MAXIMAL OPERATORS OF THE FEJER MEANS
OF THE TWO DIMENSIONAL CHARACTER SYSTEM
OF THE p-SERIES FIELD IN THE KACZMARZ REARRANGEMENT

U. GOGINAVA

ABSTRACT. The main aim of this paper is to prove that the maximal operator o* of the Fejér means of
the two dimensional character system of the p-series field in the Kaczmarz rearrangement is bounded
from the Hardy space H, to the space Lo for o > 1/2, provided that the supremum in the maximal
operator is taken over a positive cone. We also prove that the maximal operator o of Fejér means
of the two dimensional character system of the p-series field in the Kaczmarz rearrangement is not
bounded from the Hardy space Hj /5 to the space weak-L; /5.

1. INTRODUCTION

The first result with respect to the a.e. convergence of the Walsh-Fejér means o, f is due to Fine
[1]. Later, Schipp [9] showed that the maximal operator o*f is of weak type (1,1), from which
the a. e. convergence follows on standard argument. Schipp result implies also the boundedness
of 0* : Ly, — Ly (1 < a < o0) by interpolation. This fails to hold for & = 1 but Fujii [2] proved
that o* is bounded from the dyadic Hardy space H; to the space L; (see also Simon [13]). Fujii’s
theorem was extened by Weisz [15]. Namely, he proved that the maximal operator of the Fejér
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means of the one-dimensional Walsh-Fourier series is bounded from the martingale Hardy space
H, to the space L, for &« > 1/2. Simon [11] gave a counterexample, which shows that this
boundedness does not hold for 0 < « < 1/2. In the endpoint case o = 1/2 Weisz [17] proved that
o* is bounded from the Hardy space H; /; (G2) to the space weak-L, /5 (G2). The author [6] proved
that ¢* is not bounded from the Hardy space H; /3 (G2) to the space Li /o (G2).

If the Walsh system is taken in the Kaczmarz ordening, the analogous to the statement of Schipp
[9] is due to Gat [3]. Moreover he proved an (Hi, L1)-type estimation. Gat result was extended to
the Hardy space by Simon [12], who proved that ¢* is of type (Hq, L) for o > 1/2. Weisz [17]
showed that in endpoint case a = 1/2 the maximal operator is of weak type (Hl/g, Ll/g) .

Gat and Nagy [4] proved the a.e. convergence o, f — f (n — o0) for an integrable function
f € L1 (Gp), where o, f is the Fejér means of the function f with respect to the character system
in the Kaczmarz rearrangement. This result was generalized by the author [7] and it is proved
that the maximal operator ¢* of the Fejér means of the one dimensional character system of the p-
series field in the Kaczmarz rearrangement is bounded from the Hardy space H; /2(Gy) to the space
weak-L, /2(Gp). By interpolation it follows that o* is of type (Ha, Lo) for a > 1/2. We also prove
that the assumption o > 1/2 is essentiall, in particular, it is proved that the maximal operator o*
is not bounded from the Hardy space H;,2(G)) to the space Ly /5 (G},). By interpolation it follows
that o*is not of type (H,, weak-L,) for 0 < a < 1/2.

ﬂ ﬂﬂﬂ The aim of this paper is to prove that the maximal operator of Fejér means of the two dimensional
character system of the p-series field in the Kaczmarz rearrangement is bounded from the Hardy

Go back space H, (G, x G,) to the space L, (Gp x Gp) for @ > 1/2 and is of weak type (1,1) provided that

the supremum in the maximal operator is taken over a positive cone. So we obtain that the Fejer
means of a function f € L1(Gp, X G)) converge a. e. to the function in the question, provided again
that the limit is taken over a positive cone. We also proved that the maximal operator o of Fejér
means of the two dimensional character system of the p-series field in the Kaczmarz rearrangement
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is not bounded from the Hardy space H; /(G X G) to the space weak-Ly /5(Gp, x G,). Thus, in the
question of boundedness of the maximal operator o the case of two dimensional character system
of the p-series field in the Kaczmarz rearrangement differs from that one-dimensional character
system of the p-series field in the Kaczmarz rearrangement. By Theorem 2 and interpolation it
follows that of is not bounded from H, (G, x G}) to the space weak-L, (G, x Gp) for 0 < a < 1/2.
In particular, from Theorem 2 we have that in Theorem 1 the assumption o > 1/2 is essential.

2. DEFINITIONS AND NOTATION

Let P denote the set of positive integers, N := P U {0}. Let 2 < p € N and denote by Z,, the pth
cyclic group, that is, Z, can be represented by the set {0, 1,...,p — 1}, where the group operation
is the mod p addition and every subset is open. The Haar measure on Z, is given in the way that

e (7)) = % (ez).

