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MAXIMAL OPERATORS OF THE FEJÉR MEANS
OF THE TWO DIMENSIONAL CHARACTER SYSTEM

OF THE p-SERIES FIELD IN THE KACZMARZ REARRANGEMENT

U. GOGINAVA

Abstract. The main aim of this paper is to prove that the maximal operator σ∗ of the Fejér means of
the two dimensional character system of the p-series field in the Kaczmarz rearrangement is bounded
from the Hardy space Hα to the space Lα for α > 1/2, provided that the supremum in the maximal
operator is taken over a positive cone. We also prove that the maximal operator σ∗0 of Fejér means
of the two dimensional character system of the p-series field in the Kaczmarz rearrangement is not
bounded from the Hardy space H1/2 to the space weak-L1/2.

1. Introduction

The first result with respect to the a.e. convergence of the Walsh-Fejér means σnf is due to Fine
[1]. Later, Schipp [9] showed that the maximal operator σ∗f is of weak type (1, 1), from which
the a. e. convergence follows on standard argument. Schipp result implies also the boundedness
of σ∗ : Lα → Lα (1 < α ≤ ∞) by interpolation. This fails to hold for α = 1 but Fujii [2] proved
that σ∗ is bounded from the dyadic Hardy space H1 to the space L1 (see also Simon [13]). Fujii’s
theorem was extened by Weisz [15]. Namely, he proved that the maximal operator of the Fejér
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means of the one-dimensional Walsh-Fourier series is bounded from the martingale Hardy space
Hα to the space Lα for α > 1/2. Simon [11] gave a counterexample, which shows that this
boundedness does not hold for 0 < α < 1/2. In the endpoint case α = 1/2 Weisz [17] proved that
σ∗ is bounded from the Hardy space H1/2 (G2) to the space weak-L1/2 (G2). The author [6] proved
that σ∗ is not bounded from the Hardy space H1/2 (G2) to the space L1/2 (G2).

If the Walsh system is taken in the Kaczmarz ordening, the analogous to the statement of Schipp
[9] is due to Gát [3]. Moreover he proved an (H1, L1)-type estimation. Gát result was extended to
the Hardy space by Simon [12], who proved that σ∗ is of type (Hα, Lα) for α > 1/2. Weisz [17]
showed that in endpoint case α = 1/2 the maximal operator is of weak type

(
H1/2, L1/2

)
.

Gát and Nagy [4] proved the a. e. convergence σnf → f (n→∞) for an integrable function
f ∈ L1 (Gp), where σnf is the Fejér means of the function f with respect to the character system
in the Kaczmarz rearrangement. This result was generalized by the author [7] and it is proved
that the maximal operator σ∗ of the Fejér means of the one dimensional character system of the p-
series field in the Kaczmarz rearrangement is bounded from the Hardy space H1/2(Gp) to the space
weak-L1/2(Gp). By interpolation it follows that σ∗ is of type (Hα, Lα) for α > 1/2. We also prove
that the assumption α > 1/2 is essentiall, in particular, it is proved that the maximal operator σ∗

is not bounded from the Hardy space H1/2(Gp) to the space L1/2 (Gp). By interpolation it follows
that σ∗ is not of type (Hα,weak-Lα) for 0 < α < 1/2.

The aim of this paper is to prove that the maximal operator of Fejér means of the two dimensional
character system of the p-series field in the Kaczmarz rearrangement is bounded from the Hardy
space Hα(Gp×Gp) to the space Lα(Gp×Gp) for α > 1/2 and is of weak type (1, 1) provided that
the supremum in the maximal operator is taken over a positive cone. So we obtain that the Fejer
means of a function f ∈ L1(Gp×Gp) converge a. e. to the function in the question, provided again
that the limit is taken over a positive cone. We also proved that the maximal operator σ∗0 of Fejér
means of the two dimensional character system of the p-series field in the Kaczmarz rearrangement
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is not bounded from the Hardy space H1/2(Gp×Gp) to the space weak-L1/2(Gp×Gp). Thus, in the
question of boundedness of the maximal operator σ∗0 the case of two dimensional character system
of the p-series field in the Kaczmarz rearrangement differs from that one-dimensional character
system of the p-series field in the Kaczmarz rearrangement. By Theorem 2 and interpolation it
follows that σ∗0 is not bounded from Hα(Gp×Gp) to the space weak-Lα(Gp×Gp) for 0 < α ≤ 1/2.
In particular, from Theorem 2 we have that in Theorem 1 the assumption α > 1/2 is essential.

