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BEHAVIOR AT INFINITY OF CONVOLUTION
TYPE INTEGRALS

M. G. HAJIBAYOV

Abstract. Behavior at infinity of convolution type integrals on abstract spaces is

studied.

1. Introduction

Let 0 < α < n. The operator

Iαf(x) =
∫

Rn

|x− y|α−n
f (y) dy

is known as the classical Riesz potential. We refer to the monographs [1], [5],
[6] for various properties of the Riesz potentials. Their behavior at infinity was
investigated in [3], [4], [7].

It is easy to see that if f is non-negative and compactly supported, then Iαf (x)
has the order |x|α−n at infinity. D. Siegel and E. Talvila [7] found necessary and
sufficient conditions on f for the validity of Iαf (x) = O(|x|α−n) as |x| → ∞ even
when f is not compactly supported.

Theorem A. ([7]) If f ≥ 0, then a necessary and sufficient condition for
Iαf (x) to exist on Rn and be O(|x|α−n) as |x| → ∞ is such that∫

Rn

|x− y|α−n
f (y) (1 + |y|)n−α dy

is bounded on Rn.

We generalize this fact for convolution type integrals on abstract spaces with
a monotone decreasing kernel satisfying the so-called “doubling” condition. The
limit at infinity of convolution type integrals, on normal homogeneous spaces,
which are generalizations of classic Riesz potentials is also studied.

Received December 19, 2007; revised August 1, 2008.
2000 Mathematics Subject Classification. Primary 31B15, 47B38.
Key words and phrases. Riesz potential; quasi-metric; convolution type integrals; normal

homogeneous space.



76 M. G. HAJIBAYOV

2. The Necessary and Sufficient Condition

Definition 1. Let X be a set. A function ρ : X × X → [0,∞) is called
quasi-metric if

1. ρ (x, y) = 0 ⇔ x = y;
2. ρ (x, y) = ρ (y, x) ;
3. there exists a constant c ≥ 1 such that for every x, y, z ∈ X

ρ (x, y) ≤ c (ρ (x, z) + ρ (z, y)) .

If (X, ρ) is a set endowed with a quasi-metric, then the balls B(x, r) = {y ∈ X :
ρ (x, y) < r}, where x ∈ X and r > 0, satisfy the axioms of a complete system of
neighborhoods in X, and therefore induce a (separated) topology. With respect
to this topology, the balls B (x, r) need not be open.

We denote diamX = sup {ρ (x, y) : x ∈ X, y ∈ X}.

Lemma 1. Let (X, ρ) be a set with a quasi-metric, diam X = ∞ and m > c.
Then B (x, mρ (0, x)) → X as ρ (0, x) →∞.

Proof. Assume the contrary. Suppose that there is an y ∈ X such that for
all δ > 0 there exists an x ∈ X such that the inequality ρ (0, x) > δ implies
ρ (x, y) ≥ mρ (0, x) . Then by Definition 1 we have

mρ (0, x) ≤ ρ (x, y) ≤ c (ρ (0, x) + ρ (0, y)) .

Hence ρ (0, x) ≤ c

m− c
ρ (0, y) . Choosing δ >

c

m− c
ρ (0, y) , we arrive at the

contradiction. Lemma 1 is proved. �

Let X be a set with a quasi-metric ρ and a nonnegative measure µ and
diam X = ∞. Consider the integral

Kµ(x) =
∫
X

K(ρ(x, y))dµ(y)(1)

where K : (0,∞) → [0,∞) is a monotone decreasing function and there exists a
constant C ≥ 1 such that K(r) ≤ CK(2r) for r > 0.

Lemma 2. Let Kµ(x) = O(K(ρ(0, x))) as ρ(0, x) →∞. Then
∫

X
dµ(y) < ∞.

Proof. Let m > c. Then

Kµ(x) ≥
∫

B(x,mρ(0,x))

K(ρ(x, y))dµ(y) ≥ K(mρ(0, x))
∫

B(x,mρ(0,x))

dµ(y)

≥ C1K(ρ(0, x))
∫

B(x,mρ(0,x))

dµ(y).

Hence
∫

B(x,mρ(0,x))
dµ(y) < ∞. By Lemma 1, B(x, mρ(0, x)) → X as ρ(0, x) →∞.

