 ≤
(k − j + 1− α)
(p− j + 1− α)

√
ak,1ak,2 (k ≥ p + 1),(7.8)

that is
√

ak,1ak,2 ≤
(k − j + 1− α)(p− j + 1− γ)
(k − j + 1− γ)(p− j + 1− α)

.(7.9)

Note that
√

ak,1ak,2 ≤
δ(p, j − 1)(p− j + 1− α)
δ(k, j − 1)(k − j + 1− α)

(k ≥ p + 1).(7.10)

Consequently, we need only to prove that
δ(p, j − 1)(p− j + 1− α)
δ(k, j − 1)(k − j + 1− α)

≤ (k − j + 1− α)(p− j + 1− γ)
(k − j + 1− γ)(p− j + 1− α)

(k ≥ p + 1)
(7.11)

or, equivalently, that

γ ≤ (p− j + 1)

− δ(p, j − 1)(p− j + 1− α)2(k − p)
δ(k, j − 1)(k − j + 1− α)2 − δ(p, j − 1)(p− j + 1− α)2

(k ≥ p + 1).(7.12)

Since
D(k) = (p− j + 1)

− δ(p, j − 1)(p− j + 1− α)2(k − p)
δ(k, j − 1)(k − j + 1− α)2 − δ(p, j − 1)(p− j + 1− α)2

(7.13)
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is an increasing function of k (k ≥ p + 1), letting k = p + 1 in (7.13) we obtain

γ ≤ D(p + 1) = (p− j + 1)

− (p− j + 1− α)2(p− j + 2)
(p− j + 2− α)2(p + 1)− (p− j + 1− α)2(p− j + 2)

,
(7.14)

which completes the proof Theorem 10. �

Finally, by taking the functions

fv(z) = zp − (p− j + 1− α)(p− j + 2)
(p− j + 2− α)(p + 1)

zp+1 (v = 1, 2; p ∈ N)(7.15)

we can see that the result is sharp.

Corollary 8. Let the functions fv(z) (v = 1, 2) be the same as in Theorem 10, we have

h(z) = zp −
∞∑

k=p+1

√
ak,1ak,2z

k(7.16)

belongs to the class T ∗(p, α, j).

The result follows from the inequality (7.7). It is sharp for the same functions as in Theorem 10.

Corollary 9. Let the functions fν(z)(ν = 1, 2) defined by (7.1) be in the class C(p, α, j). Then
(f1 ∗ f2)(z) ∈ C(p, λ, j) where

λ = (p− j + 1)

− (p− j + 1− α)2(p− j + 1)
(p− j + 2− α)2(p + 1)− (p− j + 1− α)2(p− j + 1)

.
(7.17)
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The result is sharp for the functions

fν(z) = zp − (p− j + 1− α)(p− j + 1)
(p− j + 2− α)(p + 1)

zp+1 (ν = 1, 2 p ∈ N).(7.18)

Using arguments similar to those in the proof of Theorem 10, we obtain the following result.

Theorem 11. Let the function f1(z) defined by (7.1) be in the class T ∗(p, α, j) and the function
f2(z)defined by (7.1) be in the class T ∗(p, τ, j), then (f1 ∗ f2)(z) ∈ T ∗(p, ζ, j), where

ζ = (p−j + 1)

− (p−j+1−α)(p−j+1−τ)(p− j + 2)
(p−j+2−α)(p−j + 2−τ)(p + 1)−(p−j+1− α)(p−j+1− τ)(p− j + 2)

.