2. Definitions and Notation

Let P denote the set of positive integers, N := P ∪ {0}. Let 2 ≤ p ∈ N and denote by Zp the pth
cyclic group, that is, Zp can be represented by the set {0, 1, . . . , p− 1}, where the group operation
is the mod p addition and every subset is open. The Haar measure on Zp is given in the way that

µk ({j}) :=
1
j

(j ∈ Z) .

The group operation on Gp is the coordinate-wise addition, the normalized Haar measure µ is the
product measure. The topology on Gp is the product topology, a base for the neighborhoods of
Gp can be given in the following way:

I0 (x) := Gp,

In (x) := {y ∈ Gp : y = (x0, . . . , xn−1, yn, yn+1, . . .)} , (x ∈ Gp, n ∈ N) .

Let 0 = (0 : i ∈ N) ∈ Gp denote the null element of Gp, In := In (0) (n ∈ N), In := Gp \ In. Let

∆ := {In (x) : x ∈ Gp, n ∈ N} .

The elements of ∆ are intervals of Gp. Set ei := (0, . . . , 0, 1, 0, . . .) ∈ Gp whose i-th coordinate is
1, the rest are zeros.
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The norm (or quasinorm) of the space Lα (Gp ×Gp) is defined by

‖f‖α :=

 ∫
Gp×Gp

∣∣f (x1, x2
)∣∣α dµ

(
x1, x2

)
1/α

, (0 < α < +∞) .

Let Γ (p) denote the character group of Gp. We arrange the elements of Γ (p) as follows. For
k ∈ N and x ∈ Gp denote by rk the k-th generalized Rademacher function

rk (x) := exp
(

2π ixk
p

) (
i :=

√
−1, x ∈ Gp, k ∈ N

)
.

Let n ∈ N. Then

n =
∞∑
i=0

nip
i, where 0 ≤ ni < p (ni, i ∈ N) ,

n is expressed in the number system with base p. Denote by

|n| := max(j ∈ N :nj 6= 0) i. e., p|n| ≤ n < p|n|+1.

Now, we define the sequence of functions ψ := (ψn : n ∈ N) by

ψn (x) :=
∞∏
k=0

(rk (x))nk (x ∈ Gp, n ∈ N) .

We remark that Γ (p) = {ψn : n ∈ N} is a complete orthogonal system with respect to the nor-
malized Haar measure on Gp.
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The character group Γ (p) can be given in the Kaczmarz rearrangement as follows: Γ (p) =
{χn : n ∈ N} , where

χn(x) := r
n|n|
|n| (x)

|n|−1∏
k=0

(r|n|−1−k(x))nk (x ∈ Gp, n ∈ P) ,

χ0(x) = 1 (x ∈ Gp) .

Let the transformation τA : Gp → Gp be defined as follows:

τA(x) := (xA−1, xA−2, . . . , x0, xA, xA+1, . . .).

The transformation is measure-preservingand and τA (τA (x)) = x. By the definition of τA , we
have

χn(x) = r
n|n|
|n| (x)ψn−n|n|pn(τ|n|(x)) (n ∈ N, x ∈ Gp).

The rectangular partial sums of the double Fourier series are defined as follows:

SM,N (f ;x1, x2) :=
M−1∑
i=0

N−1∑
j=0

f̂ (i, j)χi
(
x1
)
χj
(
x2
)
,

where the number

f̂ (i, j) =
∫

Gp×Gp

f
(
x1, x2

)
χi
(
x1
)
χj
(
x2
)
dµ
(
x1, x2

)
is said to be the (i, j)-th Fourier coefficient of the function f . Let

In,n
(
x1, x2

)
:= In

(
x1
)
× In

(
x2
)
.
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The σ-algebra generated by the dyadic rectangles{
In,n

(
x1, x2

)
:
(
x1, x2

)
∈ Gp ×Gp

}
will be denoted by Fn,n (n ∈ N).