Then
∫

X
dµ(y) < ∞. Lemma 2 is proved. �
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Theorem 1. A necessary and sufficient condition for integral (1) to exist on
X and be O(K(ρ(0, x))), as ρ(0, x) →∞, is that∫

X

K(ρ(x, y))
K(1 + ρ(0, y))

dµ(y)(2)

is bounded on X.

Proof. Let integral (1) exist on X and Kµ(x) = O(K(ρ(0, x))) as ρ(0, x) →∞.
Fix any z ∈ X. To prove that

∫
X

K(ρ(z,y))
K(1+ρ(0,y))dµ(y) < ∞, take m > c such that

mρ(0, z) > 1. Then∫
X

K(ρ(z, y))
K(1 + ρ(0, y))

dµ(y) =
∫

B(0,1)

K(ρ(z, y))
K(1 + ρ(0, y))

dµ(y)

+
∫

B(0,mρ(0,z))\B(0,1)

K(ρ(z, y))
K(1 + ρ(0, y))

dµ(y)

+
∫

X\B(0,mρ(0,z))

K(ρ(z, y))
K(1 + ρ(0, y))

dµ(y)

= I1(z) + I2(z) + I3(z).

It is clear that

I1(z) ≤ 1
K(1 + ρ(0, 1))

∫
B(0,1)

K(ρ(z, y))dµ(y) < ∞.

If 1 ≤ ρ(z, y) < mρ(0, z), then

1 + ρ(0, y) ≤ 1 + c(ρ(0, z) + ρ(z, y)) < 1 + c(1 + m)ρ(0, z) < dρ(0, z),

where d = m + c(1 + m). Hence

I2(z) ≤ 1
K(dρ(0, z))

∫
B(0,mρ(0,z))\B(0,1)

K(ρ(z, y))dµ(y) < ∞.

Consider I3(z). If 1 < mρ(0, z) ≤ ρ(z, y), then there exists C1 ≥ 1 such that

K(ρ(z, y))
K(1 + ρ(0, y))

≤ K(ρ(z, y))
K(1 + c(ρ(0, z) + ρ(z, y)))

≤ K(ρ(z, y))
K(1 + c

(
1 + 1

m

)
ρ(z, y))

≤ K(ρ(z, y))
K((1 + c

(
1 + 1

m

)
)ρ(z, y))

≤ C1

Then I3(z) ≤ C1

∫
X

dµ(y). By Lemma 2, we have I3(z) < ∞. Therefore∫
X

K(ρ(z, y))
K(1 + ρ(0, y))

dµ(y) < ∞.

The necessary part of the theorem has been proved.
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Now let
∫

X
K(ρ(x,y))

K(1+ρ(0,y))dµ(y) < ∞ for any x ∈ X. To prove that integral (1)
exists on X and is O(K(ρ(0, x))) as ρ(0, x) →∞, take a ∈ (0, c−1). Then

Kµ(x) =
∫

X\B(x,aρ(0,x))

K(ρ(x, y))dµ(y) +
∫

B(x,aρ(0,x))

K(ρ(x, y))dµ(y)

= J1(x) + J2(x).

It is clear that ∫
X

dµ(y) ≤
∫
X

K(ρ(0, y))
K(1 + ρ(0, y))

dµ(y) < ∞.

Then

J1(x) ≤ K(aρ(0, x))
∫

X\B(x,aρ(0,x))

dµ(y) ≤ C2K(ρ(0, x)).

Consider J2(x). If ρ(x, y) < aρ(0, x), then

1 + ρ(0, y) > c−1ρ(0, x)− ρ(x, y) > (c−1 − a)ρ(0, x).

Hence

J2(x) ≤ K((c−1 − a)ρ(0, x))
∫

B(x,aρ(0,x))

K(ρ(x, y))
K(1 + ρ(0, y))

dµ(y) = C3K(ρ(0, x)).

From the estimates of J1(x) and J2(x) the proof of the sufficiency of the condition
follows. Theorem 1 is proved. �

3. Limit at Infinity

For Riesz potentials, Lemmas 3 and 4 were formulated in [2] and [4].