The group operation on G, is the coordinate-wise addition, the normalized Haar measure p is the
product measure. The topology on G, is the product topology, a base for the neighborhoods of
G, can be given in the following way:

Iy (z) :== Gy,
In(z) ={y e Gp:y= (20, Tn-1,Yn, Ynt1,---)}» (x € Gp,n e N).
Let 0= (0:i € N) € G, denote the null element of G,, I, := I,, (0) (n € N), I,, := G, \ . Let
A:={I,(z):z € Gy, neN}.

The elements of A are intervals of G. Set e; := (0,...,0,1,0,...) € G, whose i-th coordinate is
1, the rest are zeros.



The norm (or quasinorm) of the space L, (G, X Gp) is defined by

1/a

o= | [ FEAf aEa?)| o 0<a<too).

GpXGp

Let T'(p) denote the character group of G,. We arrange the elements of I" (p) as follows. For
k € N and z € G, denote by 7 the k-th generalized Rademacher function

Tk (x) ‘= exp (27T;)xk) (1 =v-1, z € Gp, ke N) .

Let n € N. Then

oo
n:Znipi, where 0<n; <p (n;,i€N),
i=0

n is expressed in the number system with base p. Denote by
[n| ;== max(j € N :n; #0) i, p"l <n<pnHt,

Now, we define the sequence of functions v := (¢, : n € N) by

Go back
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The character group I' (p) can be given in the Kaczmarz rearrangement as follows: I'(p) =
{xn : n € N}, where

[n| -1

xn(@) =" @) [T (pnj-1-k(@)™ (2 € GpneP),
k=0

Xo(z) =1 (zeGp).
Let the transformation 74 : G, — G, be defined as follows:
TA(:L') = (xA—la LTA-25---, L0y LA, TA+1,-- )

The transformation is measure-preservingand and 74 (74 (z)) = x. By the definition of 74 , we
have
Tn|

Xn(z) = Tin| (T)Yn—nnpn (Tn) (7)) (neN, zeG,).

The rectangular partial sums of the double Fourier series are defined as follows:

S
=

—1
Sun(f;2t,2?) = FG,5) xi (&%) x5 (27)

©
i

o
=
i

<

where the number
Fi= [ 16 @)% @) du (o)
GpxGp
is said to be the (i, j)-th Fourier coefficient of the function f. Let
oo (xl,:v2) =1, (xl) x I, (ZL‘Z) .



The o-algebra generated by the dyadic rectangles
{Inn (2',2%) : (2',2°) € G, x Gy}
will be denoted by F), ,, (n € N).
Denote by f = (f("’”),n € N) martingale with respect to (F, ,,n € N) (for details see, e. g.
[14, 16]
The diagonal maximal function of a martingale f is defined by

f* = sup |7
neN

In case f € Ly (G, x G,), diagonal maximal function can also be given by

fr (xl,a:2) = sup 1

. L L,
neN f (Inn(z?, 2%)) f(u U )d,u (u > U ) )

I o (@™ 72
(a:l,xQ) € Gp X Gp.
For 0 < p < oo the Hardy martingale space Hy(G, x G) consists of all martingales for which

£ 1|z, = [1F7]l,, < oo

If f € L1 (G, x Gp) then it is easy to show that the sequence (Spn p,n (f) : n» € N) is a martingale.
If f is a martingale, that is f = ( flrm) g e N), then the Fourier coefficients must be defined in
a little bit different way:

f(i,5) = lim / FEP (@h,2?) x; (21) X; (%) dpe (2, 27)
GxG



The Fourier coefficients of f € L; (G, x Gp) are the same as the ones of the martingale
(Spn pn (f) : m € N) obtained from f.

For n,m € P and a martingale f the Fejér means of order (n,m) of the two-dimensional
character system of the p-series field in the Kaczmarz rearrangement of the martingale f is given
by

3

n— =1

1
Un,m(f;$17$2) = %Z Si,j(f;ffl,$2)~

<
Il
o

=
For the martingale f, the restricted maximal operator of the Fejér means is defined by

oxf (wl,x2) = sup |On.m (f; 2t 22)|, A > 0.
p=*<n/m<p>

The Dirichlet kernels and Fejér kernels are defined as follows
n—1 n—1
Di(@):=) 7)), K)(@:=) Dj),
Jj=0 j=0
where 7 is either i or .