(7.19)

The result is the best possible for the functions

f1(z) = zp − (p− j + 1− α)(p− j + 2)
(p− j + 2− α)(p + 1)

zp+1 (p ∈ N)(7.20)

and

f2(z) = zp − (p− j + 1− τ)(p− j + 2)
(p− j + 2− τ)(p + 1)

zp+1 (p ∈ N).(7.21)
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Corollary 10. Let the function f1(z) defined by (7.1) be in the class C(p, α, j) and the func-
tion f2(z) defined by (7.1) be in the class C(p, τ, j), then (f1 ∗ f2)(z) ∈ C(p, θ, j), where

θ = (p− j + 1)

− (p− j + 1− α)(p− j + 1− τ)(p− j + 1)
(p−j+2−α)(p−j+2−τ)(p + 1)−(p−j+1−α)(p−j+1−τ)(p− j + 1)

.

(7.22)

The result is sharp for the functions

f1(z) = zp − (p− j + 1− α)(p− j + 1)
(p− j + 2− α)(p + 1)

zp+1 (p ∈ N)(7.23)

and

f2(z) = zp − (p− j + 1− τ)(p− j + 1)
(p− j + 2− τ)(p + 1)

zp+1 (p ∈ N).(7.24)

Theorem 12. Let the functions fν(z) (ν = 1, 2) defined by (7.1) be in the class T ∗(p, α, j).
Then the function

h(z) = zp −
∞∑

k=p+1

(a2
k,1 + a2

k,2)z
k(7.25)

belongs to the class T ∗(p, ϕ, j), where

ϕ = (p− j + 1)

− 2(p− j + 1− α)2(p− j + 2)
(p− j + 2− α)2(p + 1)− 2(p− j + 1− α)2(p− j + 2)

.
(7.26)

The result is sharp for the functions fν(z) (ν = 1, 2) defined by (7.15).
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Proof. By virtue of Theorem 1, we obtain
∞∑

k=p+1

[
δ(k, j − 1)(k − j + 1− α)
δ(p, j − 1)(p− j + 1− α)

]2

a2
k,ν

≤

 ∞∑
k=p+1

δ(k, j − 1)(k − j + 1− α)
δ(p, j − 1)(p− j + 1− α)

ak,ν

2

≤ 1 (ν = 1, 2).

(7.27)

It follows from (7.27) for ν = 1 and ν = 2 that
∞∑

k=p+1

1
2

[
δ(k, j − 1)(k − j + 1− α)
δ(p, j − 1)(p− j + 1− α)

]2

(a2
k,1 + a2

k,2) ≤ 1.(7.28)

Therefore, we need to find the largest ϕ such that

δ(k, j − 1)(k − j + 1− ϕ)
δ(p, j − 1)(p− j + 1− ϕ)

≤ 1
2

[
δ(k, j − 1)(k − j + 1− α)
δ(p, j − 1)(p− j + 1− α)

]2

(k ≥ p + 1)
(7.29)

that is,

ϕ ≤ (p− j + 1)

− 2δ(p, j − 1)(k − j + 1− α)2(k − p)
δ(k, j − 1)(k − j + 1− α)2 − 2δ(p, j − 1)(p− j + 1− α)2

(k ≥ p + 1).

(7.30)
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Since
Ψ(k) = (p− j + 1)

− 2δ(p, j − 1)(p− j + 1− α)2(k − p)
δ(k, j − 1)(k − j + 1− α)2 − 2δ(p, j − 1)(p− j + 1− α)2

is an increasing function of k (k ≥ p + 1), we readily have

ϕ ≤ Ψ(p + 1) = (p− j + 1)

− 2(p− j + 1− α)2(p− j + 2)
(p− j + 2− α)2(p + 1)− 2(p− j + 1− α)2(p− j + 2)

,

and Theorem 12 follows at once. �

Corollary 11. Let the functions fν(z) (ν = 1, 2) defined by (7.1) be in the class C(p, α, j).Then
the function h(z) defined by (7.25) belongs to the class C(p, ξ, j), where

ξ = (p− j + 1)

− 2(p− j + 1− α)2(p− j + 1)
(p− j + 2− α)2(p + 1)− 2(p− j + 1− α)2(p− j + 1)

.
(7.31)

The result is sharp for the functions fν(z)(ν = 1, 2) defined by (7.18).
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