Lemma 3. Let X be a set with a quasi-metric ρ and a nonnegative Borel
measure µ on X with suppµ = X, diam X = ∞ and f be a nonnegative µ-locally
integrable function on X. Suppose that a function K : (0,∞) → [0,∞) satisfies
the following conditions:

(K1) K(t) is an almost decreasing function, i.e., there exists a constant D > 1
such that

K(s2) ≤ DK(s1) for 0 < s1 < s2 < ∞;

(K2) there exists a constant M ≥ 1 such that K(r) ≤ MK(2r) for r > 0;

(K3) ∫
B(x,1)

K(ρ(x, y))dµ(y) < ∞.
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Then for the existence of

UKf(x) =
∫
X

K(ρ(x, y))f(y)dµ(y)(3)

µ-almost everywhere on X, it is necessary and sufficient that one of the following
equivalent conditions is fulfilled:

1. there exists x0 ∈ X such that∫
X\B(x0,1)

K(ρ(x0, y))f(y)dµ(y) < ∞;

2. for arbitrary x ∈ X∫
X\B(x,1)

K(ρ(x, y))f(y)dµ(y) < ∞;

3. ∫
X

K(1 + ρ(0, y))f(y)dµ(y) < ∞.(4)

Proof. First we show that from condition 1. it follows that integral (3) is finite
µ-a.e. on X. For this purpose we write∫

B(x0,1)

UKf(x)dµ(x) =
∫

B(x0,1)

dµ(x)
∫

B(x0,1+c)

K(ρ(x, y))f(y)dµ(y)

+
∫

B(x0,1)

dµ(x)
∫

X\B(x0,1+c)

K(ρ(x, y))f(y)dµ(y)

= J1 + J2.

Consider J1. If y ∈ B(x0, 1 + c) and x ∈ B(x0, 1), then

{y : ρ(x0, y) < 1 + c} ⊂ {y : ρ(0, y) < c(1 + c + ρ(0, x0))} ;

{x : ρ(x0, x) < 1} ⊂ {x : ρ(x, y) < c(2 + c)} .

By Fubini’s theorem, we have

J1 =
∫

B(x0,1+c)

f(y)dµ(y)
∫

B(x0,1)

K(ρ(x, y))dµ(x)

≤
∫

B(0,c(1+c+ρ(0,x0)))

f(y)dµ(y)
∫

B(y,c(2+c))

K(ρ(x, y))dµ(x) < ∞.

Consider J2. If x ∈ B(x0, 1) and y ∈ X \B(x0, 1 + c), then

ρ(x, y) > c−1ρ(x0, y)− 1 ≥ c−1

1 + c
ρ(x0, y).
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It is clear that there exists a positive integer n such that c−1

1+c ≥ 2−n. Then from
(K1) and (K2) we have

J2 ≤ DMn

∫
B(x0,1)

dµ(x)
∫

X\B(x0,1+c)

K(ρ(x0, y))f(y)dµ(y)

= DMnµ(B(x0, 1))
∫

X\B(x0,1+c)

K(ρ(x0, y))f(y)dµ(y).

From condition 1. it follows that J2 <∞. Therefore integral (3) is finite a.e. on G.
Now we show that condition 1. implies condition 2. If ρ(x, y) ≥ 1, then

ρ(x0, y) ≤ c(ρ(x, y) + ρ(x, x0)) ≤ c(1 + ρ(x, x0))ρ(x, y).

Let nx be a positive integer such that c(1 + ρ(x, x0)) ≤ 2nx . Then

K(ρ(x, y)) ≤ DK(2−nxρ(x0, y)) ≤ DMnxK(ρ(x0, y))

and ∫
X\B(x,1)

K(ρ(x, y))f(y)dµ(y) ≤ DK(1)
∫

B(x0,1)

f(y)dµ(y)

+
∫

(X\B(x0,1))∩(X\B(x,1))

K(ρ(x, y))f(y)dµ(y)

≤ DK(1)
∫

B(x0,1)

f(y)dµ(y)

+ DMnx

∫
X\B(x0,1)

K(ρ(x0, y))f(y)dµ(y).

Hence condition 1. implies condition 2. Let us show that conditions 1. and 3. are
equivalent. Since ρ(x0, y) < c(1 + ρ(0, x0))(1 + ρ(0, y)), we have

K(1 + ρ(0, y)) ≤ M1K(ρ(x0, y)).