The p™th Dirichlet kernels have a closed form:

p" if z € I,
1 DY, (z) = DX, (z) = where z € G,,.
) % (@) = D} (o) {0 e A



3. FORMULATION OF MAIN RESULTS

Theorem 1. Let o > 1/2. Then the mazimal operator o is bounded from the Hardy space
H.(Gp x Gp) to the space Lo(Gp x Gp). Especialy, if f € L1(G, x Gp) then

. Cc
wlox>y) < o lflh-

Corollary 1. If f € L1(Gp x Gp), then
Onmf (z',2%) = f(a', 2?) a. e.

as min (n,m) — oo and p~* < n/m < p* (A >0).

Theorem 2. The mazimal operator o§ is not bounded from the Hardy space Hy/5(G)p x Gp) to
the space weak-Ly /5(Gp x Gp).

4. AUXILIARY PROPOSITIONS

‘We shall need the following lemmas




Lemma 1 (Gat, Nagy [4]). Let A€ N and n:=nap® +na_1p~ 1+ +nop°. Then

A—1p—1 ‘ ' A—1 ' p—11-1 ;
nKX (@) =1+ 3 > ri @ p K (73 (2) + > /DY (1) 0D i (@)
j=0 i=1 7=0 =1 i=0
na—1

+p% D (@) K (ma (@) + 75 (2) (n —nap®) K, 4 (74 (2))
=1

na—1 na—1j—1
+ (n—nap™) i: 4 (z) D;f’A (z) + +p? i: Jer; () D;I’A (7).
i=0 Jj=1 =0
Lemma 2 (Gat, Nagy [4]). Let A, le N, A>1 andz € I; \ I;11. Then
0, if ©—xe ¢ g,
K, (z) = o

— g — I4.
—— if ©—xe €1y

Lemma 3 ([7]). Let n < p**' A > N and = € Iyn(z0, - Tm—1,Zm #0,
0,...,0,2; #0,0,...,0) m=—-1,0,...,0—1, 1 =0,...,N. Then

W cp?
[l ra @ =)l dn o < 2
In
where
Iy (zoy. - s Tm—1,Zm #0,0,...,0,2; #0,0,...,0)
:=1In(0,...,0,2; #0,0,...,0) for m=—1,




and

In (zo,- -y Tm—1,Tm #0,0,...,0,2; #0,0,...,0)
= Iy (0, s Tm—1,Tm £ 0,0,...,0), for 1= N.

Lemma 4 ([5]). Let A€ N and na := p*4 +p?*2=2 + ... +p? +p°. Then
na-1Kn, ., (2)] = cp

for © € Iou(0,...,0,29, # 0,0,...,0,295 # 0,Z2511,...,T24-1), k=0,1,...,A=3, s =k + 2,
k+3,...,A—1.

Lemma 5. Let x € In and n > pN. Then

In
N -1
1
= C{Z Z pm+l1IN(-TOa~~-y$m—1,$m7é0,0,...,0,ml960,0,...,0) (x)
=0 m=—1
N j—1
+L 2J il ()
p2N p pl IN(0,..,,0,:1:;75070,...,0,,:133‘,...,CcN_l)
g=1 =0

Quit




Proof. From Lemma 1 we write

A
nIKX (@) < {14307 K (73 (@)
§=0

(2)
A
+ pr ‘D;fj (w)‘ + (n — nap™) K:f_nApA (T4 (z))
=0

Using Lemma 3 we obtain

2 (= nap?) [KE 0 (ra (= 0)| du (0
n;{(n nAp)‘ A (z ‘u

N -1
1
(3) SC{Z > T LN (@0, 21 800, 0,210,0,...0) (w)}-

=0 m=—1

Let « € Iy (2o, .- Tm—1,Tm # 0,0,...,0,2; #0,0,...,0) for some m=—1,...,1 —1,
1=0,...,N. Then using Lemma 2 K;fj (15 (x—1)) #0 (j > N) implies

tEIj(o""’oawa'-;xj—l), m = —1.

Consequently, we can write

7 |55 @ = )| ) < Bop My, @)
In

N

(4) ,
cp?
= L1y (0,..,0,2120,0,...,0) (%) -



Let j < N. Then using Lemma, 2 K;f’j (15 (x — t)) # 0 implies

ze€lIn(0,...,0,2; #0,0,...,0,25,...,25y-1),l =—1,0,...,5 — 1.