Denote by f =
(
f (n,n), n ∈ N

)
martingale with respect to (Fn,n, n ∈ N) (for details see, e. g.

[14, 16]
The diagonal maximal function of a martingale f is defined by

f∗ = sup
n∈N

∣∣∣f (n,n)
∣∣∣ .

In case f ∈ L1 (Gp ×Gp), diagonal maximal function can also be given by

f∗
(
x1, x2

)
= sup
n∈N

1
µ (In,n(x1, x2))

∣∣∣∣∣∣∣
∫

In,n(x1,x2)

f
(
u1, u2

)
dµ
(
u1, u2

)∣∣∣∣∣∣∣ ,(
x1, x2

)
∈ Gp ×Gp.

For 0 < p <∞ the Hardy martingale space Hp(Gp ×Gp) consists of all martingales for which

‖f‖Hp
:= ‖f∗‖p <∞.

If f ∈ L1 (Gp ×Gp) then it is easy to show that the sequence (Spn,pn (f) : n ∈ N) is a martingale.
If f is a martingale, that is f = (f (n,n) : n ∈ N), then the Fourier coefficients must be defined in
a little bit different way:

f̂ (i, j) = lim
k→∞

∫
G×G

f (k,k)
(
x1, x2

)
χi
(
x1
)
χj
(
x2
)
dµ
(
x1, x2

)
.
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The Fourier coefficients of f ∈ L1 (Gp ×Gp) are the same as the ones of the martingale
(Spn,pn (f) : n ∈ N) obtained from f .

For n,m ∈ P and a martingale f the Fejér means of order (n,m) of the two-dimensional
character system of the p-series field in the Kaczmarz rearrangement of the martingale f is given
by

σn,m(f ;x1, x2) =
1
nm

n−1∑
i=0

m−1∑
j=0

Si,j(f ;x1, x2).

For the martingale f , the restricted maximal operator of the Fejér means is defined by

σ∗λf
(
x1, x2

)
= sup
p−λ≤n/m≤pλ

|σn,m(f ;x1, x2)|, λ > 0.

The Dirichlet kernels and Fejér kernels are defined as follows

Dγ
n (x) :=

n−1∑
j=0

γj (x) , Kγ
n (x) :=

n−1∑
j=0

Dγ
j (x) ,

where γ is either ψ or χ.
The pnth Dirichlet kernels have a closed form:

Dψ
pn (x) = Dχ

pn (x) =

{
pn if x ∈ In,
0 if x /∈ In,

where x ∈ Gp.(1)
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3. Formulation of Main Results

Theorem 1. Let α > 1/2. Then the maximal operator σ∗λ is bounded from the Hardy space
Hα(Gp ×Gp) to the space Lα(Gp ×Gp). Especialy, if f ∈ L1(Gp ×Gp) then

µ (σ∗λ > y) ≤ c

y
‖f‖1 .

Corollary 1. If f ∈ L1(Gp ×Gp), then

σn,mf
(
x1, x2

)
→ f

(
x1, x2

)
a. e.

as min (n,m) →∞ and p−λ ≤ n/m ≤ pλ (λ > 0) .

Theorem 2. The maximal operator σ∗0 is not bounded from the Hardy space H1/2(Gp ×Gp) to
the space weak-L1/2(Gp ×Gp).