Then∫
X

K(1 + ρ(0, y))f(y)dµ(y) ≤ DK(1)
∫

B(x0,1)

f(y)dµ(y)

+
∫

X\B(x0,1)

K(1 + ρ(0, y))f(y)dµ(y)

≤ DK(1)
∫

B(x0,1)

f(y)dµ(y)

+ M1

∫
X\B(x0,1)

K(ρ(x0, y))f(y)dµ(y)
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so that condition 1. involves condition 3.
If ρ(x0, y) ≥ 1, then

1 + ρ(0, y) ≤ ρ(x0, y)(1 + c(ρ(0, x0) + 1)).

Hence ∫
X\B(x0,1)

K(ρ(x0, y))f(y)dµ(y) ≤ M2

∫
X

K(1 + ρ(0, y))f(y)dµ(y).

Therefore condition 1. follows from 3. The proof is completed. �

Definition 2. Let β > 0. A space (X, ρ, µ)β is a set X with a quasi-metric
ρ and a nonnegative Borel measure µ on X with supp µ = X, diam X = ∞ such
that

C−1rβ ≤ µ(B(x, r)) ≤ Crβ

for all r > 0 and all x ∈ X, where the constant C ≥ 1 does not depend on x and r.

Lemma 4. Let K : (0,∞) → [0,∞) be a continuous function satisfying condi-
tions (K1), (K2) and
(K4) there exist a constant F > 0 and 0 < σ < β such that∫

B(x,r)

K(ρ(x, y))dµ(y) < Frσ for any r > 0.

Let f be a nonnegative µ-locally integrable function on X satisfying the condition∫
X

f(y)pw(f(y))dµ(y) < ∞,

where p = β
σ and the following conditions are fulfilled

(w1) w is a positive, monotone increasing function on the interval (0,∞);

(w2)

∞∫
1

w(r)−
1

p−1 r−1dr < ∞;

(w3) there exists a constant A > 0 such that

w(2r) < Aw(r) for any r > 0.

Then there exists a positive constant L such that∫
{y∈X:f(y)≥a}

K(ρ(x, y))f(y)dµ(y)

< L

 ∫
{y∈X:|f(y)|≥a}

f(y)pw(f(y))dµ(y)


1
p  ∞∫

a

w(t)−
1

p−1 t−1dt

 1
p′

,

for any a > 0, where 1
p + 1

p′ = 1.
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Proof. For j = 1, 2, . . . define

Xj =
{
y ∈ X : 2j−1a ≤ f(y) < 2ja

}
.

Let rj = µ(Xj)
1
β . Then

C−1µ(Xj) ≤ µ(B(0, rj)) ≤ Cµ(Xj).

Hence∫
Xj

K(ρ(x, y))dµ(y) ≤
∫

B(x,rj)

K(ρ(x, y))dµ(y) +
∫

Xj\B(x,rj)

K(ρ(x, y))dµ(y)

≤
∫

B(x,rj)

K(ρ(x, y))dµ(y) + DK(rj)
∫

Xj\B(x,rj)

dµ(y)

≤
∫

B(x,rj)

K(ρ(x, y))dµ(y) + DCK(rj)µ(B(x, rj))

≤ (1 + D2C)
∫

B(x,rj)

K(ρ(x, y))dµ(y) ≤ M1r
σ
j ,

where M1 = (1 + D2C)F. Therefore∫
{y∈X:|f(y)|≥a}

K(ρ(x, y))f(y)dµ(y)

=
∞∑

j=1

∫
Xj

K(ρ(x, y))f(y)dµ(y) ≤
∞∑

j=1

2ja

∫
Xj

K(ρ(x, y))dµ(y)

≤ M1

∞∑
j=1

2jarσ
j = 2M1

∞∑
j=1

2j−1aw(2ja)
1
p (µ(Xj))

1
p w(2ja)−

1
p

≤ 2M1A
1
p

∞∑
j=1

2j−1aw(2j−1a)
1
p (µ(Xj))

1
p w(2ja)−

1
p

≤ 2M1A
1
p

 ∞∑
j=1

(2j−1a)pw(2j−1a)µ(Xj)

 1
p

×

 ∞∑
j=1

w(2ja)−
1

p−1

 1
p′

≤ 2M1A
1
p

 ∫
{y∈X:f(y)≥a}

f(y)pw(f(y))dµ(y)


1
p

×

 ∞∫
a

w− 1
p−1 (t)−

1
p−1 t−1dt

 1
p′

.