Hence we have

=il

. cpJ -
/P] K;,pj (mj (x —t))[dp (t) < N ZP] l1IN(0,...,0,zl;é0,0,...,0,zj,...,xN_l) ()
i =0

CPZj = l
(5) == D P 11y0,...001%#0,0,...0,2;,...ex 1) (T) -
1=0
From (1) we can write
o M-l
>p [|ph @-olao < 5 X [Dh @)
(6) i -
N-1
Go back <% P 11400,...0,2;,.en—1) (T)
PN =

Full Screen

Combining (2)—(6) we complete the proof of Lemma 5.
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5. PROOFS OF MAIN RESULTS

Proof of Theorem 1. In order to prove Theorem 1 it is enough to show that (see Simon [11],
Theorem 1)

«

/ sup /|K,’f (x—t)|dp ()| du(z) <cap™™, for1/2 <a <1

n>2N

In

Applying the inequality

oo @ oo
(Zak) SZaz (ap >0, 0<a<1),
k=0

k=0

from Lemma 5 we can write

(03

[ s, [ @=olan® | aneo

. n>2N

KIKI "
»| N

1
@ <ea{d) D W/1IN(mo,...,mmfl,mmaéo,o,...,o,mlaéo,o,...,O) (z) dp (2)
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A o 1 N j—1 N3
27 —N
< Ca N Z Z o (m+1) + N p2aN ZP ]az scp .
p pp =i =0

lo
=0 m=—1 p p

The proof of Theorem 1 is complete.
Proof of Theorem 2. Let A € P and
fA (.’El,.’rz) = (Dp2A+1 (.7]1) — DpzA (.’Zl)) (Dp2A+1 (.’Z2) - Dp2A+1 (:1:'2)) .

It is simple to calculate

o 1, if i,k =p%*4,...  p?Atl -1
W o k _ ) ) ) ) )
fa(6.k) { 0, otherwise.
and
(Df (2) = Dyea (2)) (DY (22) = Dyea (7)),
if i,j =p*A+1,...,p2AT -1,
w . 1 2 _ 1 2
(7) Si,j (fA,.’L' )y L ) = fa (I 9 )7 i i,jZP2A+17
0,
L otherwise.
Since
fjl (ZL’l,.T2) = sup |Sp",p" (fA;I17m2)| = |fA (ZCI,Z‘2)|,
neN



Dyt paa (&) = Dfoa () = raa (€) Di (724 (%)),

from (7) we obtain

o fa (ml

1

1

1

1

2
L]

i

(na)?

(na)?

(na)?

(na)?

Vall, = £l = [Dyaa 2 = pHAG=1/.

2A

k=1,2,...,p",

,@%) = sup |onnfa (2!, 2%)] = |onanafa (2',27)]
neN

na—1lna—1

> D Sifaleaf)

i=0 j=0

na—1 na—1

Z Z (Di‘(xl) — Dj2a (xl)) (D;((xz) — Dy2a (xz))

i:pzA +1 j:pzA-l-l

na—1—1na_1—1
j{: :E: <l)zHﬁA(xl)—‘I%ﬂA(aﬁ)> (IXﬁﬂﬁA(xQ)_
=1 g=l1

na-1—1na_1—1

raa(@)raa (=®) 3o >0 DY

=1 j=1

Dyea

(x2>)‘

(724 (21)) D} (2 (12))‘

|2, (roa (@) B, (roa (2)]



Denote
mYS py— R —_—
Jo3" (x) :=Ipa (20,71, ..., X24-2s—2,T24-2s—1 = 1,0,...,224_2m—1 = 1,0,...,0)
and let
1 2 kll kll+1 1 klz k12+1 2
(ah2%) € Ly T (@) x Ty (27)
where

A 1 A 1 1

1._ 2. _

ki = [2]+[§logpA]—l, k; .—[2]+[§logpA]+l l—O,l,...,[glogpA].
Then from Lemma 4 and (9) we obtain
Ak} 4k} p2Atiog, \/A—4lp2A+logp VA4l

p4A - p4A

p

V

> cA.

opfa(z!,2?) > ¢
On the other hand,
p{(z',2%) € Gy x Gp : |03 fa (z,27%)| = cA}

[% log, \/Z] p—1 p—1 p—1 p—1

> Z Z Z Z Z M(J;cj:,ki‘ﬂ () x Jéci,kf+1 (mz))
=1

1__ 1 —_ 2__ 2 —
Zo=0 Z2A—2kll—2_010_0 Z2A—2kll—2_0
[$ log, VA p2A—2k}p2A—2k? (3 log, V/A] ,
>c E _—— =c¢ E —_——
= 4A 2kl 2k?
=1 p =1 PPt
(3 log, VA]
1 log,A  log,A

=c E >c
A+logp %—2lpA+logp {1/2+2l -

= 24tlog, VA \/ApPA’

p



Then from (8) we obtain
cA (u{(at,2?) € G, x Gy : |a(>f*fA (931,:1:2)| > CA})2

[l ,

cA logf, A

_chlogiA—u)o as A — oo.

Theorem 2 is proved. O

We remark that in the case p = 2 Theorem 2 is due to Goginava and Nagy [8].
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