4. Auxiliary Propositions

We shall need the following lemmas
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Lemma 1 (Gát, Nagy [4]). Let A ∈ N and n := nAp
A + nA−1p

A−1 + · · ·+ n0p
0. Then

nKχ
n (x) = 1 +

A−1∑
j=0

p−1∑
i=1

rij (x) pjKψ
pj (τj (x)) +

A−1∑
j=0

pjDψ
pj (x)

p−1∑
l=1

l−1∑
i=0

rij (x)

+ pA
nA−1∑
l=1

rlA (x)Kψ
pA (τA (x)) + rnA

A (x)
(
n− nAp

A
)
Kψ
n−nApA (τA (x))

+
(
n− nAp

A
) nA−1∑
i=0

riA (x)Dψ
pA (x) + +pA

nA−1∑
j=1

j−1∑
i=0

riA (x)Dψ
pA (x) .

Lemma 2 (Gát, Nagy [4]). Let A, l ∈ N, A > l and x ∈ Il \ Il+1. Then

Kψ
pA (x) =


0, if x− xlel /∈ IA,

pl

1− rl (x)
if x− xlel ∈ IA.

Lemma 3 ([7]). Let n < pA+1, A > N and x ∈ IN (x0, . . . , xm−1, xm 6= 0 ,
0, . . . , 0, xl 6= 0, 0, . . . , 0) m = −1, 0, . . . , l − 1, l = 0, . . . , N . Then∫

IN

n
∣∣Kψ

n (τA (x− t))
∣∣ dµ (t) ≤ cpA

pm+l
,

where

IN (x0, . . . , xm−1, xm 6= 0, 0, . . . , 0, xl 6= 0, 0, . . . , 0)

:= IN (0, . . . , 0, xl 6= 0, 0, . . . , 0) for m = −1,
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and

IN (x0, . . . , xm−1, xm 6= 0, 0, . . . , 0, xl 6= 0, 0, . . . , 0)

:= IN (x0, . . . , xm−1, xm 6= 0, 0, . . . , 0) , for l = N.

Lemma 4 ([5]). Let A ∈ N and nA := p2A + p2A−2 + . . .+ p2 + p0. Then

nA−1|KnA−1(x)| ≥ cp2k+2s

for x ∈ I2A(0, . . . , 0, x2k 6= 0, 0, . . . , 0, x2s 6= 0, x2s+1, . . . , x2A−1), k=0, 1, . . . , A−3, s = k + 2,
k + 3, . . . , A− 1.

Lemma 5. Let x ∈ IN and n ≥ pN . Then

∫
IN

|Kχ
n (x− t)|dµ (t)

≤ c

{
N∑
l=0

l−1∑
m=−1

1
pm+l

1IN (x0,...,xm−1,xm 6=0,0,...,0,xl 6=0,0,...,0) (x)

+
1
p2N

N∑
j=1

p2j

j−1∑
l=0

1
pl

1IN (0,...,0,xl 6=0,0,...,0,,xj ,...,xN−1) (x)

 .
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Proof. From Lemma 1 we write

n |Kχ
n (x)| ≤ c

1 +
A∑
j=0

pj
∣∣∣Kψ

pj (τj (x))
∣∣∣

+
A∑
j=0

pj
∣∣∣Dψ

pj (x)
∣∣∣+ (n− nAp

A
) ∣∣∣Kψ

n−nApA (τA (x))
∣∣∣
 .

(2)

Using Lemma 3 we obtain
1
n

∫
IN

(
n− nAp

A
) ∣∣∣Kψ

n−nApA (τA (x− t))
∣∣∣ dµ (t)

≤ c

{
N∑
l=0

l−1∑
m=−1

1
pm+l

1IN (x0,...,xm−1,xm 6=0,0,...,0,xl 6=0,0,...,0) (x)

}
.(3)

Let x ∈ IN (x0, . . . , xm−1, xm 6= 0, 0, . . . , 0, xl 6= 0, 0, . . . , 0) for some m = −1, . . . , l − 1,
l = 0, . . . , N . Then using Lemma 2 Kψ

pj (τj (x− t)) 6= 0 (j > N) implies

t ∈ Ij (0, . . . , 0, xN , . . . , xj−1) , m = −1.