Lemma 4 is proved. �
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Lemma 5. Let (X, ρ) be a set with a quasi-metric, diam X = ∞ and m < c−1.
Then

X \B(x,mρ(0, x)) → X, as ρ(0, x) →∞.

Proof. Assume the contrary. Suppose that there is a y ∈ X such that for all
δ > 0 there exists an x ∈ X such that ρ(0, x) > δ yields ρ(x, y) < mρ(0, x). Then
by Definition 1 we have

ρ(0, x) ≤ c(ρ(x, y) + ρ(0, y)) ≤ c(mρ(0, x) + ρ(0, y)).

Hence

ρ(0, x) ≤ c

1−mc
ρ(0, y),

which is impossible under the choice δ >
c

1−mc
ρ(0, y). Lemma 5 is proved. �

The following theorem generalizes the corresponding theorem in [4].

Theorem 2. Let the assumptions of Lemma 4 and condition (4) be fulfilled
and let also K and w satisfy the conditions

(K5) lim
r→∞

K(r) = 0

(w4) w(r2) ≤ A1w(r), for r ∈ (1,∞). Then

w∗(ρ(0, x)−1)
1
p UKf(x) → 0 as ρ(0, x) →∞,

where w∗(r) =

 ∞∫
r

w(t)−
1

p−1 t−1dt

1−p

.

Proof. Let m < c−1. For x ∈ X \ {0}, we write

UKf(x) =
∫

X\X(x,mρ(0,x))

K(ρ(x, y))f(y)dy +
∫

B(x,mρ(0,x))

K(ρ(x, y))f(y)dy

= J1(x) + J2(x).

If y ∈ X \B(x,mρ(0, x)), then

ρ(0, x) + ρ(0, y) ≤ ρ(0, x) + c(ρ(0, x) + ρ(x, y))

≤ ((c + 1)m−1 + 1)ρ(x, y).

Then one has by (K2),

J1(x) ≤
∫

X\B(x,mρ(0,x))

K(
1

(c + 1)m−1 + 1
(ρ(0, x) + ρ(0, y)))f(y)dy

≤ C1

∫
X

K(ρ(0, x) + ρ(0, y))f(y)dy.

By conditions (4), (K5) and Lebesgue’s dominated convergence theorem,

J1(x) → 0, as ρ(0, x) →∞.
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Consider J2(x). Let l > σ. It is clear that

J2(x) =
∫

{y;ρ(x,y)<mρ(0,x),f(y)<ρ(0,x)−l}

K(ρ(x, y))f(y)dy

+
∫

{y;ρ(x,y)<mρ(0,x),f(y)≥ρ(0,x)−l}

K(ρ(x, y))f(y)dy

= J21(x) + J22(x).

By (K4), we have

J21(x) ≤ ρ(0, x)−l

∫
B(x,mρ(0,x))

K(ρ(x, y))dy

≤ Fmσρ(0, x)σ−l → 0, as ρ(0, x) →∞.

By Lemma 4 and the assumptions of the theorem,

J22(x) < L

 ∫
B(x,ρ(0,x))

f(y)pw(f(y))dµ(y)


1
p

 ∞∫
ρ(0,x)−l

w(t)−
1

p−1 t−1dt


1
p′

≤ L

 ∫
B(x,ρ(0,x))

f(y)pw(f(y))dµ(y)


1
p

w∗(ρ(0, x)−1).

Using Lemma 5, we have

w∗(ρ(0, x)−1)J22(x) → 0, as ρ(0, x) →∞.

So that

w∗(ρ(0, x)−1)
1
p UKf(x) → 0, as ρ(0, x) →∞.

Theorem 2 is proved. �

Remark. Typical examples of functions w satisfying conditions (w1)-(w4), one
may take

w(r) = [log(2 + r)]δ , [log(2 + r)]p−1 [log(2 + log(2 + r))]δ , ...,

where δ > p− 1 > 0.
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