Consequently, we can write∫
IN

pj
∣∣∣Kψ

pj (τj (x− t))
∣∣∣ dµ (t) ≤ cpj

pj
pj−l1IN (0,...,0,xl 6=0,0,...,0) (x)

=
cpj

pl
1IN (0,...,0,xl 6=0,0,...,0) (x) .

(4)
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Let j < N . Then using Lemma 2 Kψ
pj (τj (x− t)) 6= 0 implies

x ∈ IN (0, . . . , 0, xl 6= 0, 0, . . . , 0, xj , . . . , xN−1) , l = −1, 0, . . . , j − 1.

Hence we have

∫
IN

pj
∣∣∣Kψ

pj (τj (x− t))
∣∣∣ dµ (t) ≤ cpj

pN

j−1∑
l=0

pj−l1IN (0,...,0,xl 6=0,0,...,0,xj ,...,xN−1) (x)

=
cp2j

pN

j−1∑
l=0

p−l1IN (0,...,0,xl 6=0,0,...,0,xj ,...,xN−1) (x) .(5)

From (1) we can write

A∑
j=0

pj
∫
IN

∣∣∣Dψ
pj (x− t)

∣∣∣ dµ (t) ≤ c

pN

N−1∑
j=0

pj
∣∣∣Dψ

pj (x)
∣∣∣

≤ c

pN

N−1∑
j=0

p2j1IN (0,...,0,xj ,...,xN−1) (x) .

(6)

Combining (2)–(6) we complete the proof of Lemma 5. �
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5. Proofs of Main results

Proof of Theorem 1. In order to prove Theorem 1 it is enough to show that (see Simon [11],
Theorem 1)

∫
IN

 sup
n≥2N

∫
IN

|Kχ
n (x− t)|dµ (t)

α

dµ (x) ≤ cαp
−N , for 1/2 < α ≤ 1.

Applying the inequality( ∞∑
k=0

ak

)α
≤

∞∑
k=0

aαk (ak ≥ 0, 0 < α ≤ 1) ,

from Lemma 5 we can write∫
IN

 sup
n≥2N

∫
IN

|Kχ
n (x− t)|dµ (t)

α

dµ (t)

≤ cα


N∑
l=0

l−1∑
m=−1

1
pα(m+l)

∫
G

1IN (x0,...,xm−1,xm 6=0,0,...,0,xl 6=0,0,...,0) (x) dµ (x)

+
1

p2αN

N∑
j=1

p2jα

j−1∑
l=0

1
plα

∫
G

1IN (0,...,0,xl 6=0,0,...,0,,xj ,...,xN−1) (x) dµ (x)


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≤ cα

 1
pN

N∑
l=0

l−1∑
m=−1

pm

pα(m+l)
+

1
pNp2αN

N∑
j=1

p2jα

j−1∑
l=0

pN−j

plα

 ≤ cp−N .

The proof of Theorem 1 is complete. �

Proof of Theorem 2. Let A ∈ P and

fA
(
x1, x2

)
:=
(
Dp2A+1

(
x1
)
−Dp2A

(
x1
)) (

Dp2A+1

(
x2
)
−Dp2A+1

(
x2
))
.

It is simple to calculate

f̂ψA (i, k) =

{
1, if i, k = p2A, . . . , p2A+1 − 1,

0, otherwise.

and

Sψi,j
(
fA;x1, x2

)
=



(
Dψ
i

(
x1
)
−Dp2A

(
x1
))(

Dψ
j

(
x2
)
−Dp2A

(
x2
))
,

if i, j = p2A + 1, . . . , p2A+1 − 1,

fA
(
x1, x2

)
,

if i, j ≥ p2A+1,

0,
otherwise.

(7)

Since

f∗A
(
x1, x2

)
= sup
n∈N

∣∣Spn,pn

(
fA;x1, x2

)∣∣ = ∣∣fA (x1, x2
)∣∣ ,
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from (1) we get

‖fA‖Hα
= ‖f∗A‖α =

∥∥Dp2A

∥∥2

α
= p4A(1−1/α).(8)

Since

Dχ
k+p2A (x)−Dχ

p2A (x) = r2A (x)Dk (τ2A (x)) , k = 1, 2, . . . , p2A,

from (7) we obtain

σχ∗0 fA
(
x1, x2

)
= sup
n∈N

∣∣σn,nfA (x1, x2
)∣∣ ≥ ∣∣σnA,nA

fA
(
x1, x2

)∣∣
=

1
(nA)2

∣∣∣∣∣∣
nA−1∑
i=0

nA−1∑
j=0

Sχi,jfA
(
x1, x2

)∣∣∣∣∣∣
=

1
(nA)2

∣∣∣∣∣∣
nA−1∑

i=p2A+1

nA−1∑
j=p2A+1

(
Dχ
i (x1)−Dp2A

(
x1
)) (

Dχ
j (x2)−Dp2A(x2)

)∣∣∣∣∣∣
=

1
(nA)2

∣∣∣∣∣∣
nA−1−1∑
i=1

nA−1−1∑
j=1

(
Dχ
i+p2A(x1)−Dp2A(x1)

)(
Dχ
j+p2A(x2)−Dp2A(x2)

)∣∣∣∣∣∣(9)

=
1

(nA)2

∣∣∣∣∣∣r2A (x1
)
r2A

(
x2
) nA−1−1∑

i=1

nA−1−1∑
j=1

Dψ
i

(
τ2A

(
x1
))
Dψ
j

(
τ2A

(
x2
))∣∣∣∣∣∣

=
n2
A−1

n2
A

∣∣∣Kψ
nA−1

(
τ2A

(
x1
))∣∣∣ ∣∣∣Kψ

nA−1

(
τ2A

(
x2
))∣∣∣ .
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Denote

Jm,s2A (x) := I2A (x0, x1, . . . , x2A−2s−2, x2A−2s−1 = 1, 0, . . . , x2A−2m−1 = 1, 0, . . . , 0)

and let (
x1, x2

)
∈ Jk

1
l ,k

1
l +1

2A

(
x1
)
× J

k2
l ,k

2
l +1

2A

(
x2
)
,

where

k1
l :=

[
A

2

]
+
[
1
8

logpA
]
− l, k2

l :=
[
A

2

]
+
[
1
8

logpA
]

+ l l = 0, 1, . . . ,
[
1
8

logpA
]
.

Then from Lemma 4 and (9) we obtain

σ∗0fA
(
x1, x2

)
≥ c

p4k1
l +4k2

l

p4A
≥ p2A+logp

√
A−4lp2A+logp

√
A+4l

p4A
≥ cA.

On the other hand,

µ
{(
x1, x2

)
∈ Gp ×Gp :

∣∣σχ∗0 fA
(
x1, x2

)∣∣ ≥ cA
}

≥ c

[ 18 logq

√
A]∑

l=1

p−1∑
x1
0=0

· · ·
p−1∑

x1
2A−2k1

l
−2

=0

p−1∑
x2
0=0

· · ·
p−1∑

x2
2A−2k1

l
−2

=0

µ
(
J
k1

l ,k
1
l +1

2A

(
x1
)
× J

k2
l ,k

2
l +1

2A

(
x2
))

≥ c

[ 18 logq

√
A]∑

l=1

p2A−2k1
l p2A−2k2

l

p4A
= c

[ 18 logq

√
A]∑

l=1

1
p2k1

l p2k2
l

= c

[ 18 logq

√
A]∑

l=1

1

pA+logp
4√
A−2lpA+logp

4√
A+2l

≥ c
logpA

p2A+logp

√
A

= c
logpA√
Ap2A

.
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Then from (8) we obtain

cA
(
µ
{(
x1, x2

)
∈ Gp ×Gp :

∣∣σχ∗0 fA
(
x1, x2

)∣∣ ≥ cA
})2

‖fA‖H1/2

≥
cA log2

pA

p−4Ap4AA
≥ c log2

pA→∞ as A→∞.

Theorem 2 is proved. �

We remark that in the case p = 2 Theorem 2 is due to Goginava and Nagy [8].
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